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SUMMARY We introduce alternating multihead finite autom-

ata with constant leaf-sizes (AMHFACLSs). and investigate sev-
eral properties of these automata. The main results of this paper
are as follows: (1) two-way sensing AMHFACLs can be
simulated by two-way nondeterministic simple multihead finite
automata, (2) for one-way AMHFACLs, £+1 heads are better
than %, and (3) for one-way alternating simple multihead finite
automata with constant leaf-sizes, sensing versions are more
powerful than non-sensing versions.

1. Introduction

Many investigations about multihead finite autom-
ata (MHFAs) have been made’" . Recently, King®
introduced an alternating multihead finite automaton
(AMHFA) which is the same as an AMHFA except
that its state set is divided into two disjoint sets, a set of
universal states and a set of existential states. On the
other hand, Matsuno et al.” introduced an alternating
simple multihead finite automaton (ASPMHFA) which
can be considered as a restricted version of AMHFA,
and provided a relationship between the accepting
powers of AMHFAs and ASPMHFAs. In this paper, we
introduce AMHFAs with constant leaf-sizes (AMH-
FACLs), and give several properties of these automata.
Leaf-size, in a sense; reflects the minimal number of
processors which run in parallel in accepting a given
input. AMHFAs with constant leaf-sizes are more
realistic parallel computation models than ordinary
AMHFASs because of the restriction of the number of
processors which run in parallel to constant.

Section 2 gives terminologies and notations neces-
sary for this paper. Section 3 investigates a relationship
between the accepting powers of AMHFAs and ASPM-
HFAs. The main result of this section is that two-way
sensing AMHFACLs can be simulated by two-way
nondeterministic simple multihead finite automata. In
Sect. 4, we show the following two results. For ony-way
AMHFACLs, k£+1 heads are better than .. For one-
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way SPMHFAs, sensing versions are more powerful
than non-sensing versions.

2. Preliminaries

The reader is referred to™”~® for formal definitions
of a multihead finite automaton (MHFA). A simple
multihead finite automaton (SPMHFA) is an MHFA
with the restriction that one head (called the ‘reading
head’) can sense input symbols, while the others (called
the ‘counting heads’) can only detect the left endmarker
“¢” and right endmarker “$”. When the heads of
MHFA (SPMHFA) are allowed to sense the presence
of other heads on the same input position, we call such
MHFA (SPMHFA) a ‘sensing’ MHFA (SPMHFA).

A two-way MHFA and a one-way MHFA are
defined as usual. A two-way SPMHFA is an SPMHFA
whose reading and counting head can move in two
directions. A semi-one-way SPMHFA is an SPMHFA
whose reading head can move only in one direction, but
whose counting heads can move in two directions. A
one-way SPMHFA is an SPMHFA whose reading and
counting heads can move in one direction.

When an input string x is presented to an MHFA
(SPMHFA) M, M starts in its initial state with each
head on the left endmarker “¢”. M accepts z if and
only if it enters an accepting state during the course of
computation.

An alternating MHFA (AMHFA)® and an alter-
nating SPMHFA™ are alternating versions of an
MHFA and an SPMHFA, respectively. That is, an
AMHFA (ASPMHFA) is the same as an MHFA
(SPMHFA) except that the state set is divided into two
disjoint sets, the set of universal states and the set of
existential states. Of course, each alternating automa-
ton has a specified set of accepting states, which is a
subset of the state set.

A step of an AMHFA (ASPMHFA) M consists of
reading a symbol from the input string by each head,
moving the heads in specified directions (note that any
of the heads can remain stationary during a move), and
entering a new state, in accordance with the transition
function. If one of the heads falls off the input string,
then M can make no further move.

[Definition 2. 1] A configuration of a (sensing) alter-
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nating .£-head finite automaton M is an element of
XEX Cu

where Z( ¢, $ €2) is the input alphabet of M, and Cx=
Q@ x(NU{0})* (where @ is the set of states of the finite
control of M and N denotes the set of all positive
integers). The first component x of a configuration ¢=
(z,(q, (&, 15+, ix))) represents the input string. The
second component (g, (3, 72,**, ix)) (ECwu) of ¢ repre-
sents the state of finite control and the positions of %
input heads. An element of Cy is called a ‘semi-
configuration of M’. If g is the state associated with
configuration ¢, then ¢ is said to be universal (existen-
tial, accepting) configuration if g is a universal (existen-
tial, accepting) state. The initial configuration of M on
input x is
In(x)=(z, (g0, (0,0,-+,0)))

-——
k

where ¢ is the initial state of the finite control of M.
[Definition 2.2] Given a (sensing) alternating multi-

head automaton M, we write ¢k ¢’ and say that ¢’

is a successor of ¢ if configuration ¢’ follows from
configuration ¢ in one step, according to the transition
function of M. A computation path of M on input x is
a sequence ¢ cit-+Fcn (#=0), where co=1In(z). A
computation tree of M is a finite, nonempty labeled tree
with the following properties :

(1) Each node 7 of the tree is labeled with a
configuration /(x),

(2) If xis an internal node of the tree, /(x) is univer-
sal and {c|l(m) c}={c1, ¢z, v}, then 7 has exactly 7
children pi, p2,**, o- such that I(p:))=c;,

(3) If r is an internal node of the tree and /(x) is
existential, then 7 has exactly one child such that /(x)
= 1(p).

A computation tree of M on x is a computation tree
of M whose root is labeled with In(x). An accepting
computation tree of M on x is a computation tree of M
on x whose leaves are all labeled with accepting
configurations. We say that M accepts x if there is an
accepting computation tree of M on x.

For any MHFA (SPMHFA) M, let T(M) be the set
of strings accepted by M.

Deterministic and nondeterministic MHFAs
(SPMHFASs) are special cases of alternating versions.
That is, a nondeterministic MHFA (SPMHFA) is an
AMHFA (ASPMHFA) which has no universal states,
and a deterministic MHFA (SPMHFA) is an AMHFA
(ASPMHFA) whose configurations have at most one
SUCCESSOT.

In this paper, to represent the different kinds of
SPMHFAs (resp. MHFAs, sensing MHFAs) systemat-
ically, we use the notation XYk-HZ (resp. Xk-HZ,
XSNk-HZ), k>1, where
(1) Xe€{D,N, A, U},

1007

. deterministic,
. nondeterministic,
. alternating,
. alternating automaton with only univer-
sal states;
(2) Ye{SP, SNSP}
SP : simple,
SNSP : sensing simple ;
(3) k-H : k-head (the number of heads is &) ;
(4) Ze{FA, SFA, TWFA}
FA : one-way,
SFA : semi-one-way,
TWFA . two-way,
(Of course, ‘SFA’ is used only for
SPMHFA.).
For example,
DSPk-HFA : deterministic simple ~2-head one-way
finite automaton
USNE-HTWFA : alternating sensing k-head two-
way finite automaton with only
universal states.
Furthermore, for each X€{D, N, A, U}, YE{SP,
SNSP}, k=1, ZE{TWFA, SFA, FA}, and Z'€
{TWFA, FA},
LIXYE-HZ|={T|T=T(M) for some XYk-HZ

Tx=20

M},
L[XSNe-HZ'|={T|T=T(M) for some XSNk-
HZ’ M}, and
LIXk-HZ1={T|T=T(M) for some Xk-HZ'
M},

In this paper we shall introduce a simple, natural

complexity measure for AMHFAs and ASPMHFAs,
called leaf-size™. Basically, the ‘leaf-size’ used by
AMHFA (ASPMHFA) on a given input is the number
of leaves of an accepting computation tree with the
fewest leaves.
[Definition 2.3] Let L : N—R be a function, where R
denotes the set of all nonnegative real numbers. For
each tree ¢, let LEAF (#) denote the leaf-size of ¢ (i.e.,
the number of leaves of ). We say that an XYk-HZ
(resp. Xk-HZ, XSNk-HZ) (X<{A, U}, YE(SP,
SNSP), k=1, ZE{TWFA, SFA, FA}) M is L(n) leaf-
size bounded if, for each % and for each input x of length
n, if x is accepted by M, then there is an accepting
computation tree of M on x such that LEAF (#)<
[L(n)]f.

For each XE&{A, U}, YE{SP, SNSP}, k=1, and Z
E{TWFA, SFA, FA}, we let XYk-HZ(L(n)) (resp. Xk
-HZ(L(n)), XSNk-Z(L(n))) denote L(n) leaf-size
bounded XYk-HZ (resp. Xk-HZ, XSNk-HZ). Define,

L[ XYE-HZ(L(n)|={T|T=T(M) for some XYk

~-HZ(L(n)) M},
L[ Xk-HZ(L(n))]={T|T=T(M) for some Xk-
HZ(L(n)M}, and |
L[XSNe-HZ(L(n))]={T|T=T(M) for some

1 ] means the smallest integer greater than or equal to 7.
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XSNE-HZ(L(n))M}.
3. Simple Versus Non-simple Alternating Automata

We first show that two-way AMHFACLs can be
simulated by two-way nondeterministic SPMHFAs.
[Theorem 3.1] For each £>1 and each s>1,

(1) L[ASNE-HTWFA(s)]S L[NSP(ks+1)
—HTWFA], and
(2) L[USNE-HTWFA(s)IS £[DSP(ks+1)
—HTWFA].
(Proof) (1) Let M, bean ASNk—HTWFA(s). We
construct an NSP(ks+1)—HTWFA M, accepting
T(M,). Let R be the reading head of Ms, and His, His, -,
Hiw, Hor, Hos, o+, Hon, o, Hsiy, Hoo,++, Ha, C be the count-
ing heads of M.. Suppose that an input string x is
presented to M.. M. starts to simulate the action of M
on x by using R, Hi, -, Hix. Other counting heads are
left on the left endmarker “ ¢ 7.

During the simulation, if M need to check whether
any two heads of M. are on the same position, M-
continues to move, for every one right move of C, these
two heads simultaneously one cell to the left until at
least one of these two heads reach “¢” (Note that
initially, C is on “¢”). Moving each head in this way,
M; can detect whether these two heads were on the same
input position by checking whether these two heads
reach “¢” at the same time. After this check, M:
replaces these two heads to the previous positions by
using C.

On the other hand, by using C, M. can read the
symbol under Hy,; (2<;j<k) as follows. First, M, moves
C one cell to the right, for every one left move of R until
it reaches “¢”. Secondly, M. moves R one cell to the
right, for every one left move of H,; until it reaches “ ¢ ”.
Then, M can read the symbol where H,; was positioned.
After this, by using C, M replaces R and H,; to the
previous positions. That is, M, moves H,; one cell to the
right, for every one left move of R until it reaches “ ¢ ”,
and thereafter M. moves R one cell to the right, for
every one left move of C until it reaches “ ¢ ”.

Suppose that, during the simulation, M, enters a
universal state. Let g1, g2,'*, ¢:(£<s) be the states of
successors of the configuration with that universal state.
When M. notices that M; enters the universal state, M
stores g, ¢: in its finite control and makes #—1
groups of counting heads coincide with R, Hiz, -, Hix
(One group of counting heads consists of £ counting
heads). That is, M. makes each H; (1<7;<¢—1) coin-
cide with R and for each j (2<;<£), Mz makes each H;;
(1<i<t—1) coincide with Hy;. M, continues to simulate
the action of M; with the state ¢ by using R, Hiz,"*-, Hix.
During the simulation, if M, notices that M, enters a
universal state again, M- do the same actions mentioned
above. Repeating the action above, if M; notices that M,
enters a non-accepting state and halts, then M; enters a
non-accepting state and halts. Conversely, suppose that

M- notices that M, enters an accepting state and halts,
and suppose that » (1<#<s) states of M, are stored in
the finite control of M. Then, M, arbitrarily selects one
state (say q. (2<% <s)) from these 7 states, makes R,
Hyz,++, Hi coincide with Hyi, Hus, +*, Hux, respectively,
and continues to simulate the action of 3; with the state
qu by using heads R, His,+, Hix.

Repeating the actions above, M; enters an accepting
state if and only if the state (of M) stored in the finite
control of M, are all successefully consumed. It will be
obvious that M, accepts T'(M).

(2) The proof is similar to the proof of (1) except
that during the simulation, M, and M, do not make a
nondeterministic action. (Q.E.D.)

As a corollary of Theorem 3.1, we can get
[Corollary 3.1]

(1) U U £ [ASNE—-HTWFA(s)]

1< k<ool< §<o0

= U £ [NSPk—HTWFA], and

1<k<oeo

(2) U U £[USNk—HTWFAC(s)]

1<k<owl<s<co

:Kym‘f [DSPE—HTWFA].

It is known that £ [ASPk—HFA] is equal to
L [Ak—HFA] for each £>1". We next show that,
when leaf-sizes are bounded, different situation occurs
for one-way AMHFAs.
[Lemma 3.1] For each »>1

B(T):{auomllomzl,,_10mr20m110mz1...10mrbt}
Vi(l<i<#)[m:>1] & (a, b€{0,1, 2))
& (u, t>0)}.

Then,
(1) for each »=1, B(r)er[D2—HFA], and
(2) for each £>1 and each s>1,

B(ks)& L[ ASNSPE— HFA(s)).

(Proof)  The proof is omitted, since part (1) is easy
to prove and part (2) is shown in Lemma 5.10 in Ref.
(7). (Q.E.D.)

From Lemma 3.1, we can get the following theo-
rem.
[Theorem 3.2] For each X<{A, U}, k>1, and s>1,
(1) L[XSPk—HFA(s)] S.L[Xk—HFA(s)], and
(2) L[XSNSPE—HFA(s)] S L[ XSNE— HFA(s)].
[Remark 3.1] Let T={w2w|we&{0,1}*}. It is shown
in Remark 5.8 in Ref. (7) that TGEISLr{w.E [ASNSP»

— HSFA(L(n))] for any function L such that lizn[L(n)

logzn/n]=0. From this fact and the fact that 7€ [D2

—HFA], we can get for each XE{A, U}, k=1, and for

any function L such that lniIn[L(n)logzn/n]ZO,

(1) L[XSPk—HFA(L(n))]¥ L[ Xk—HFA(L(n))],

(2) Kyw.f [XSPr—HFA(L(n)] S 1erJ<m“E [X#
—HFA(L(n))],

(3) L[XSNSPk—HFA(L(n))]S £[XSNE
—HFA(L(n))], and
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(4) U _L[XSNSPr—HFA(L(:)IF | L[XSNr
— HFA(L(n))].

4, Some Properties of One-Way AMHFAs with Con-
stant Leaf-Sizes

In Ref. (6), the problem whether or not an addi-
tional input head increase the power of one-way AMH-
FAs is posed as an open problem. In this section, we first
give a partial solution for this problem and show that .L
[Ak— HFA(s)]= £ [A(k+1)— FA(s)] for each £>1 and
each s=>1. We need the following lemma.

[Lemma 4.1] For each » =1, let

Clry={un * wa % % we,|Vi(1<i<2r)
[wiE{O, 1}*]& V](lﬁ]é 7’)[7,{)j=’l/l)zr+1—j]}

and for each string x=w: % ws %% wer in C(7) and
for each /(1<i<#), let the pair of w; and wsrs1-: be
called twins of z. Then, Ak— HFA(s) can compare all
twins of a string in C(») if and only if »<k(k—1)s/2.
(Proof) By using the same idea as in the formar part
of the proof of Theorem 1 in Ref. (4), we can easily
seen that ‘if’ direction holds. To prove ‘only if’ direction,
we assume that » > £(£—1)s/2. On the other hand, it is
easily seen that if a pair of heads of Ak—HFAC(s) is
comparing some twins of string x in C(r) at the same
time during the computation on x then, at any other
time during the computation, that pair of heads could
not read any other twins of x. From this fact and the
fact that the leaf-size of Ak— HFA(s) is s, we can see
that Ak— HFA(s) can compare at most k(k—1)s/2
twins of x in C(#). It follows that there must be a twins
of a string in C(») such that Ak—HFA(s) can not
compare. This is a contradiction. (Q.E.D.)
[Lemma 4.2] Let C(r) be the set given in Lemma
4.1. Then, for each £=1 and each s>1,

(1) CE(E—1s/2+1)eL[Uk+1)— HFA(s)], and
(2) C(k(k—1)s/2+1)E L [ASNE—HFA(s)].

(Proof) (1) It is clear that

(k+1)ks/2—(k(k*1)s/2+1)=ks;—1

From this and Lemma 4.1, we can get the part (1) of
this lemma.

(2) Suppose that there is an ASNk—HFA(s) M
accepting C(k(k—1)s/2+1) for each £>1 and each s>
1. For each n>1, let

V(n)={w; % ws %% wp|Vi(1<i<2p)
[w.€0, 1}* & |w:lt=n]
& Vi<i<p)lws=wspsl},
where p=k(E—1)s/2+1.
Note that for each string x in V(#n), lx|=2p(n+1)—1.

1 For any string w, |w| denotes the length of w.
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Clearly, each string x in V(%) is in C(p), and so x is
accepted by M. Let x be a string in V(#).

The type of a semi-configuration c¢=(g, (i, 75,
ix)), denoted by Type(c), is a k-tuple ([a/(n+1)],,
[ir/(n+1)]). Note that the 7-th element %4; of the type
specifies that i-th head of M is on wx, * (w2p $ if 2:=2p).
For each j(1<j<s), let Ci(x), Ci(x),*, Ci.,(x) be the
sequence of semi-configuration on the j-th path of an
(arbitrarily selected) accepting computation tree of M
on input & in V(x). Here I, is the length of this path.
Let di(x), di(x),, di.,(x) be the sequence obtained by
selecting C{(x) and all subsequent Ci(x)s such that
Type Ci(x))# Type (Cini(x)). We call di(x), di(x), -,
di. (x), denoted by P;(x), the j-pattern of x. For each
z in V(n), we let (Px), P{x),, P(x)) denote the
pattern of x. Let P(x) be the number of possible
patterns of M on strings in V(#). Since l;<k(2p—1)
+1 for each z in V{(#n) and each j(1<;<s), we can get
the following inequality,

P(n) <{(w(2p(n-+1))")*~00),

where # is the number of states of M. Then we classify
the strings in V(%) according to their patterns. Clearly,
there is a set S(n) (S V(%)) such that |S(#)| > 2™ /P(n),
where each element has the pattern (P, Py, Ps).

From Lemma 4.1, we can see that for each string in
V(n), there must be an 7 such that M cannot read w; *
and wzps1-: * (wep $ if 7=1) simultaneously. The pos-
sible values for 7 are determined entirely by the pattern
of the computation. Let % be such a value of 7 for the
pattern (P, Py, Ps). We now define a binary relation
E on string in S(#) as follows. Let

U= ¥ Uy Kk wy kK Uspir—i ¥ 00k uzp and
V=01 % Vs Kok vy Koo X Ugpiyg, Kok Uzp,

Then, uEve="i(&{i, 20+ 1— P wi=vi].

Obviously the relation E is an equivalence relation and
there are at most ¢(#)=2"*"1 E-equivalence classes. It
is easily seen that |S(#n)|>¢(n) for large n. Therefore,
there exist two different string which belongs the same
equivalence class. Let

T=21 % Xz koK Ty koK Tpper-q ¥ ¥ Top and
Y=y ok yz Kok Yo KooK yapgg, Kok Yop

be such string in S(#). Note that for each 7€E{s, 2p+1
- io}, Xi=Yi. Let

2=z % 2 KX 2pp

=21 % T2 Kk 0 K Xz K o K Topy K oyapiig, K

Zopra—io XK K Tap

obtained by replacing yzps1-5 fOr Zzp+1-% in x. By an
argument similar to that in the proof of Theorem 1 in
Ref. (4), it can be shown that there is a accepting
computation tree of M on z. Consequently, z must be
accepted by M. This contradicts the fact that z is not
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in C(p). (Q.E.D.)
From Lemma 4.2, we can get the following theo-
rem.
[Theorem 4.1] For each X={A, U}, k=1, and s>1,
(1) L[Xk—HFA(s)]$L[X(k+1)—HFA(s)], and
(2) L[XSNk—HFA(s)|$L{XSN(k-+1)—HFA(s)].
It is known that XYk—HFA(s+1)s are more
powerful than XYk — HFA(s)s for each X€{A4, U}, Y
&{SP, SNSP}, k=2, and s>1. We next show that
similar result holds for nonsimple one-way AMH-
FACLs.
[Lemma 4.3] Let C(#) be the set given in Lemma
4.1. Then for each £=1 and each s>1,

(1) Clk(k—1)s/2+1)eL[Ur—HFA(s+1)], and
(2) C(k(k—1)s/2+1)&EL[ASNE—HFA(s)].
(Proof) (1) It is clear that
(B(E—=1)(s+1)/2)—(k(k—1)s/2+1)
=(k+1)(k—2)/2.

From this and Lemma 4.1, we can get the part (1) of
this lemma. :
(2) The proof is shown in the proof of Lemma
4.2(2). (Q.E.D.)
From Lemma 4.3, we can get the following theorem.

[Theorem 4.2] Foreach X&{A, U}, k=2, and each s
>1,

(1) L[Xk—HFA(s)]$L[Xk—HFA(s+1)], and
(2) L[XSNk—HFA(s)|$L[XSNk—HFA(s+1)].

It is unknown whether or not two-way AMHFAs
are more powerful than one-way AMHFAs.® We next
give a partial solution for this problem.

[Theorem 4.3] For each X&{A4, U}, £#>2, and s>1,

(1) L[Xk—HFA(s)]SL[Xk—HTWFAC(s)] and
(2) L[XSNk—HFA(s)]%.L[XSNE—HTWFA(s)].

(Proof) Foreach £>1 and s>1, let C(k(£—1)s/2+1)
be the set given in Lemma 4.1. It is easily seen that
Ck(k—1s/2+1)EL[D2—HTWFA]. On the other
hand, it is shown in Lemma 4.2(2) that C(k(£—1)s/2
+1)& L [ASNE— HFA(s)]. This completes the proof of
this theorem. (Q.E.D.)
In Theorem 3.1, we showed that two-way AMH-
FACLs can be simulated by two-way nondeterministic
SPMHFAs. The following theorem shows that stronger
results hold for one-way sensing AMHFACLs.
[Theorem 4.4] For each £>2 and each s>1,

(1) L[ASNk—HFA(s)]$L[NSN(ks)—HFA] and
(2) L[USNk—HFA(s)|SL[DSN(ks)—HFA].

(Proof) We omit the proofs of L[ ASNE— HFA(s)]<
L[NSN(ks)— HFA] and £[USNk—HFA(s)]S <
[DSN(ks)— HFA], since they can be proved by using the
same technique as in the proof of Theorem 3.1. Let

C(k(k—1)s/2+1) be the set given in Lemma 4.1. It is
easily seen that DSN(ks)—HFA can compare ks(ks
—1)/2 twins of a string in C(k(k—1)s/2+1). On the
other hand it is clear that

ks(ks—1)/2—(k(k—1)s/2+1)=Fks(k—1)/2—1.

It follows that C(k(k—1)s/2+1)=.L[DSN(ks)— HFA].
It is shown in Lemma 4.2 that C(k(k—1)s/2+1)eE
L[ASNE—HFAC(s)]. This completes the proof of the
theorem. (Q.E.D.

It is shown in Ref. (5) that for one-way
SPMHFAs, sensing versions are more powerful than
non-sensing versions. We show that a similar result also
holds for ASPMHFAs with constant leaf-sizes.
[Lemma 4.4] Let L={a"0"|n>=1}*. Then,

(1) LEL[DSNSP2—HFA] and
(2) L& \ U L[ASPk—HFA(s)).

<k<cols§<oo

(Proof) (1) The proof of (1) is omitted here, since
it is shown in the proof of Lemma 4 in Ref. (5).

(2) Suppose that there is an ASPE— HFA(s) (k=>1, s
>1)M accepting L, and that M has ¢ states. We assume
without loss of generality that M does not use the left
endmarker ¢, since for any ASPk— HFA(s)B with the
left and right endmarkers, we can construct an ASPk
— HFA(s)B’ without the left endmarker such 7(B’)=
T(B).

Consider the word w=z12""zs, where z;:=2z (1<i
<s), z=x1Z2 *** Tr-nys+v Where ri=x(1<i<(k—1)s+1),
X=W1Yz " Yn (7’!>ts), and Yi=andiz ainb® (dsza,
1<14,7<m). Clearly w is in L, so there is an accepting
computation tree Tu(w) of M on w $.

Without loss of generality, we assume that each
node of 7Ty(w) which is labeled by a universal
configuration has exactly two children. Then, because
of the bounded leaf-size s, there are at most s—1 nodes
labeled by universal configurations in 7u{(w). From this
fact and the fact that the word w has s subwords z’s,
there is a subword z in the word w such that on each
computation path of Tw(w), there is a sequence of steps
which implies that M never enters a universal state
while reading the subword z. We let such subword z be
Zf.

Let # (1<h<s) be the number of sequences of
steps while M reads zr in the accepting computation tree
Tw(w), and let S(1), S(2),---, S(k) be these % sequences
of steps. For each m (1<m<h) and for each 7 (1<
i<(k—1)s+1), let Nn(7) be the number of counting
heads that reach the right endmarker $ while the read-
ing head R reads the z; in z;, in the m-th sequence
S(m). Since M has-only (£—1) counting heads and
leaf-size s, it follows that Ni(#)=Nz(7)="+++=Nu(#)=0
for some »(1<»<(k—1)s+1).

Consider the case when in the accepting computa-
tion tree Tu(w) R reads the subword x, such that Ni(#)
=Ny(#)=+-=Nu(#)=0. Recall that
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Tr=wyz y» (m>1t%) and

Yi=anaz - anb® (as=a,1<1, j<n).

For each m (1<m<h) and for each symbol a, let ¢f
be the state in which M is when R moves onto a;; on the
m~th sequence S(m). For each symbol a;, we consider
the Z-tuple of states as follows.

2
Jy

(qllja qi5, ", ql]\li):QlJ

We call Q above a multi-state of M.

Since n>t° (=t"), it follows that for each y:;, M
must be in the same multi-state at least twice on the y:
i.e, for every {(1<:/<#) there exist j, /(1<;<[<m)
such that Q;=Q:. For each y., let @: be one such
multi-state being repeated and let a; and @i, be two
@’s in y; where the entering multi-state is @; (1<j:,<d:<
7). Since there are n(>¢°) segments of ¥’s, Qu=Q» for
some # and v (1<Lu<wv<#). Note that while R reads
xr, M acts like %4 independent ordinary one-way finite
automata.

Let x; be the word obtained from z, by moving (dx
—7u) @'s from y. to the segment of a’s in .- and let w’
be the word obtained from w by replacing x- with x,. It
follows from the above note that M will have an accept-
ing computation tree with leaf-size s on w’$. But w'e&
L. This completes the proof of the lemma. (Q.E.D.)

From Lemma 4.4, we can get the following theo-
rem.

[Theorem 4.5] For each X&{A, U}, k=2, and s=>1,

(1) L[XSPk—HFA(s)]$ LI XSNSPk—HFA(s)]
and

(2) U U r[XSPk—HFA(s)]& U

1€k<ol <5< 0
[ XSNSPk— HFA(s)].
It is easily seen that LE.L[DSP2—HSFA]. From
this fact and part (2) of Lemma 4.4, we can get the

following theorem.
[Theorem 4.6] For each XE{A, U}, £>2, and s=1.

(1) L£[XSPk—HFA(s)]$L[XSPk— HSFA(s)] and
(2) U U L[XSPE—HFA(SIS U U £

1< k<0l <g< 00 1< k<0l <5< 00

U .c

1<k<ool<s<00

[ XSPk— HSFA(s)].

5. Conclusions

In this paper, we mainly showed the following
results.
(1) For each £=1 and each s>1

L[ASNE—HTWFA(s)]S L[NSP(ks+1)
—HTWFA).
(2) For each X<{A, U}, k=1, and s=1,
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L[ XkE—HFA(G) S LIX(E+1)— HFA(s)].
(3) For each X&{A, U}, k>2, and s=1,
L[XSPk—HFA(s)]5 L [ XSNSPk— HFA(s)].

We conclude this paper by giving several open
problems.
(1) How much leaf-size is necessary and sufficient for
AMHFAS to be more powerful than ASPMHFAs?
(2) How much leaf-size is necessary and sufficient for
sensing ASPMHFAs to be more powerful than non-
sensing ASPMHFAs?
(3) L[ASPk—HTWFA(s)]¥ L[ASP(k+1)
—HTWFA(s)] and L[Ak—HTWFA(s)]F L[A(E+1)
— HTWFAC(s)], for each £>2,s>17
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