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SUMMARY
one-way multihead Turing machine with only universal states, and
investigates fundamental properties of this machine. We show for
example that for any function L such that JLrTgQ[L(n)/n] =0, (1) there
is a set in £ [U2-HTM(0)], but not in IS};)<m,?’j[Nk-HTM (L(n))], and
there is a set in Z[N2-HTM(0)], but not in 1SEUQX,>f[Uka-HTM(L(rL)) 1,
(2) for each k> 1, ¥ [Uk-HTM(L(n))15Z [U(k+1)-HTM(L(n))], and
(3) Z[UE-HTM(L(n))] N£ [Nk-HTM(L(n))] % £ [DE-HTM (L(n))],
where Z[Uk-HTM(L(n))] denotes the class of sets accepted by L(n)
space bounded alternating one-way k-head Turing machines with only
universal states, and 2 [NE-HTM(L(n))] (£ [Dk-HTM (L(n))]) de-
notes the class of sets accepted by L(n) space bounded nondetermin-
istic (deterministic) one-way k-head Turing machines.

This paper introduces a space bounded alternating

1. introduction

During the past ten years, many investigations about
one-way multihead finite automata (MHFA’s) have been
made®-®_ On the other hand, as a generalization of non-
deterministic machines and as a mechanism to model parallel
computations, several types of alternating machines were
introduced, and many results about them were establish-
ed®-(D_ Further, alternating machines with only universal
states were also introduced, and several results about them
were reportedd?03),
versal states are interesting parallel computation models
because they can be considered as more realistic parallel
computation models than ordinary alternating Turing ma-
chines, and might be useful in investigating properties of the
complements of languages accepted by nondeterministic
machines as is suggested by Theorem 1 in this paper.

In this paper, we introduce space bounded alternating
one-way multihead Turing machines with only universal
states, and investigate some properties of them. Section 2
gives terminologies and notations necessary for this paper.

In Section 3, we first show that for any function L(n),
the class of sets accepted by UMHTM(L(n))’s (where
UMHTM(L(n)) denotes an L(n) space bounded alternating
one-way multihead Turing machine with only universal
states) is equal to the class of complements of sets accepted
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Alternating machines with only uni--

by NMHTM(L(n))’s (where NMHTM(L(n)) denotes an L(n)
space bounded nondeterministic one-way multihead Turing
machine).

It is shown Ref. (8) that there is a set accepted by a’
nondeterministic one-way 2 head finite automaton (N2
-HFA), but not accepted by any deterministic one-way
multihead finite automaton. In contrast to this fact, Section
3 shows that for any L(n) such that 7%_l)rglc [L(n)/n] =0,
(1) there is a set accepted by an N2-HFA, but not accepted
by any UMHTM(L(n)), and (2) there is a set accepted by an
alternating one-way 2 head finite automaton with only uni-
versal states, but not accepted by any NMHTM(L(n)).

It is well-known Ref. (3) that for MHFA’s, k+1 heads
are more powerful than k heads (k>1). On the other hand,
it is unknown Ref. (10) whether a similar fact holds for
alternating one-way multihead finite automata (AMHFA’s).
Recently®, it was shown that k+1 heads are better than
k(k>1) for AMHFA’s with only universal states. Section 4
strengthens this result, and shows that k+1 heads are better
than k& (k>1) for UMHTM (L(n))’s such that }Lﬁ [L(n)/
n] =0. Section 4 also investigates basic closure properties
of languages accepted by UMHTM(L(n))’s with | im [L(n)/
n] =0. e

Whether or not NPNco-NP=P is a very important
problem in the computational complexity theory®®. We
cannot solve this problem, but in Section 5, we show that
2 [NE-HTM(L(n))] N co-2[Nk-HTM(L(n))] is not equal to
2 [Dk-HTM(L(n))] for any k>2 and any L(n) such that
g_i)g [L(n)/n] =0, where £ [Nk-HTM(L(n))] (Z[Dk-HTM
(L(n))]) denotes the class of sets accepted by L(n) space
bounded nondeterministic (deterministic) one-way k head
Turing machines.

2. Preliminaries

We first give full definitions of alternating one-way
multihead Turing machines.

[Definition 1] An alternating one-way k-head Turing
machine (AR-HTM) (k>1) is a 9-tuple M=(k, @, U, Z, T,
5,40, F, R), where

k> 1 is the number of input heads,

@ is a finite set of states,

U <€ Q is the set of universal states,

% is a finite input alphabet ($& = is the right end-

marker),

I is a finite storage tape alphabet (BeI' is the blank
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symbol),

5 is the transition function mapping (@ X (£ U{$ } )

X T) into 2@X (T-1B}) X ?stationary, right}k X

{ left, stationary, right },

Qo € @ is the initial state,

F @ is the set of accepting states, and

R< Q is the set of rejecting states.

A state g in @-U is said to be existential.

An Ak-HTM M has a read-only input tape with the right
endmarker $ and one semi-infinite storage tape, initially
blank, (Of course, M has k input heads on the input tape,
and one storage head on the storage tape.) A step of M
consists of reading symbols under k input and one storage
heads, writing a symbol on the storage tape, moving the
input and storage heads in specified directions (note that
input heads cannot move to the left), and entering a new
state, in accordance with the transition function. If one of
the heads of M falls off the input word, then M can make
no further move. Furthermore, we assume that when M
enters an accepting state or a rejecting state, M can make
no further move.

[Definition 2] An instantaneous description (ID) of
an AkR-HTM M=(k, Q, U, Z, T, 8, q,, F, R) (k>1) is an
element of

Z* X Cpy

where CM=Nk X @ X (I'-{B})* X N, and N denotes the set

of all positive integers. An element of Cpy is called a _con-

figuration of M. The first component x of an ID I=(x,c),
where ¢c=((i1, ..., i) q, a, j)T € Cyy, represents the input

word (excluding the right endmarker $). The first compo-
nent (iy, . . ., ip) of the configuration ¢ represents the
positions of k input heads, and the second, third, and fourth
components of ¢ represent the state of the finite control,
the nonblank contents of the storage tape, and the storage
head position, respectively. If g is the state associated with
an ID I, then I is said to be universal (existential, accepting,
rejecting) if ¢ is a universal (existential, accepting, rejecting)
state. The initial ID of M on input xis Ips(x)=(x, ((1,...,1),

do, A, 1)), where A is the null word (i.e., |A]=0). F
[Definition 3] Given an AR-HTM M=(k, Q, U, =, T,

8, qo, F, R), we write IFI' and say I’ is a successor of I if

an ID I’ follows from an ID I in one step, according to the

transition function 8. The reflexive transitive closure of -

is denoted by I *. A computation path of M on x is a

sequence I - Iy | .. .} Ip(rn>0), where I, =Ip7(x). A

computation tree of M is a finite, nonempty labeled tree

with the properties

(1) each node 7 of the tree is labeled with an ID, ¢ (n),

(2) if # is an internal node (a non-leaf) of the tree, Z (n})
is universal and {7|¢(z) b I}={I, 1.}, then 7 has
exactly r children o, , . .., ppsuch that [ (p;)=1I;,

(3) if = is an internal node of the tree and /Z(m) is ex-
istential, then 7 has exactly one child p such that

L) - o).

TWe note that for each 1<r<k, 1<ir<lx|+1, and 1<
lal +1, where for any word w, |w| denotes the length of w.

A computation tree of M on x is a computation tree
of M whose root is labeled with Ips(x). An accepting compu-
tation tree of M on x is a computation tree of M on x whose
leaves are all labeled with accepting ID’s. We say that M
accepts x if there is an accepting computation tree of M on
x. Define T(M) = {x ¢ £ *|M accepts x/.

Nondeterministic and deterministic one-way k head
Turing machines (k>1) are special cases of AkR-HTM’s.
That is, a nondeterministic one-way k& head Turing machine
(Nk-HTM) is an Ak-HTM which has no universal states, and
a deterministic one-way & head Turing machine (D2-HTM) is
an Ak-HTM whose ID’s have at most one successor.

In this paper, we are interested in an Ak-HTM (k>1)
with only universal states, i.e., with no existential state. We
denote such an Ak-HTM by “Uk-HTM™.

With each Xk-HTM M, where Xe{A, U, N, D}, we
associate a space complexity function SPACE which takes
ID’s to natural numbers. That is, for each ID I=(x, ((i\,
.+ ., k), q, a, j)), let SPACE (I) be the length of a. Let
L:N>R be a function, where R denotes the set of all non
-negative real numbers. We say that M is L(n) space bounded
if for each n and for each input x of length n, each computa-
tion tree of M on x is such that for each node = of the tree,
space (£(n))<[L(n)1T. By Xk-HTM(L(n)) we denote an
L(n) space bounded Xk-HTM. For each Xe{D, N, A, U},
define Z[Xk-HTM(L(n))]={T|T=T(M) for some Xk-HTM
(L(n)) M}.

An alternating (nondeterministic, deterministic) one
-way k-head finite automaton (k>1) is an AR-HTM (NE
-HTM, DE-HTM) which uses no cell on the storage tape.
By Ak-HFA (Nk-HFA, Dk-HFA), we denote an alternating
(nondeterministic, deterministic) one-way k-head finite
automaton.

Further, by Uk-HFA we denote an Ak-HFA with only
universal states.

3. A Relationship among Ak-HTM's, Uk-HTM'’s, Nk-HTM's
and DE-HTM's

In this section, we are mainly concerned with investi-
gating a relationship among the accepting powers of Ak
-HTM’s, Ur-HTM’s, Nk-HTM’s and Dk-HTM’s with spaces
less than n.

For each k>1, an AkR-HTM (UR-HTM, Nk-HTM, Dk
-HTM) M is halting if for each input x, M halts by entering
an accepting ID or a rejecting ID in each computation path
of M on x.

By using the same technique in the proof of Theorem 1
in Ref. (14), we can easily prove the following fact.

[Fact 1] For each k>1, each function L:N>R and
each Xe{D, N, A, U}, a set T is accepted by an Xk-HTM
(L(n)) if and only if T is accepted by a halting Xk-HTM
(L(n)).

For each & and each function L:N>R, let co- #[Nk
-HTM(L(n))]1 ={L|Le£[Nk-HTM(L(n))}}. (For any set
T, T denotes the complement of T)

TIr] means the smallest integer greater than or equal to r.



SAKURAYAMA et al:

Fact 1 is used to prove the following theorem.

[Theorem 1] For each k> 1 and each function L:N+R,

2 [UR-HTM(L(n))] = co-Z[Nk-HTM(L(n))].

(Proof) LetM =(k, Q, U, Z, I, 8, qo, F, R) be a Uk-HTM
(L(n)) where k>1 and L:N>R is a function. By Fact 1, we
can assume without loss of generality that M is a halting
Uk-HTM(L(n)). We consider an Nk-HTM(L(n)) M’ obtained
from M by letting each universal state of M be an existential
state of M’ and by interchanging accepting and rejecting
states of M. More specifically, we let M'=(k, @, ¢, Z, T, §,
4o, R, F). Obviously, it follows that T(M')=T(M), and thus
T(M)=T(M'). Therefore, -£[Uk-HTM(L(n))]<co-[Nk
-HTM(L(n))]. Similarly, we can easily show that co~Z[Nk
-HTM(L(n))] € &£ [Uk-HTM(L(n))]. This completes the
proof of the theorem. Q.E.D.

[Corollary 1] When restricted to a single-letter alpha-
bet, Z[Uk-HFA] (k> 1) contains only regular sets.

(Proof) In Ref. (2), it is shown that when restricted
to a single-letter alphabet,~ [NE-HFA] (k> 1) contains only
regular sets. On the other hand, it is well known that the
class of regular sets is closed under complementation. From
these facts and Theorem 1 above we can see that the corol-

lary holds. Q.E.D.
[Corollary 2] Even when restricted to a single-letter
alphabet

Z[NE-HFA] U Z[Uk-HFA] § £[Ak-HFA] (k>2)
and ;<P Z [NE-HFA] U Y, Z[URHFAlS Y,
Z[AkR-HFA].

(Proof) It is easily seen that 2 [Nk-HFA] U £[Uk
HFA] € Z[AR-HFA] (k>1) and <, [NE-HFA]
U, NeosZlUR-HFAl ¢ | N 2 [AR-HFA]. Let L;= 02"
ln>1}. It is shown in the proof of Theorem 5 in Ref. (10)
that L; ¢ Z[A2-HFA]. L, is a nonregular set. From Corol-
lary 1, L; & ~[Nk-HFA] U 2 [Ur-HFA] for any k2> 1.
This completes the proof of the corollary. Q.E.D.

The following is the main theorem in this section.

[Theorem 2] There exists a set in -2 [N2-HFA], but
not in 1§%<m;é’[Uk-HTM(L(n))] for any L:N>R such that
Jim rrnj/n] =0.

(Proof) Let

To={w, 4wyt twy, [5>1 & Vi (1<:<25)
(w0, 1}%2{0,1P)& 74, T (1<e, j<28)
((w,=22y) &(w,=x22)& (y*z)}.

It is easily seen that T; ¢ £[N2-HFA]. We only show
that 7:§, 2 £[UR-HTM(L(n))] for any L:N>R such that
,%_L{E [L(n)/n]=0. On the contrary, suppose that T e
1< [UR-HTM(L(n))], where lim [L(n)/n]=0. It
follows that for some k>1, T; is accepted by some Uk
-HTM(L(n)) M. For alarge n, let

p(n)={w dwy #ho #w,,|%( 1<i<25)

(w,=w,,,;_;=B"(min(¢,26+1-))2y & ye{0,1}")}7

where b=Fk(k+1)/2. Note that for each word x in V(n),

TB"(i) denotes the binary representation of i with leading
zeros such that |BY(i) |=n.
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lx|=4b(n+1)-1. Clearly, each word x in V(n) is not in
T,, and so x is rejected by M. Therefore, there exists at
least one rejecting computation path of M on x. (A com-
putation path which leads to a rejecting ID is called ‘“re-
jecting”.)

Let s and r be the numbers of states and storage tape
symbols of M, respectively. The type of a configuration
e=((ir, ..., ig), q, a, j), denoted by Type (c), is a k-tuple
([i1 /(n+1)], ., lig/(n+1)]). Note that the i-th element
p; of the type specifies that the i-th head of M is on wy,
# (wop$ if p;=2b) in this configuration when scanning a
word in V(n). Let ci(x), ca(x), . .., ¢j(x) be the sequence
of configuration of M on an (arbitarily selected) rejecting
computation path of a word x in V(n). Here cjx(x) is a re-
Let di(x), da(x), . .., drx(x) be
the subsequence obtained by selecting c¢i(x) and all sub-
sequent cj(x)’s such that Type (ci(x)) = Type (ci1(x)).
We call di (x), d2(x), . . ., dpx(x) the pattern of x.

Let p(n) be the number of possible patterns of M
on words in V(n). Since each head of M can move only right,
it is easily seen that I'y <k(2b—1)+1. Therefore, we get
the following inequality,

p(n)g[s(4b(n+1))kL(y(n))ru&'("))]k(“_l)“’

where g(n) =4b(n+1)—1.

Then we classify the words in V(n) according to their
patterns. Clearly, there is a set S(n) ( < V(n)) such that
IS(n)| >2"P/p(n), whose each element has the pattern

Since b=k (kt+1)/ 2>< k >, it follows from Rosenberg’s

jecting configuration.

2
observation [1] that for each word in V(n) there must be
an i such that M cannot read w;# and wop41—i# (Wop$ if
i=1) simultaneously. The possible values for i are deter-
mined entirely by the pattern of the computation. Let i
be such a value of i for the pattern 3\1 R El\z, e, E/Z\.
We now define a binary relation E on words in S(n) as
follows. Let
w=wy frugdhe A u ot wy g HedE Uy, and
v=o HF v e H vio#.“# v2b+1_io#".# Vop s
Then,
wEv & Yi(&{d0, 28+ 110} )(x, =2, ).
Obviously the relation E is an equivalence relation, and
there are at most g(n)= on(b-1) E-equivalence classes of
words in S(r). Since l_ig)C [L(n)/n]=0, it follows that
|S(n) | >q(n) for a large n. Therefore, there exist two dif-
ferent words
=zttt W Hrag,,  Hedhay,, and
Y=ty dry; He H Y B Yy

in S(n) which belong to the same equivalence class. Let

-y

z=x Yoy o H v‘”ia#_"' H g piy I Yopermig F¥2p02-4,
ey,
be the word obtained from x by replacing xgp+1—;, With

Y2b+1—i,. BY an argument similar to that in the proof of
Theorem 1 in Ref. (3), it can be shown that there is a reject-
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ing computation path of M on z. Consequently, z must be
rejected by M. This contradicts the fact that z is in T;.
This concludes that T1€13k<°o;f [Ur-HTM(L(n))] for any
L:N>R such that LiM [L(n)/n}=0. Q.E.D.
The following is another main theorem in this section.
[Theorem 3] There exists a set in Z[U2-HFA], but not
in  1=1<osZ[NE-HTM(L(n))], and thus not in 1<L7J<w7f[Dk
-HTM(L(n))] for any L:N>R such that L [L(n)/n] =
(Proof) Let T: be the set described in the proof of
Theorem 2. T, is in Z[N2-HFA]. From this fact and
Theorem 1, it follows that fl eZ[U2-HFA]. On the other
hand, it is shown in the proof of Theorem 2 that T is not
in <Y<, [UE-HTM(L(n))] for any L:N>R such that !im
[L(n)/n] =0. From this fact and Theorem 1, we can easﬂy
see that Th& <o [NE-HTM(L(1))], and thus T &1peoo
[DE-HTM(L(n))] for any L:N>R such that il [L(n)/n]
=0. Q.E.D.
From Theorems 2 and 3, we can get the following
result.
[Corollary 3] For each k> 2 and each function L:N> R
such that 11 [L(n)/n] =
(1) ;Z[Dk-HTM(L(n))] S Z[UR-HTM(L(n))1< £ [Ak
-HTM (L(n))1,
(2) lgr@x[Dr- HTM (L(n))] S 12,<e Z[UrHTM
(L(n))] <1, %00 ZIAFHTM(L(n))],
(3) £ [UR-HTM(L(n))] is incomparable with ~Z[Nk
-HTM(L(n))], and
(4) =% [Ur-HTM(L(n))] s
122 ot [NF-HTM(L(1))].

incomparable with

4, Basic Properties of Space Bounded Uk-HTM's

In this section, we first give a hierarchie of the ac-
cepting powers of Uk-HTM(L(n))’s, based on the number
of input heads, for each L:N>R such that 1 im[L(n)/n] =

[Theorem 4] For each k>1 and each funct1on L:N~> R
such that n_>°o M [L(n)/n] =

2Z{UR-HTM(L(n))] £ £ [U(k+1)—HTM(L(n))].

(Proof) For each b>1, let

To (B)=f{w tw, #Hwy, Vi (1<:<28)

((w;={0, 1}*)&<wi:w2b+l—i)j}-

By using the same technique as in the latter part of Theorem
1 in Ref. (3), we can show that T, (k(k+1)/2)& .~ [Nk
-HTM(L(n))] for k>1 and each L:N>R such that 71;)1110
[L(n)/n] =0. (The proof is given in Ref. (7).) From this
fact and from Theorem 1, it follows that T, (k(k+1)/2)
52 [Uk-HTM(L(n))] for each E>1 and each L:N>R such
that W!_’,E.} [L(n)/n] =0. On the other hand, by using the
same technique as in the former part of the proof of
Theorem 1 in Ref. (3), we can easily show that T, (k(k+1)/2)
€ Z[D(k+1)-HFA]}, and thus T, (k(k+1)/2) € £ [U(k+1)
-HFA]. This completes the proof of the theorem. Q.E.D.

In Ref. (10), the problem of whether £{AkR-HFAl<
Z [A(k+1)-HFA] (k>1) or not is proposed as an open
problem. The following corollary gives a partial solution
for this problem.

[Corollary 4] Foreachk>1,

Z[Uk-HFA]SZ [U(k+1)-HFA].

We then investigate closure properties of the classes
of languages accepted by space bounded UMHTM’s under
each of the Boolean operations. The proof of the follow-
ing theorem is omitted since it is easy to prove.

[Theorem 5] For each 2>1 and each function L: N >R
such that ,L»oo [L(n)/n] =0, &£ [Uk-HTM(L(n))] and 1g7<m
Z{Ur-HTM(L(n))] are closed under intersection.

[Theorem 6] For each k> 2 and each function L:N>R
such that JAM[L(n)/n] =0, 2 [Uk-HTM(L(n))] and 1=
& [Ur-HTM(L(n))] are not closed under complementation.

(Proof) Let T: be the set described in the proof of
Theorem 2. Then, T; ex2[U2-HFA]. On the other hand,
it is shown in the proof of Theorem 2 that Tl&lgy<°o Z{Ur
-HTM(L(n))] for any function L:N>R such that ,lb—hx,[L( n)/
n] =0. This completes the proof of the theorem. Q.E.D.

[Remark 1] It has been proved [12] that Z[U1-HTM
(L{(n))] is not closed under complementation for each
function L:N+R such that L(n)>log n and ,1_1{},} [L(n)/n]
=0.

[Theorem 7] For each k> 2 and each function L:N>R
such that nl_l,r.g [L(n)/n] =0, £[Uk-HTM(L(n))] is not closed
under union.

(Proof) For each b>1, let T» (b) be the set described
in the proof of Theorem 4, and for each 1<i< b, let

T(h, i)={w Hw, #-# w,, IVJ- (1<7<25)
[w].e 10, 1}1*)& (o, wyy,y )],

It is easy to see that for each b> 1,
T2 (O=T(6,DUT(6,2) U-~UT(b,5)UT"

where T'={we{0,1,#}*v is not of the form w; #w, # . . .
#w, p, where for each i, wie{0, 1}*}. It is easily seen that
each T(b, i) (1<i<b) and T" are in Z[D2-HFA], and thus
in 2[U2-HFA]. The theorem follows from these facts
and from the fact (in the proof of Theorem 4) that
T (k(R+1)/2) ¢ 2 [UR-HTIM(L(n))] for each k> 2 and each
L:N»R such that 1im [L(n)/n] =0. Q.E.D.

5. 2[NE-HTM(L(r))] 0 co-Z[NE-HTM(L(n))]+ £[Dk
-HTM(L(n))] for small L(n)

Whether or not NP N co-NP=P is a very important
problem in the computational complexity theory®®. We
cannot solve this problem, but we here show that 2 [Nk
-HTM(L(n))]1 N co-ANE-HTM(L(n))} is not equal to.Z[Dk
-HTM(L(n))]1 for each k>2 and any L:N>R such that
1im [z(n)/n] =o0.

[Theorem 8] For each k> 2 and each function L:N>R
such that 1M [L(n)/n] =0, there is a set in 2 [Nk-HFA]
and in Z[Uk-HFA] =co-[Nk-HFA], but not in »*[Dk
-HTM(L(n))1.

(Proof) Foreach b> 2, let

C(6) ={uttw, Fwy #-Hw,, |G (1<i<28)

(Cw, w€ 0,1} &w;=wy 50, )]},

D(O)={uwhw H- Hw,, du Vi (1<i<28)

(v, w;€{0,1}*) &2 & {0,1,#}}, and
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E(6)=C (8)UD(d).
In order to prove *he theorem, it is sufficient to show that
for each k > 2,

1) E((S)) e £[U2-HFA],
(2) E((’;)) e/[Nk-HFA], and

3 E((%))s£ [DE-HTM(L(n)] for any L:N>R such
that 1iM [L(n)/n] =0.
(1): The set E((g)) is accepted by a U2-HFA M which acts

as follows. Let t=<§>. Given an input x, M enters a univer-

sal state to choose one of two further actions.
(D In one action, M checks that the input x is either of the
form
wHw Fw, o Hwyy
or of the form
wHw, Hw, # o Hwy, du’ (B)
(where u, u’ and each wj are in {0, 1}%), and M enters an
accepting state only if the input is of the form (A) or the
input is of the form (B) and u=u’.
(® In the other action, M makes { universal branches,
and M acts in the i-th branch (1 <i<t) as follows. M checks
that the input x is either of the form (A) above or of the
form (B) above, and M enters an accepting state only if
(i) the input x is of the form (A) and w;=wgs41— or (ii)
the input x is of the form (B).

It will be obvious that M accepts E(t)=E ((g))
(2): It can be shown that for each k> 2, both C((};)) and

(A)

D((g)) are in Z[Nk-HFA]. (By using the same technique
as in the former part of the proof of Theorem 1 in Ref. (3),
we can easily show that C ((g))ex[Dk-HFA].) From this
fact and from the obvious fact that Z[Nk-HFA] is closed
under union, part (2) follows.
(8): The proof of (3) is essentjally the same as the proof
of Theorem 1 in Ref. (5).

Suppose that there is a Dk-HTM(L(n)) M accepting
E((g)) for some function L:N>R such that 11M[Z(n)/n]

=0. Let s and r be the numbers of states and storage tape

symbols of M, respectively. Let t=<§>, and for each n>1,
let

Volmy={ utw, wy o tup, | Vi (102 ¢)

((u,we {0,1]7) &(lul=lw;]=n) &(w, =w,,,;_ )]},
VD(n):{u#wl#---#thdulvi( 1<i<2t)

((u, w,& {0, 1} &u]=w;=n)

& (wy=w,, .y ;)) & d&{0,1,4#]}}, and

V(n)=7, () UPpn).

Note that every word in V(n) is in E(t), and so it is accepted
by M. Specifically, we show that if M accepts every word
in V(n) then M accepts some word not in E(t). This is a
contradiction.

ALTERNATING ONE-WAY MULTIHEAD TURING MACHINES

A prominent configuration is a configuration in the
accepting computation on a word x in V(n), in which the
machine M moves one of its heads on the symbols #, d or

$.

A subsequence of prominent configurations of the ac-
cepting computation on the word x is called a pattern of x.

We shall consider the initial part of the accepting
computation on a word x in V(n), that begins in the initial
configuration and ends in the prominent configuration,
in which one of the heads has read the whole subword
xi=upwidw,# . .. #wp H#wr# ... #w#w; of the input
word x. (Note that for each word x; in Ve(n) and each
%1 du in Vp(n), the initial parts of the accepting computa-
tions on the words x; and x; du are the same.)

Let p(n) be the number of all patterns of the initial
parts of the accepting computations on words x in V(n).
If we note that |x;l =2t(n+1)+n, we can easily see that
the number of all configurations on words x, is bounded by

s((26+1) (1)) *LCg () D,

where g(n)=(2t+1) (n+1)—1. And so we obtain the following
inequality

p(n)g[s[(2t+ 1) ( n+1>k L(g(n))'r“y(”))jk(z“l),
because no pattern of the initial part of the computation
can consist of more than k(2t+1) prominent configurations.

Since the number of all words x1 from Vo(n) is
2 (¢+1)n

there exists a pattern o of the initial part of the computation
such that at least

2064197 /p(n)
different words x; in Vo(n) have the same pattern o.

Now we distinguish two following cases according to
the last prominent configuration ((i1, - - -, ig), ¢, @, j) of
the pattern o.

(i) §>n forall jin {1, - - -, &}, ie., all heads have

read the initial subword ue{0, 1} of x1=u #w,#w.#

s FwpweE - FwaHw .

(i) There exists some j in {1, 2, - - -, k| such that

ijﬁ n, i.e., at least one head has not read the initial

subword ue{0,1}*.
We shall below show that both (i) and (ii) lead to a con-
tradiction.

(i) In this case we shall consider input words x:du
in Vp(n) where x; has the pattern o.

Noting that there exist at least
20 /p(n)
different words x, with the pattern o, we see that there
exist at least
PR T
T 2T
different words x; with the pattern o which differ from each

other only in the initial subword u, i.e., there exist at least
HwrHwrHE -

m words x;=u#y, where y=wi#w# - - -
#w, #w; is fixed, with the pattern o.

Since ,1_‘,12, [L(n)/n] =0, it follows that m=2"/p(n)
is greater than 2 for a sufficient large n. It means that for
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a sufficient large n there exist two words in Vio(n), vy =u, #y
and v; =ux#y (where u,>cu;), with the same pattern ¢ of
the initial part of the computation. Since the machine M
accepts the word x=uvidus=ui#ydu; in Vp(n) and M is
deterministic, it follows that M must also accept the word
x'= us #ydu, which clearly does not belong to E(t).

(ii) In this case we shall consider input words x in
Ve(n). Let us consider the whole accepting computations
on all

2D /p(n)

different words x=x; in Ve(n) having the same pattern o
of the initial part of the computation.

Let p’(n) be the number of all possible patterns of ac-
cepting computations on words x in V(n). We obtain the
following inequality,

P ()<(s((2¢+1) (vt DIFLg(n)) rLlo(nyRCED

where g(n) = (2t+1) (n+1)—1.
From this fact it follows that there exist at least
20+ /p! ()
different words x in V(n) with the same pattern ¢ con-
taining the pattern o as an initial subsequence.
In case (ii), it follows from Rosenberg’s observation
Ref. (1) that in the computations on the words x with the

pattern o’ there exists a number ige{l, 2, ..., ¢} such that
both subwords wj, of the words x =u#wi# --- #wj#- - -
#wiH#wr# - - - #wj,# - - #w: are never read by any couple

of heads at the same time.
It means that there exist at least
9(¢+1)n 1 2"
m = .

P,("‘) z(t—-l)n_zn_PI(n)

different words x in Vo(n) having the same pattern ¢, which
differ from each other in the subword wj, only.

Since lel)rrolo [L(n)/n] =0, it follows that m>2 for a
sufficiently large n and so there exist two words in Vio(n)

vi=udwi# . HwigH - - - FwrHwed - #wi# - #wy,

and

va=uHwiH. - HW o H e HwipHwed - - Hw # - Hwr,
with the same pattern ¢’ of the accepting computations,
where wij, 2wy, .

By an argument similar to that in the proofs of Theorem
1 in Ref. (3) and Theorem 1 in Ref. (5), it can be shown
that the machine M must also accept the word x'=u#w; #- - -
Hwio# - - - #wrHweF - #w' # - . #w., which does not
belong to E(t). This is a contradiction. Q.E.D.

6. Conclusion

In this paper, we considered L(n) space bounded one
-way multihead alternating Turing machines such that ,lb_lg
[L(r)/n]=0. It is easily seen that for any function L
such that L(n)>n, L(n) space bounded one-way one-head
alternating Turing machines are equivalent to L(n) space
bounded two-way multihead alternating Turing machines.

We conclude this paper by stating a few open problems
left in this paper. .

For each function L:N>R such that 1i® [L(n)/n] =0,

(1) is Z[AR-HTM(L(n))] properly contained in Z[A(k+1)
-HTM(L(n))] (k>1)7;

(2) are Z[UL-HTM(L(n))] and i< . [UR-HTM(L(n))]
closed under union ?;

(8) is there a set inZ [U2-HFA] N £ [N2-HFA], but not
in 1<t 2 [DE-HTM(L(n))] 2.
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