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Closure Properties of Alternating One-Way
Multihead Finite Automata with Constant Leaf-Sizes

HirosHI MATSUNO*, KATSUSHI INOUE** and ITsuo TAKANAMI**

Previous papers introduced alternating multihead finite automata with constant leaf-sizes (AMHFACLs) and
investigated several properties of these automata. Leaf-size, in a sense, reflects the number of processors that
run in parallel in scanning a given input word. AMHFACLSs are more realistic parallel computation models than
ordinary alternating multihead finite automata, because of the restriction that the number of processors running
in parallel should be constant. This paper examines the closure properties of the class of sets accepted by one-
way AMHFACLs and one-way alternating simple multihead finite automata with constant leaf-sizes in the
operations of taking union, intersection, complementation, concatenation, Kleene closure, reversal, and e-free

homomorphism.

1. Introduction

We previously introduced alternating multihead finite
automata with constant leaf-sizes (AMHFACLs) and in-
vestigated several properties of these automata [1]. The
main results were as follows: (1) two-way sensing
AMHFACLs can be simulated by two-way nondeter-
ministic simple multihead finite automata, (2) for one-
way AMHFACLs, k+1 heads are better than k, and (3)
for one-way alternating simple multihead finite
automata with constant leaf-sizes (ASPMHFACLs),
sensing versions are more powerful than non-sensing
versions.

Leaf size, in a sense, reflects the number of proces-
sors that run in parallel in scanning a given input.
AMHFACLs are more realistic parallel computation
models than ordinary alternating multihead finite
automata, because of the restriction that the number of
processors running in parallel should be constant. It is
interesting to examine the properties of AMHFACLs
and ASPMHFACLs, because they have two kinds of
parallelism: constant leaf-size and the number of heads.

In this paper, we examine the closure properties of
the class of sets accepted by AMHFACLs and
ASPMHFACLs in the operations of taking union, in-
tersection, complementation, concatenation, Kleene
closure, reversal, and &-free homomorphism.

Section 2 explains the terminology and notation used
in this paper. In Sections 3 and 4, we investigate the
closure properties of AMHFACLs and
ASPMHFACLs, respectively.
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2. Preliminaries

The reader is referred to King [2] for formal defini-
tions of an alternating multihead finite automation
(AMHFA). An alternating simple multihead finite
automation [6] (ASPMHFA) is an AMHFA with the
restriction that one head (called the ‘reading head’) can
sense input symbols, while the others (called the ‘coun-
ting heads’) can detect only the left endmarker ‘¢’ and
the right endmarker ““$’’. When the heads of an
AMHFA (ASPMHFA) are allowed to sense the
presence of other heads in the same input position, we
call it a ‘sensing’” AMHFA (ASPMHFA).

A one-way AMHFA is defined in the usual way. A
semi-one-way ASPMHFA is an ASPMHFA whose
reading head can move only in one direction, but whose
conting heads can move in two directions. A one-way
ASPMHFA is an ASPMHFA whose reading and coun-
ting heads can move in one direction.

A step of an AMHFA (ASPMHFA) M consists of
reading a symbol from the string input by each head,
moving the heads in the specified directions (note that
any of the heads can remain stationary during a move),
and entering a new state, in accordance with the transi-
tion function. If one of the heads falls off the input
words, then M can make no further move.

For any AMHFA (ASPMHFA) M, let T(M) be the
set of inputs accepted by M. In this paper, to represent
the different kinds of one-way ASPMHFAs (resp.
AMHFAs, sensing AMHFAs) systematically, we use
the notation Xk-HFA (resp. Xk-HFA, XSNk-HFA),
k=1, where



478

1) Xei{D,N, A, U}
D: deterministic

N: nondeterministic

A: alternation

U: alternating automaton with only universal states

(2) Ye {SP, SNSP}

SP: simple

SNSP: sensing simple

(3) k—H: k-head (the number of heads is k).
Furthermore,

Z[XYk-HFA]={T|T=T(M) for some XYk-HFA
M}

ZLIXSNk-HFA]={T|IT=T(M) for some XSNk-
HFA M}

ZL[Xk-HFA]={T|T=T(M) for some Xk-HFA M }.

Definition 2.1 Let L:N—R be a function, where N
denotes the set of all positive integers and R denotes the
set of all nonnegative real numbers. For each tree ¢, let
LEAF(¢) denote the leaf size of ¢ (that is, the number of
leaves of ¢). We say that for Xe {4, U}, Ye {SP,
SNSP}, an XYk-HFA (XSNk-HFA, Xk-HFA) M is
L(n) leaf-size bounded if when we give an input x of
length n to M there is no computation tree of M on x
such that LEAF(¢)> [L(n)] .

For each Xe {4, U}, Ye {SP, SNSP}, k=1, we let
XYk-HFA(L(n)) (resp. Xk-HFA(L(n)), XSNk-
HFA(L(n))) denote L(n) leaf-size bounded XYk-HFA
(resp. Xk-HFA, XSNk-HFA). Let Z[XYk-HFA(L(n))]
={TIT=TM) for some XYk-HFA(L(n))M} for
Xe {4, U} and Ye {SP, SNSP}. £[Xk-HFA(L(n)))
and Z[XSNk-HFA(L(n))] are defined similarly.

3. Multihead Finite Automata

In this section, we will investigate the closure proper-
ties of the class of sets accepted by AMHFACLs. The
following lemma is shown in Matsuno et al. [1].

Lemma 3.1 For each r=1, let

AN ={wi2w2-- 2wy lvi(l =iz 2r)[we {0, 1}*] &
Vil gjsniw=wys1-]}

and for each string x=w,2w»2- - -2w,, in A(r) and for
each i(1 =si=r), let the pair of w; and w4, be called
twins of x. Then, Ak-HFA(s) can compare all twins of a
string in A(r) if and only if r<k(k—1)s/2.
Lemma 3.2 Let
Ti(B)={w2w:2- - 2wy | vi(l i< 2b)[w;,e {0, 1}*
3{0, 1}*] & 3i, jilwi=x3y & w,=x3z & y#z]}.
Then, for each r=1,
(1) T(r(r—1)/2+1)e £L[N2-HFA], and
2) T(r(r—1)/2+1)¢ L[NSNr-HFA].
Proof. (1): The proof of (1) is omitted, since it is ob-
vious.
(2): Suppose that for some r=1, there exists an

NSNr-HFA M accepting T,(r(r—1)/2+1). Let T{(b)

'[r] means the smallest integer greater than or equal to r.
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={wi2wy2- - 2wy lvi(l =iz 2b)[wie {0, 1}*3{0, 1}* &
Wi=Wy—=B(min (i, 2b+1—0)3y & ye {0, 1}*}?
and let 77(D)={wi2w:2 - 2wy | Vi(l =i=<2b)[w:e {0,
1}*3{0, 1}* & w,=B(min (i, 2b+1—i))3y & ye {0,
1}*}.

It is easily seen that T1(b) is accepted by a (one-head)
finite automation, and therefore 77 (b) is a regular set.

On the other hand, it is easily seen that T{(b)= Ti(b)
NT{(b). From these facts and the fact that & {NSNr-
HFA] (r=1) is closed under intersection with regular
sets, it follows that T{(r(r—1)/241) is accepted by M.

We can prove that Ti(r(r—1)/2+1)¢ L[NSNr-
HFA] by using the same technique as in the proof of
Theorem 1 [3]. This is a contradiction.

Q.E.D.

Theorem 3.1 For each kz2 and each sz 1, ¥ [Ak-
HFA(s)] and ¥ [ASNk-HFA(s)] are not closed under
complementation,

Proof. It is shown in Theorem 4.4 in [1] that
ZL[ASNk-HFA(s)] ¢ Z[NSN(ks)-HFA] (k=2, s=1).
From this fact and Lemma 3.2, we can show that
Ti(kstks—1)/2+1)& L[ASNKk-HFA(s)]. This com-
pletes the proof of the theorem.

Q.E.D.
Lemma 3.3 For each r=2 and each i(l=i=r(r+1)
[2), To(r, i)={wi2ws2- - 2w, I p=r(r+1) & i(15i=p)
we {0, 1}* &  w=wy -]} and Tx(r)
={w2w,2- - - 2w,ip=r(r+1) & "i(l si<p)[wic {0, 1}*
& wWi=w,41-]1}. Then,
(1) for each r=2 and each i(l=i=r(r+1)/2),
Tyr, i)e £[D2-HFA] and

(2) Talks, )NTaks, 2)N - - -NTaks, (ks+ 1)ks/2)=
Ta((ks+ 1)ks/2)& L [ASNk-HFA(s)] k=2,
sz1).

Proof. (1): Obvious.

(2): It has been shown [3] that Ty((k+1)k/2)&
Z[NSNk-HFA]. From this fact and Theorem 4.4 [1]
(see above), we can obtained the above lemma.

Q.E.D.

We shall formulate two sufficient conditions for a
language L to be in #[USNk-HFA(s)] for k=2 and
sz1. For each input x given to an alternating
automaton with only universal states, there exists only
one computation tree corresponding to the input x.
Thus, informally, an alternating automaton with only
universal states can be considered as a ‘deterministic
parallel machine.” We shall need the following
languages for an arbitrary natural number f.

Cr(n)={ucwicwrc- - -cwewpe: - ~ewrew | lul =w;l =n
& u, wie {a, b}* for each i(1<i=<f)};?

Dy(ny={vidvdlv,e C;(n)};
Ef(n)={ucwicwyc: - -cwpewp ¢ - - cwy— ycwyyl lul
=lwil=n&u, we {a, b}* foreachi(l=i<2f) &

’B(i) denotes the binary representation of /.

*For any word w, |wl| denotes the length of w.



Closure Properties of Alternating One-Way Multihead Finite Automata with Constant Leaf Sizes 479

3j(1 =/ =/)w;= wy+1-,]} and
Fr(my={viewicwc- - -cwewye - -
cwyew dvscwiewact - cwpewse: - -ewaewidl |

=|vl=Iw)l=n & v, v,, wie {a, b}* for each
i(1=i=f) and v, # 0,2},
Let Ci= U _Ci(m); Dy= U _Dsn); E= U _
and Fy=, U _ Fy(n) for arbitrary /=1, 2, 3,. ...

Lemma 3.4 Let L be an arbitrary set fulfilling the
following conditions:

(1) L2C/UD,

(2) LN(EUF)=¢.

Let f=k(k—1)s/2, where k=2 and s= 1. Then L is not
in £ [USNk-HFA(s)].

Proof. The proof is an extension of the proof on
Theorem 1 in Hromkovic [4]. Let us assume that there
exists a USNk-HFA(s’) which recognizes a set L satisfy-
ing (1) and (2) where 1 s’ <s. We need the following
notations:

A configuration of M working on the input word w is
a (k+1)-tuple (g, i\, i, . . . , i), Where g is the state of
the finite state control and J; is the position of the j-th
head on the input word w.

A prominent configuration is a configuration of the
computation tree on the input word x in CUDJEMF;,
from which M moves one of its heads on the symbol ¢,
d, or$.

The subsequence of prominent configuration of the j-
th path of the computation tree on the word x is called a
J-pattern of x (denoted by Pj(x)).

For each word x given to USNk-HFA(s’) M, we let
(Pi(x), Pyx), . . ., Py(x)) denote the pattern of M.

Let M be a USNk-HFA(s’) with ¢ states that
recognizes a set L satisfying (1) and (2). We shall con-
sider the initial part of computation tree of M on the
word y in C;(n)UD,(n), which begins in the initial con-
figuration and ends in a prominent configuration, in
which one of the heads had read the whole subword

E;(n)

YI=UCW CW:1C* - *CWsCwC+ - -cwacw of the input word y
(see Fig. 1). (In other words, the initial part of the com-
putation tree is the part that is the same for words y,
and y,dy,d, because M does not know whether it is
working on the word y, in C;(n) or on the word y,dy:d
in Dy(n).)

Now, let us consider the number of all patterns of the
initial part of the computation tree on the word y in
C;(n)UDy(n), which number we denote p(n). If we note
that |y, | =k(k—1)s(n+ 1)+ n, we can easily see that the
number of all configurations on word y, is bounded by

tik(k—Ds+ D(n+ 1))~
Thus we obtain the following inequality:
p(n) = [[[(k(k — D)s+ 1)(n+ 1)]F]E- Do+ 0y,

because the leaf-size of the computation tree is bounded
by s(= 1), and for each j (I =5 =5), no j-pattern of the in-
itial part of the computation tree can consist of more
than k((k—1)ks+1) prominent configurations, as
shown in Fig. 2.

Since the number of all words y, from C,(n) is

2[(/(* Dks/2+1]n

there exists a pattern o of the initial part of the computa-
tion tree such that at least

2[(/(— Dks/2+ l]n/p(n)

different words y, from C;(n) have the same pattern o as
the initial part of the computation tree.

Now we distinguish the following two cases accord-
ing to the last prominent configuration (q, i, iz, . . . ,
i) of each path of the pattern g.

(1) i>nforalljin {1,2,. .., k}, thatis, all heads
have read the initial subword ue {a, b}*.

(2) There exists some jin {1, 2, ..., k} such that
ij=n, that is, at least one head has not read the initial
subword ue {a, b}*. We shall show below that both (1)

For each path, at
least one head has
read the whole sub-
word y._.

1

Fig. 1 Initial part of the computation tree on the word y in CAmUD(n).
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at most =

at most J
Kk(Ck-1)ks+1)

!

¥

prominent
configuration

!

Fig. 2 Pattern of initial part of computation tree on y in C(m)UD(n).

and (2) lead to contradictions.

(1) Inthis case we shall consider input words y,dy,d
in Ds(n), where y, has the pattern ¢. Noting that there
exist at least 2~ V&/2+bn/ h(pny different words y, with
the pattern o, we see that there exist at least

m= [2((/(— I)ks/2+l)n/p(n)] . [l /z(k— ])kx/Z]

different words y, with the pattern o differing from each
other only in the initial subword u; that is, there exist at
least m words y,=ucx, where x=w,cw.c- - -cwscwsc: - -
cwycw, is fixed, with the pattern o.

It is obvious that m=2"/p(n) is greater than 2 for a
sufficiently large value of n, since p(n) is bounded by a
polynomial. This means that for a sufficiently large n
there exist two words from Cy(n) v;=u,cx and
va=u,cx, where u, # u,, with the same pattern o as the
initial part of the computation tree. Since M accepts the
word y=uv,dvid=u,cxdu,cxd in Dy(n) and the state set
of M consists of only universal states, it follows that M
must also accept the word ¥’ =u,cxdu, cxd, which clear-
ly belongs to Fy(n).

(2) We shall consider the input word y in Cy(n) in
this case. Let us consider all accepting computation
trees on all

2(k(k—l)x/2+l)n/p(n)

different words y=y, in C,(n) that have the same pat-
tern o as the initial part of the computation tree.

Let p’(n) be the number of all possible patterns of ac-
cepting computation trees on words y in Cy(b). We ob-
tain the following inequality,

P (M) =[[tlk(k = Ds+1)(n+ DDty

From this fact it follows that there exist at least

2(k(k— 1)s/2+ I)ﬂ/pl(n)

different words y in C,(n) with the same pattern ¢’ con-
taining the pattern g as an initial subsequence.

From Lemma 3.1 and assumption (2), we can see that
for each input word in Cy(n), there must be an i such
that both subwords w; of the words y=ucw,cwzc- - -
CW, C* ' "CW/CWsC * *CW; C - *CWcw, are never read by
any two heads at the same time. This means that there
exist at least

m=[2V* "/ p'(m]-[1 /297721 =2" p'(n)

different words in Cy(n) that have the same pattern ¢’,
which differ from each other only in the subword w,.

It can be seen that m=2 for a sufficiently large value
of n, and so there exist two words in Cy(n)

V= UCw cwaC 'CW,‘OC' C T CWeCWyCt 'CW,'“C' ©CWLCW)
V2= UCW ) CWC- * 'CWi:‘C' CTCWCWeC * 'CW,;C' *CW2 W,

with the same pattern g’ as in the accepting computa-
tion tree, where w; # w;.

By an argument similar to that in the proofs of
Theorem 1 in Yao and Rivest [3] and Theorem 1 in
Hromkovic [4], it can be shown that M must also accept
the word

Y S UCWICWLC" - - CW; € " CWCWsC* = "CW C" " " CWCW),

which belongs to E;(n). This is a contradiction.
Q.E.D.
Lemma 3.5 Let L be an arbitrary set fulfilling the
following conditions:
(3) L=2{e}-CMie} Dy
@) LNn({e}-Efie} -Ep=¢.
Let f=k(k—1)s/2, where k=2 and sz 1. Then the set L
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is not in ¥ [USNk-HFA(s)].

Proof. It is an easy matter to show that if there ex-
ists a set L satisfying the conditions of Lemma 3.4 such
that Le £ [USNk-HFAC(s)], then there exists a set L’
fulfilling the conditions of Lemma 3.4 such that
L’ e Z[USNk-HFA(s)].

Q.E.D.

The following theorem can be directly obtained from
Lemma 3.3 above:

Theorem 3.2 For each k=2 and sz1, L[Ak-
HFA(s)] and & [ASNk-HFA(s)] are not closed under in-
tersection.

Theorem 3.3 For each k=2 and s=1, ¥[Uk-
HFA(s)] and ¥ [USNk-HFA(s)] are not closed under
the following operations:

(1) Intersection

(2) Concatenation

(3) Reversal

(4) Kleene closure

(5) Union

(6) &-free homomorphism.

Proof. (1): Obvious from Lemma 3.3.

(2): Let us consider the following languages:

Li=A{a, b}*CU{e},
L,={ududlue {a, b, c}*}U{e},

G={wicw,c: - -cwgewse: - -ewrew, l wie {a, b}* for
I=isfiU{e} fori=1,2,3,...

Clearly, Le £[DI1-HFA], L,e #[D2-HFA], and
Gre £L[Uk-HFA(s)] for f<k(k—1)s/2. On the other
hand, by an argument similar to that in the proof of
Theorem 2 in Hromkovi¢ {4], we can see that the set
L|L26k(k_1)5/z is not in y[USNk-HFA(S)]

(3): The set LiJ{a, b}*cGy- s> does not belong to
Z[USNk-HFAC(s)], since it fulfills the conditions of
Lemma 3.4, but LYU{a, b}*cG-1s/2 belongs to £ [Uk-
HFA(s)).

(4): Let us consider the set L;={e} L\Na,
b}*cGu—-1us;2U{e}, which belongs to ¥ [Uk-HFA(s)]. By
an argument similar to that in the proof of Theorem 4
in Hromkovic [4], we can see that L¥ satisfies condi-
tions (3) and (4) of Lemma 3.5, which implies that L¥ is
not in Z{USNk-HFAC(s)].

(5): It can easily be seen that the set L, and {a,
b}*cGu-us/2 belongs to £ [Uk-HFA(s)] for each k22
and s=1 and that the set LU{a, b}*cGu-us/ fulfills
the conditions of Lemma 3.4.

(6): Clearly, the set L,={e}-L\J{g} -{a, b}*
¢cG-1ys/2 belongs to L [(Uk-HFA(s)] for each k=2 and
sz1. Let us define an &-free homomorphism 4 as
follows: h(e)=h(g)=e, h(a)=a, h(b)=D>b, h(c)=c, h(d)
=d. Then T(L,) satisfies conditions (3) and (4) of Lem-
ma 3.5.

When leaf-size is not restricted, the following result
holds:

Theorem 3.4 For each k=2, ¥[Uk-HFA] and
& [USNk-HFA] are not closed under complementation.

Proof. Let us suppose that #[Uk-HFA] is closed
under complementation. From Theorem 1 in
Sakurayama et al. [5], we find that Z[Uk-HFA]
=co—Z[Nk-HFA] for k=1. It follows that for some
set L, if Le £[Nk-HFA], then Le £[Uk-HFA], and
L=Le £[Uk-HFA] from the assumption above. Thus,
Z[Nk-HFA] € #2[Uk-HFA]. On the other hand, from
Corollary 3 (3) in Sakurayama et al. [5], we can show
that #[Uk-HFA] is not comparable with Z[Nk-HFA]
for each k=2. This is a contradiction. The case of
L[USNk-HFA] is proved by using a similar argument
to the one above.

Q.E.D.

4. Simple Multihead Finite Automata

The closure properties under Boolean operations of
ASPMHFASs are given in Matsuno et al. [6]. In this sec-
tion, we first summarize the closure properties under
Boolean operations of ASPMHFACLs derived from
those results. The following theorem is obvious:

Theorem 4.1 For each Ye {SP, SNSP}, k=1, and
s=1, L[AYk-HFA(s)] is closed under union.

Theorem 4.2 For each Ye {SP, SNSP}, k=1, and
s=1, L[UYk-HFA(s)] is not closed under union.

Proof. The proof can be found from Lemma 6.5 in
Matsuno et al. [6].

Q.E.D.

Theorem 4.3 For each Xe{A, U}, Ye{SP,

SNSP}, k=2, and s= 1, L[XYk-HFA(s)] is not closed
under complementation and intersection.

Proof. The proof can be found from Lemmas 6.2,
6.3, and 6.4 in Matsuno et al. [6].

Q.E.D.

We next investigate the closure properties of
ASPMHFA with only universal states under operations
of concatenation, Kleene closure, reversal, and e-free
homomorphisms.

Lemma 4.1 Let T5={xe {0, 1} " 1(IxI=3) & (Ix| is
odd) & (the center symbol in x is ‘1°} and T,={a}*.
Then,

(1) T3, Ty, T4T;e L[DSP2-HFA]

Q) T:T,=(T.T:;)}¢ LIUSNSPk-HFA(s)].

Proof. (1): Obvious.

(2): Let Ts=T3;T,. Suppose that there exists a
USNSPk-HFA(s) M which accepts 7s. Let u be the
number of states (of the finite control) of M, and let R
be the reading head of M. For each n=1, let

V(n)={0"w0"a"|(we {0, 1}*) & (Iwl=n) & (r,, n=1)
& (r+r,=2n)}.

For each x=0"w0"a" in V(n), let SC(z) be the multi-set
of semi-configurations* of M as follows:

SC(z)={(q, i},iz, e ,ik_1)|C=(z, 2n+1,(q,i|, iz, ey

*Semi-configuration of M is a k-tuple (g, i\, s, . . . , i) where g is
a state of finite control of M and i, (1 =j<k—1) is the position of the
Jj-th counting head.
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ix-1)) is a configuration of M just after the point
where R reads the initial segment 0"w of ¢ z$}.

Then, the following proposition must hold:

Proposition 4.1 For any two words z and z’ in V(n)
whose initial segments 0"w’s (of length 2n) are different,
SC@)#SC[').

(For the apposite case, suppose that z=0"w0"a",
=0w0"a> (w#w’), and SC(z)=SC(z’). Let
w=wilw,, w=w0w, (Imii=Iwi=t O0=st=n-1).
We then consider the two words z=0"w,1w,0’a” and
2=0'w0w,0°a" (p=n+t—Iwyl, r=2(n—t)—1) in
V(n). Clearly, ze Ts, and so z is accepted by M. It
follows that z; must be also accepted by M. This con-
tradicts the fact that z, is not in 75.)

Clearly t(n) <u(4n+2)*"', where #(n) is the number
of possible semi-configurations of M just after the point
where R reads the initial segments 0"w’s (of length 2n)
of words in V(n). For each z in V(n), the leaf-size of the
computation tree of M on z is at most s(=1). Thus, for
each z in V(n), 1SC(z)l =s. Therefore, letting S(n)
={SC(z)Ize V(n)}, it follows that for some constants
cand ¢’

[S(m)} <ct(ny’<c' n*—"s3

Cleardy, | V(n)| =2". From these facts, it follows that
for large n, IS(n)l <|V(n)l. Therefore for large n,
there must be two words z and 2z’ in ¥(n) whose initial
segments 0"w’s are different such that SC(z)=SC(z’).
This contradicts Proposition 4.1.

Q.E.D.

Theorem 4.5 For each k=2, Ye {SP, SNSP},
ZL[UYk-HFA(s)] is not closed under the following
operations:

(1) Concatenation with a regular set

(2) Reversal

(3) Kleene closure

(4) e-free homomorphism.

Proof. (1), (2): Obvious from Lemma 4.1.

(3): Let Te,=TyUT,. It is easy to see that
Tee L[DSP2-HFA]. On the other hand, T,N({0,
1} {a}*)=T:Ti¢ 1 oM L [USNSPk-HFA(s)] (from
Lemma 4.1). It follows from this fact and the fact that
[USNSPk-HFAC(s)] is closed under union with a regular
set (which is easy to prove) that Te¢ MoV
Z[USNSPk-HFAC(s)]. This completes the proof of (3).

(4): Let T5={xe {0, 1}"1(Ix| 23) & (Ix! is odd) &
(x has exactly one ‘2’ as the center symbol of x}. Then it
is readily proved that T3;Tse #[DSP2-HFA]. On the
other hand, let h be the ¢-free homomorphism defined
by A(0)=0, A(1)=1, h(Q2)=1, and h(a)=a. Then
WTiTs)=TTs¢ U U LIUSNSPk-HFA(s)] (sz1).
This completes the proof of (4).

Q.E.D.

Theorem 4.6 For each k=2 and sz 1, ¥ [ASPk-
HFA(s)] is not closed under concatenation.

For any set S, |S| denotes the number of elements of S.

H. MATsuNO, K. INOUE and 1. TAKANAMI

Proof. Foreach!z2,let Li={a"b"In=1}. The set
L, is accepted by NSPk-HFA M’, which acts as
follows:

Let R be the reading head of M’ and C,, G, . . .,
Ci-) be the counting heads of M. Suppose that an input
a"b™amp™- - -a"™-'b™~'$§ is presented to M’.

For each i(1 =i=k—1), M moves C; on the left end of
subword a” nondeterministically. Then, for each
i(l=i<k—1), M moves C; two cells to the right for
every one right move of R on the subword b™. C,,
Cy ..., G-, are moved one cell to the right
simultaneously with R, and Cisy, Ci+s, . .., Ci- re-
main stationary at the left ends of subwords a™*', a"3, .
.., a™ ', respectively. Moving each head in this way,
M accepts the input if and only if all heads reach the
right endmarker $ at the same time. it is obvious that
TM)=L,_,.

If it can be shown that Lu—is+2k-ns+ns¢ [ASPk-
HFA(s)], then we have completed the proof of the
theorem. The proof is an extension of Theorem 1 in [7).

For the apposite case let us suppose that there
exists an ASPk-HFA(s) M (kz2, s=1) accepting
L~ 1ys+21k-ns+13s» Which has m states. (Without loss of
generality we assume that the input tape of M has
no left endmarker.) For each input word w in
Lk-ns+20k-ns+13s, there exists an accepting computation
tree of M denoted by Tu(w). We divide input word w
into s subwords. That is,

W=Wi W, - W,

Without loss of generality, we assume that each node of
Tm(w) that is labeled by a configuration® with a univer-
sal state has exactly two children. Then, because of the
bounded leaf-size s, there are at most s— 1 nodes label-
ed by configurations with a universal state in Ty (w).
From this fact and the fact that word w has s subwords
wis, there is a subword w; in the word w such that on
each computation path of Tx(w), there is a sequence of
steps which implies that M never enters a universal state
while reading the subword w;. We let such subword w;
be w;, let e(l1 <e=s) be the number of sequences of
steps during M reads the subword w,, and let S(1),
S(2), . . ., S(e) be these e sequences of steps.

Let the subword w;(1 <i=<s) be as follows:

W=y Yu-ns+1 (12i=s)
YiSy=XiXa Xu-ne+2 (1 ZiZ(k—1)s+1)
x=x=a"b" (1=i=(k—1)e+2).

For each i(lsi<e) and each j(lzj=(k—1)s+1), let
Ni(j) be the number of counting heads that reach the
right endmarker § while the reading head R reads the y;
in wy, in the i-th sequence S(i) of Tu(w). Since M has
only (k—1) counting heads and leaf-size s, it follows
that M) =M(jo)=" " =Nc(jo)=0 for some

®A configuration of M on wis a (k + 1)-tuple of a state of finite con-
trol and k& head positions.
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Jol(1=jo=(k—1)e+2).

Consider the case when in Ty(w) R reads the sub-
word y;, such that Mi(jo) =Ny(jo)=" - - =N.(jo)=0. We
select an arbitrary number i (1 =ip<(k—1)e+2) and let

X, =@Qi.ai2" - AGiab" (a;=a, 12j=n).

For each j(1 <j<e) and each symbol a;, let gi, be the
state of M when R moves onto a;; on the j-th sequence
S(j). For each symbol a;,, we consider the e-tuple of
states as follows:

(ql!nlv qlz‘,lr R | qz,/)=Qi‘,l-
We call Q, above a multi-state of M.

A j-configuration of M is a (k+ 1)-tuple qh b, ...,
bix) (denoted by ¢)), where g is the state of finite control
of M and b/, is the position of the /-th head in S(j). A j-
increment is a (k+1)-tuple (g4, ki, . . . , ki), where g}
is the state of finite control of M and each Hiy is either 0
or 1. (Informally, the j-increment describes moving the
heads at one step of computation in the j-th sequence
S(j).) Let ¢4, ci+1, - - . , ) be the subsequence of S(j),
where ¢/ is a j-configuration when R reads the symbol
a;, and c§ is a j-configuration when R reads the symbol
a.of x,=aa;, -@;nb". We say that the sequence of j-
increments d4, d7+1, . . . , dj-1, where

di=(ql, bii—bj, ..., bik—bk)
if ¢/=(g’, bji,...,bjx) and
c{+|=(qf+1, }I+1 ey j‘tl

foreachi(l=i=g—1), is the sequence of j-increments
of ¢}, ¢f+1, . . ., cy. Figure 3 summarizes the relation-
ship between j-configurations and j-increments in each
path S(j).

We let

S(1) S (2)
i
d, d
¢ +1
9 44 d

dhydysr, .y di
dh diu, .. ., d2

1)
ds, divn, . .., di-

where d7, df+i, . . ., dj 1 is a subsequence of j-in-
crements in S(j) and d’/J (dy,-1) is the j-increment when
M reads the symbol a;, (a;,). Let

dt'!.) dtlxl+19 ety db,

d%«;v d§z+h L ) d%,

(fisai<Bi=gi-
Vi(l=si<e))

ds, dé, . .., d,
be a subsequence of (1), and be denoted by segment. If
thelengthofd}, ..., d} istheshortestof anydi, . . .,
dj then let the length of d3, . . ., d}, be the length of
the segment. ‘ ‘

For each symbol a, (a;,,) (h <L), let d’; (d7,) be the
J-increment when M reads symbol a;, (a;:), and let
Qi,,=Qi,- Then we say that the segment

dl, dhris. .., dl

di,d}+,...,d}

(shi<ly=g-1
wvi(lsi=ze))

Fig. 3 J-configurations and j-increments.
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is a Q-cycle. Furthermore, we say the following (k—1)
e+ 1-tuple

I 21 In
(z Hos S i) S W,

I=h 1=l 1=
Iz I

13
Dl kb 2 Ry X Ry

1=h =l 1=l

b e b

T hék)
1=h, =4 =1,

is a parameter of this Q-cycle.

Fact 4.1 If (1) can be written in the form s, pi, s,
D2, 53, Where sy, s, 53 are the segments and p,, p; are the
Q-cycle (for some multi-state Q), then there is an accep-
ting computation tree of M that is constructed by replac-
ing 51, p1, $2, P2, 53 of Tu(W) by s1, 1, P2, 52, 83 (see Fig.
4).

Since every segment with a length of at least m*+1
contains a Q-cycle, from Fact 4.1, we have the follow-
ing:

Fact 4.2 There is a permutation of (1) which can be
written in the form

Sty D1y §2, P2y + « + s Srs Prs Sr+15 2

where r<=m°, each s; is a segment with length at most
m®, each p; can be written in the form p;=p!, p}, . . .,
pl, where each p! is a Q-cycle with length at most m® and
there is an accepting computation tree of M on w that is
constructed by replacing (1) of Ty(w) by 51, p1, $2, P2, « -+ -
sry pr; sr+|-

Fact 4.3 Let p’s be the Q-cycles from Fact 4.2. For
(2), there is a parameter v=(v|, v2, . . . , V—ne+1) With
v,>0 and 0<v;<=m° for each i(1 =sis(k—1)e+1), such
that the number of Q-cycles p} with parameter v is at
least (n—(m®+ 1)m)/ (me(me + 1)k~Derly,

Proof. Since the reading head crosses the ip-th sub-
word a” of word y;, during the part of the computation
corresponding to (2), there are n increments (in (2)) in
which the reading head is moved to the right. Clearly, at
least n-(m°+ 1)m° increments from these n increments
are contained in the cycles p?, because r<m¢ and the

}ﬂ-cycle

]rﬂ-cycle

H. MaTsuno, K. INOUE and I. TAKANAMI

length of each s; is at most m° (see Fact 4.2). This im-
plies that the number of Q-cycles p! with parameters
whose first component is greater than zero is at least
(n—(m+1)m°)/ m°. Since the number of all different
parameters, for the cycles with length at most m*, is at
most (m°+ 1)*~De*! there is a parameter v such that the
number of cycles p{ with parameter v is at least
(n—(me+ D)m®) [ (me(me+ 1)k~ Vet ly,
[ ]
Since the number i, (1 <iy<(k—1)e+2) was selected
arbitrarily, from Fact 4.3, we find that there is an accep-
ting computation tree of M on w with the sequence

Uy, 21y U2y 225+« oy Uk—D)e+25 Lh-Nre+25 Uk—11e+3 (3)

where, for each i(l1 =i=<(k—1)e+2), z; is the segment
corresponding to the part of this accepting computation
tree at which the reading head reads the i-th subword a”
of word y;, z;is of the form (2), and each ; is a segment.
Further, from Fact 4.3, there are parameters v'=(v,
vh, . .., Vlk-nes1) for each i(l =i<(k—1)e+2), with
v,>0 and O0=v;=m* for each i(l =i=(k—1)e+2) and
each j(l=sj=(k—1)e+1), such that the number of
cycles with parameter »; is at least (n—(m°+1)m°)
J(me(mt+1)*" %+ in  segment <z for each
i(1 =si=(k—1)e+2). Clearly there are rational numbers

r, 2, . . ., Fe—ne+2 Such that
(k—1)e+2 .
, riv'=0, (CY)
where
0=(0,0,...,0) and ;=0 for some i(l<i=s(k—1)
e+2), «

because the vectors v'#0 are linearly independent.
Without loss of generality we can assume that the 7’s in
(4) are integers.

Let w be the word as above. Now we consider the
word

W =P Yy o1 Vi Vigt1" " Vik=ns+15

where

Q-cycle

G-cycle

=

Fig. 5 State transition diagram of the LR(0) automaton in Fig. 4.
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W=Y1  Yk—Ds+1s \

y,=a'v"a"d"- - -q"-p" and m=n+ruv

for each i(1 =i=(k—1)e+2). (Note that all n,>0 when
n is large enough.) Since r;#0 for some i and v} >0 for
all i (see above), we find that n;#n for some i, and
therefore W’¢ L - e+ ix—-ns+ns. On the other hand,
from (3), (4) and

(k—he+2

Lyl =2(k—De+n+ >, rei
i=1

=2((k—e+2n+0=1y,|,

we know that there is an accepting computation tree of
M on w’ with the sequence u,, Zi, U2, 23, - - « 5 Uk—e+25
Z{-1ne+2, Uu—-ne+3 Where segment z; is obtained by inser-
ting (if r;>0) or by deleting (if r;<0) r; cycles with
parameter v’ from segment z;. Therefore, w’ is accepted
by M. This is a contradiction.

Q.E.D.

Theorem 4.7 For k=2 and s=1, £ [ASPk-HFA(s)]
and | U U PLIASPr-HFA(t)] is not closed under
Kleene closure.

Proof. Let Tv={a"p"ln=1}. It is easily seen that
Tre Z[DSP2-HFA]. On the other hand, it is shown in
Lemma 4.4 in Matsuno ef ol. [1] that 7F& U _ U
Z[ASPk-HFA(s)]. This completes the proof of the
theorem.

Q.E.D.

5. Conclusions

The closure properties of AMHFACLs and
ASPMHFACLs are summarized in Tables 1 and 2, re-
spectively. It is easy to show that ordinary alternating
automata (that is, state sets containing existential
states) are closed under union. From these tables, we
notice that A(SP)YMHFACLs with only universal states
are not closed for almost any operator dealt with in this
paper.

Most of the results in Table 2 hold for semi-one-way
alternating simple multihead finite automata with con-
stant leaf-sizes. That is, ‘no with superscript 2’ indicates
that the result is only valid for one-way.

In a sense, these tables are generalizations of
nondeterministic and deterministic cases. That is, if we
fix parameter s=1 in these tables (which implies that
leaf-size is ‘1°), the symbols U and A in these tables in-
dicate the deterministic and nondeterministic cases, re-
spectively.

In this paper, we have investigated the closure proper-
ties of AMHFACLs and ASPMHFACLs, in some in-
stances improving previously known results. An open

Table 1 Multihead Finite Automata.

U USN A ASN
comple. 2 2! no no
union no no yes yes
inter. no no no no
concate. no no ? ?
Kleene no no ? ?
revers. no no ? ?
e-free no no ? ?

U: Z[Uk-HFA(s)], USN: Z[USNk-HFA(s)], A: Z[Ak-HFA(s)],
ASN: Z[ASNk-HFA(s)], 1: £[Uk-HFA] and #[USNk-HFA]} are
not closed under complementation.

Table 2 Simple Muiltihead Finite Automata.

uUSspP USNSP ASP ASNSP

comple. no no no no
union no no yes yes
inter. no no no no
concate. no no no’ ?
Kleene no no no’ ?
revers. no no ? ?

9

e-free no no ?
USP: Z[USPk-HFA(s)], ASP: £[ASPk-HFA(s)], USNSP:
L[USNSPk-HFA(s)], ASNSP: #[ASPSNk-HFAC(s)], 2: Only valid
for one-way (not hold for semi-one-way).

problem is how to get the results at symbol ‘?° in these
tables.
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