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{ LETTER

A Note on Synchronized Alternating Turing
Machines with Small Space Bounds

Katsushi INOUET, Itsuo TAKANAMITf, Akira ITOft
and Hiroshi MATSUNOTT, Members

SUMMARY We solve open problems about synchronized alter-
nating Turing machines. For example, we show that for any (%)
=o(log n), there is a set accepted by a loglog » space bounded
two-way synchronized alternating Turing machine with only
universal states, but not accepted by any L(n) space bounded
one-way synchronized Turing machine with only universal states.

1. Introduction and Preliminaries

In Ref. (1), synchronized alternating devices were
introduced as a generalization of alternating devices.
The synchronization enables the communication among
parallel processes in alternating computations. In Refs.
(1) and ( 2 ), many properties of synchronized alternat-
ing devices were given. In this paper, we solve several
problems left open in Ref, (2).

We refer to Refs. (3)-(5) for a more formal intro-
duction of an ‘alternating Turing machine’ (ATM). An
ATM M has a read-only input tape with the left and
right endmarkers ¢ and §, and one semi-infinite storage
tape, initially blank. A step of M consists of reading one
symbol from each tape, writing a symbol on the storage
tape, moving the input and storage tape heads in
specified directions, and entering a new state, in accor-
dance with the next move relation. The state set is
partitioned into accepting, rejecting, existential and
universal states.

A ‘synchronized alternating Turing machine’
(SATM) M is an ATM some states of which have a
sync element from some given finite set. These states
and the instantaneous descriptions (see below) associ-
ated with them are called sync states and sync
instantaneous descriptions, respectively. When a proc-
ess P enters a sync state, it stops and waits until all
parallel processes either enter the states with the same
sync element or stop in accepting states.

For each word w, let |w| denote the length of w. An
instantaneous description of an SATM M is of the form
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(z,1,(q, @, j)), where x is the input (excluding the left
and right endmarkers ¢ and $), 7 is the input head
position (0=7<|z|+1), and (g, @, 7) is the storage state
(1£j<|el+1), where a storage state of M is a combina-
tion of the state of the finite control, the contents of the
storage tape, and the storage head position. The initial
ID of M on input x is In(x)=(z, 0, (go, €, 1)), where go is
the initial state of M, and e denotes the empty word. An
ID is called existential, universal, accepting, and re-
jecting, respectively, if the corresponding state is
existential, universal, accepting, and rejecting, respec-
tively.

Given an SATM M, we write /L~ /" and say ["is a
successor of [ if the ID I’ follows from the ID 7 in one
step of M according to the transition rules. The
reflexive transitive closure of L; is denoted by b A
sequence of ID’s of M, Iy, L, -+, In (m=0), is called a
sequential computation of M if Lt I, -+ b-In. If L=
Lu(x) for some x, we call this sequence a computation
path of M on x. Let I be a sequential computation of
M and I, I, *+ , I be a subsequence of I which consists
of all sync ID’s of 7. For each j(1<7<7), let S; be the
sync element of the sync state in I, Then the sequence
Si, Sz, -+, Sr is called the sync sequence of 7. A compu-
tation tree of M is a finite, nonempty labelled tree with
the following properties :

(1) Eachnode v of the tree is labeled with an ID /(v).
(2) 1If v is an internal node (a non-leaf) of the tree,
[(v) is universal and {7|{(v)l; I}={(L, ---, I4}, then v has
exactly % children v, -+, v« such that [(v)=I (1=:;=
k).

(3) If v is an internal node of the tree and /(v) is
existential, then v has exactly one child « such that /(v)
1 (u).

(4) For any two sync sequences S=S;, -, Sp and T
=T, , Tr corresponding to two paths of the tree
beginning at the root, it must be satisfied that S;= T for
each 7€{1, 2, -, min{p, »)).

A computation tree of M on input x is a computa-
tion tree of M whose root is labeled with /y(x). An
accepting computation tree of M on x is a computation
tree of M on x whose leaves are all labeled with ac-
cepting ID’s. We say that M accepts x if there is an
accepting computation tree of M on x. Let T(M)=
{x|M accepts x}.
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For each ID I=(x, 1, (q, a,7)) of an SATM, let
SPACE(I) be the length of a. Let L: N—R be a
function. We say that an SATM M is L(n) space
bounded if for each #=1 and for each input x (accepted
by M) of length #, there is an accepting computation
tree of M on x such that for each node v of the tree,
SPACE (I{0))<[L{n)m/2].

An SATM is called one-way if the input head can-
not move left, and two-way otherwise. We denote a
one-way (two-way) SATM by 1SATM (2SATM), and
an L(#n) space bounded 1SATM (2SATM) by 1SATM
(I(»n)) (2SATM (L(n))). Further we denote a 1SATM
(L(n)) (2SATM (L(»))) with only universal states by
1SUTM (L(%n)) (2SUTM (L(#n))). Let 1ATM (L(%))
(2ATM (L(n))) denote an L(#n) space bounded one-way
(two-way) ATM, and let ITUTM (L(%)) 2UTM (L(#n)))
denote a 1ATM (L(n)) (2ATM (L(»))) with only uni-
versal states. For each X &{1SA, 1SU, 2SA, 2SU, 1A,
1U, 24, 2U}, Let £[XTM(L(n))] denote the class of
sets accepted by XTM(L(n))’s.

In Ref. (2), the following problems are left open:
for any function L(#) such that L(»)=loglog » and 1,}52

L(n)/log n=0,

(1) £ [ISUTM(L(n))] &£ [2SUTM(L(n))] ?

(2) £ [ATML(n)] & [ISATM(L(n))] ?

(3) £ [2ATM(L(n)] $-L [2SATM(L(n))] 2

(4) £ [IUTM(L(n)] &£ [1ISUTM(L(n))] ?

In this letter we solve these problems positively. Fur-
ther we show that there exists an infinite hierarchy
among £ [1ISUTM(L(»))]'s with loglog n=L(n)<log
7.

2. Resulis

In this section we assume that L(#) be any function
such that L(»)=loglog » and 1,352 L{n)/log n=0.

[Theorem 1]  There exists a set in . {2SUTM(loglog
n)], but not in £ [ISUTM(L(»))].

(Proof) Let Th={BQ)# B®)# - # B(n)2wcw {0, 1,
2, ¢, =2 & (w, we0,1}") & |wl=|w|=llog nl &
w=+w}, where for each positive integer =1, B(7)
denotes the string in {0, 1}* that represents the integer ¢
in binary notation (with no leading zeros). It is shown
in Ref. (4) that T is in .£ [2UTM(loglog #)]. Thus T
e £ [2SUTM(loglog #)]. Below we show that 7 is not
in .£ [1ISUTM(L{(n))].

Suppose that there exists a 1SUTM(L(»)) M ac-
cepting 73. Let s and ¢ be the numbers of states (of the
finite control) and storage tape symbols of M, respec-
tively. For each n=2, let

V(n)={BQ)# B(2) # - # B(n)2wcw|lws{0,1}" &
|lwl=Tlog nl}.

For each x=BQ)# B2)#-# B(n)2wcw in V(n), let
S(x) be the set of storage states of M defined as fol-
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lows :
S(x)={(q, @, )| there exists a computation path
Lz ks (x, v(n), (¢, &, i Nz, 7(n)+1, (g,
a, 7)) of M on x (that is, (z, »(n)+1, (g, ¢,
7)) is an ID of M just after the point where
the input head left the symbol “c” of )},

where 7(n)=|BQ) # B(2) #--# B(n)2|+[log nl+1, and
let

C(z)={{o, 02}lor and 0, are storage states in S(x)
such that
(i) in case of c1=o0, there exists a
sequential computation of M which starts
with the ID (x, #(n)+1, 01) and either ter-
minates in a rejecting ID, or enters an
infinite loop, and
(ii) in case of ci1%o0, there exist two
sequential computations of M which start
with the ID’s (z, »(#)+1, o1) and (z, »(n)
+1, 0z), respectively, and terminate in sync
ID’s with different sync elements }.

(Note that, for each z in V(#), C(x) is not empty, since
z is not in 7, and so not accepted by M.) Then the
following proposition must hold.
[Proposition 1]  For any two different strings z, y in
V(n), C(x)N C(y)=4.
[For otherwise, suppose that X=B(1)# B(2) # - #
B(n)2wcw, y=BQ) # B2) # - # B(n)2w'cw’, w¥+w’,
C(x)N C(y)* ¢, and {01, oz}€ C(x) N C(y). Let z=B(1)
# B(2) #-+# B(n)2wcw’. Since {01, 02} & C(x), there exist
computation paths In(2¥% (z, »(n)+1, o) and In(2};7 (2,
r(n)+1, &). Since {o1, 02} C(y), in case of o1= 02, tnere
exists a sequential computation of M which starts with
the ID (z, »(n)+1, 1) and either terminates in a reject-
ing ID, or enters an infinite loop, and in case of a1¥ o,
there exist two sequential computations of M which
start with the ID’s (z, »(#)+1, o) and (z, »(n)+1, 02),
respectively, and terminate in sync ID’s with different
sync elements. This means that z is not accepted by M.
This contradicts the fact that z is in 71=T(M).]

Let p(n) denote the number of pairs of possible
storage states of M just after the point where the input
head left the symbol “c” of strings in V(xn). Then

p(n)=(12{>+K,

where K=sL(»(n)+[log n])t:™*eg xi On the other
hand, | V(n)|=2"°¢ " where | V()| denotes the number of
elements of V(x). Since lnizn L(#n)/log n=0, it follows

that
Li{n L(r(n)+log #1)/log(r(n)+[log n])=0. (1)
It is easily seen that, for some constant ¢ =0, »(%)+[log

nl<cnlog n, and thus log(7(n)+[log n1)=log n+log
log n+log ¢. From this and Eq. (1), we have




THE TRANSACTIONS OF THE IEICE, VOL.E 72, NO. 11

1184

Lig L(r(n)+[log #1)/(log n+1loglog n+1log ¢)=0.

From this, it follows that lim L(7(n)+Tlog nl)/log n=0.

Therefore, we have | V()| >p(n) for large », and so it
follows that for large # there must be two different
strings x, ¥y in V(») such that C(x)NC(y)*=¢. This
contradicts Proposition 1, and completes the proof of
“TieE £ [ISUTM(L(n))]”. (Q.E.D.)
[Corollary 1] .£ [ISUTM(L(»))] & £ [2SUTM (L(n))].
[Theorem 2] There exists a set in .£ [ISUTM(0)], but
not in .£ [2ATM(L(n))].
(Proof) Let Ti={wcwe{0,1, c}lwe{0,1}*}. It is
shown in Ref. (2) that 7% is in £ [ISUTM(0)]. On the
other hand, it can be shown, by using the same technique
as in the proof of Theorem 4 in Ref. (5), that 73 is not
in .£ [2ATM(L(%))]. (Q.E.D.)
[Corollary 2] For each X&{A, U}, .£ [1XTM(L(n))]
& £ [1SXTM(L(%))] and £ [2XTM(L(»))] & .C
[2SXTM(L(n))].
[Corollary 3] £ [ISUTM(L(#%))] is incomparable with
L [XATM(L(#))] for each XE(1, 2.
(Proof) Let Ti be the set described above. It is shown
in Ref. (4) that Tv&e £ [1ATM(loglog #)]. On the
other hand, it is shown in the proof of Theorem 1 that 73
& £ [ISUTM(L(%))]. From these facts and from
Theorem 2, the corollary follows. (Q.E.D)
We finally show that there exists an infinite hierar-
chy among the classes of sets accepted by 1SUTM’s
with space bounds between loglog # and log #.
[Theorem 3] Let 7 : N—R be a fully space constructi-
ble function® such that 1<loglog #< f([loglog n1)<log
n for all n = ne(where #, is some constant), and g :N—R
be a nondecreasing function such that 171152 g(2n)[f(n)=0.

Further, for each function %2 : N—R, let L, : N=R be

the function such that Lu(n)=#(loglog nl), n=1.
Then there exists a set in .£ [LTUTM(L,(%))] (thus in .C

[ISUTM(LA#)]), but not in £ [ISUTM(L(%))].
(Proof) Let S(f) be the following set depending on the
function f in the theorem: S(f)={B()# B(2)#--- #
B(#n)2wcw'€{0,1,2, ¢, #}T|n=zno & (w, we{0,1}7) &
|w|=|w|=TLAn)] & w=+w’} (where n, is the constant in
the theorem). It is shown in Ref. (4) that S(f)e »
[ITUTM(L(%))]. On the other hand, by replacing [log
zland L(7(»n)+ log #» 1) in the latter part of the proof of
Theorem 1 with [Ls(n)] and Lg(»(n)+[L(n)1), respec-
tively, and using the same techniques as in this part, we
can show that S(¥) €L [1ISUTM(L¢(»))]. (Q.E.D.)

3. Conclusions

This letter solves several open problems left in Ref.
(2). It is unknown, however, whether or not £
[TUTM(L(#n))] £ [1ISUTM(L(»))] for any L such
that L(#)=log » and 1,,152 L(n) n=0.
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