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Abstract. We give a trace inequality related to the uncertainty relation of
generalized Wigner-Yanase-Dyson skew information which is two parameter’s
extension of our result in [12].
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1 Introduction

Wigner-Yanase skew information

) = o[ )]
= TrlpH? — Tr[p"*Hp'*H]

was defined in [9]. This quantity can be considered as a kind of the degree for non-
commutativity between a quantum state p and an observable H. Here we denote
the commutator by [X,Y] = XY — Y X. This quantity was generalized by Dyson

LoalH) = STrlGl" H]) (il H])

= Tr[pH?| —Tr[p*Hp  *H],a € [0,1]

which is known as the Wigner-Yanase-Dyson skew information. It is famous that
the convexity of I,,(H) with respect to p was successfully proven by E.H.Lieb in
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[6]. And also this quantity was generalized by Cai and Luo

]p,a,B(H)
= STel(ile", H) G, H)p' )

1
= ATrlpH? + Trlp* " Hp'™*"H] = Tr[p"Hp' " H] — Tr[p"Hp" "H]},

where o, f > 0, o+ < 1. The convexity of I, , 3(H) with respect to p was proven by
Cai and Luo in [2] under some restrictive condition. From the physical point of view,
an observable H is generally considered to be an unbounded opetrator, however in
the present paper, unless otherwise stated, we consider H € B(H) represents the set
of all bounded linear operators on the Hilbert space H, as a mathematical interest.
We also denote the set of all self-adjoint operators (observables) by L£;(H) and the
set of all density operators (quantum states) by S(#H) on the Hilbert space H. The
relation between the Wigner-Yanase skew information and the uncertainty relation
was studied in [8]. Moreover the relation between the Wigner-Yanase-Dyson skew
information and the uncertainty relation was studied in [5, 10]. In our paper [10]
and [12], we defined a generalized skew information and then derived a kind of an
uncertainty relations. In the section 2, we discuss various properties of Wigner-
Yanase-Dyson skew information. In section 3, we give an uncertainty relation of
generalized Wigner-Yanase-Dyson skew information.

2 Trace inequality of Wigner-Yanase-Dyson skew
information

We review the relation between the Wigner-Yanase skew information and the un-
certainty relation. In quantum mechanical system, the expectation value of an
observable H in a quantum state p is expressed by Tr[pH|. It is natural that
the variance for a quantum state p and an observable H is defined by V,(H) =
Trlp(H — Tr[pH|I)* = Tr[pH?| — Tr[pH]?. Tt is famous that we have

Vi AW,(B) > {ITrlplA, B 21)

for a quantum state p and two observables A and B. The further strong results was
given by Schrodinger

VA(AWV,(B) ~ [Cou,(A, B)F > {|Tr{plA, B,

where the covariance is defined by Cov,(A, B) = Tr[p(A—Tr[pA|l)(B —Tr[pB|I)].
However, the uncertainty relation for the Wigner-Yanase skew information failed.
(See [8, 5, 10])

I,(AV(B) > JITrlplA, B
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Recently, S.Luo introduced the quantity U,(H ) representing a quantum uncertainty
excluding the classical mixture:

Up(H) = \JVy(H)?2 — (V,(H) — 1,(H))2. (2.2)
then he derived the uncertainty relation on U,(H) in [7]:
1
Up(A)U,(B) = Z|Tr(plA, BJI* (2.3)
Note that we have the following relation
0 < 1,(H) < U,(H) < V,(H). (2.4)

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of (2.4). In
[12], we studied one-parameter extended inequality for the inequality (2.3).

Definition 2.1 For 0 < a <1, a quantum state p and an observable H, we define
the Wigner-Yanase-Dyson skew information

o) = STrl(ilp", Ho) (' Hl)
= TrlpHg] — Tr(p®Hop'~* Ho (2.5)

and we also define
1 —«
Jpa(H) = §TT[{ﬂa>H0}{Pl , Ho}
= Tr[pHZ] + Tr[p“Hop' *Hy), (2.6)

where Hy = H — Tr[pH|I and we denote the anti-commutator by {X,Y} = XY +
YX.

Note that we have
STl Hol)ilp' ", Hol)] = S Trl(ilp", H) (il H))]
but we have

ST, Ho} ('~ Ho)] # 3Trl{o", HY (o'~ H}).

Then we have the following inequalities:

Lpa(H) < I,(H) < J)(H) < Jpo(H), (2.7)



since we have Tr[p'/2Hp'?H] < Tr[p*Hp'~*H]. (See [1, 3] for example.) If we
define

UpalH) = \JVo(H)? — (Vy(H) — 1,.0(H))?, (2.8)
as a direct generalization of Eq.(2.2), then we have
0<I,,(H)<U, (H)<U,(H) (2.9)

due to the first inequality of (2.7). We also have

Upa(H) = [ Tpal(H) Jya(H).
From the inequalities (2.4),(2.8),(2.9), our situation is that we have
0 < La(H) < 1,(H) < U,(H)

and
0<1,,(H)<U,o(H) <U,(H).

We gave the following uncertainty relation with respect to U, ,(H) as a direct gen-
eralization of the inequality (2.3).

Theorem 2.1 ([12]) For 0 < o <1, a quantum state p and observablea A, B,

Upa(A)Upa(B) > a(l — a)|Tr[p[A, B]]|*. (2.10)

Now we define the two parameter extensions of Wigner-Yanase skew information
and give an uncertainty relation under some conditions in the next section.

Definition 2.2 For o, > 0, a quantum state p and an observable H, we define
the generalized Wigner-Yanase-Dyson skew information

[,O,a,ﬁ(H)
1 a . o
= e [l Hl) il Ho)' =]
1
= S{TrlpHS] + Trlp™ " Hop' =7 Ho] — Tr(p™ Hop'~*Ho] — Trp” Hop'~" Ho]}
and we define

Jp,aﬁ(H>
1 e
= §T7" [{p*, Ho}{p", Ho}p" 7]

1 —a— fe% —a -
= S {TrlpH;] + Tr(p**P Hop' P Ho| + Tr[p™Hop'~*Hy| + Tr[p’ Hop' ~° Hy)},
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where Hy = H — Tr[pH|I and we denote the anti-commutator by {X,Y} = XY +
YX. We remark that o + 5 = 1 implies 1,,(H) = I,01-o(H) and J,(H) =
Jpai—a(H). We also define

Upios(H) = \/ Lo, (H) Sy 5(H).

3 Main Theorem

We give the main theorem as follows;

Theorem 3.1 Let p be a density operator, A and B observables and o, 3 > 0. If
a+p < % or a+ 8 =1, then the uncertainty relation

Upap(A)Upas(B) = af|Tr(p[A, B]|] (3.1)

holds.

We use the several lemmas to prove the theorem 3.1. By spectral decomposition,
there exists an orthonormal basis {¢;, }5°, consisting of eigenvectors of p. Let {\;}7°,
be the corresponding eigenvalues, where Y ., A\; = 1 and A; > 0. Thus, p has a
spectral representation

pP= Z&’@)Wﬂ (3.2)

We use the notation fu(z,y) = z%9*~* + 2'72y®. Then we have the following
lemmas.

Lemma 3.1

Lyos(H) = %Z{Az’ + X+ fars(Nis Aj) = fa(Xis A) = F5(Nis Aj) (sl Hol o)

i<j
Proof of Lemma 3.1. By (3.2),

pHg = Z il gi) (il H3.

Then
TT[PHg] = Z/\i<¢i|Hg’¢i> = Z/\i||H0|¢z‘>||2- (3.3)
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Since

p"Hy = ZW% (| Ho

and
p' " Ho = N "i) (¢l Ho,
we have
P Hop' ™" Hy = Z ASA;%0) (@il Hols) (5] Ho.
Thus
Tr[p* Hop'~* Hol ZX)‘/\I “(9i|Ho|¢7) (5] Holo:)
Zml (il Holos) . (3.4)
By the similar calculations we have
Trlp’ Hop'~" Hol ZAW % (@il Holé;) (65| Hol )
ZAWA} il Hol o) |- (3.5)
12

Trip™* P Hop' P Ho] = Y NTPNT 7% (6i] Holds) (65| Hol )

D ONTENT TP (il Hol o)) . (3.6)
i,J
From (2.5), (3.3), (3.4), (3.5), (3.6),
Ip,a,B(H)
1 b 1o o la _
= 5D AT AT = ANl Holey)
1,7

_ %Z@.Hi—Ai—Ai>|<¢irHoi¢i>!2

1 «a —a— ayl—a —
3 D0+ AN = XA — NI (1] o)
1<j
1 « —a— ayl—o —
5 2O+ AN XA = ANy | ol
i<j

= %Z(Al + )‘j + fa+ﬁ(>‘i7 AJ) - fa()‘ia >\J) - fﬁ()\ia A]))|<¢Z|HO|¢]>|2

i<j



Lemma 3.2

Toas(H) = =) (i 4 X + fars(hi A) + Sl A) + Fo(Ni, M) (il Hol )]

i<j

1
2
Proof of Lemma 3.2. By (2.6), (3.3), (3.4), (3.5), (3.6), we have

Jpa(H)
1 BB aria _
= §§ (i + AN XN+ AT (il Hol )
2]

_ %Z@i+A,.+A1+AZ->|<¢Z-|H01¢Z->|2

1 @ —a— ayl—a —
g D AN AT+ WA (i ol
1<j
1 « —a— ayl—a —
g 2O XA XA XN (| Hol g
1<J

- 9 Z il {p:i|Ho )|

3 SO A+ a0 )+ Jals A + F3 ) {4l ol

i<j

% D i+ A fars i X)) + falXi Ag) + fa(hi, Ay (il Holg) |

i<j

v

O

Lemma 3.3 For anyt > 0 and o, > 0, a4+ >1 ora+ 8 < %, the following
iequality holds;

(t'7oP L 1)2(#2* — 1)(t*° — 1) > 16a8(t — 1) (3.7)

Proof of Lemma 3.3. It is sufficient to prove (3.7) fort > land o, 5 > 0,a+( > 1
ora+ < % By Lemma 3.3 in [12] we have for 0 <p <1 and s > 1,

(1—2p)2(s—1)* — (¥ — s'77)? > 0.
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Then we can rewrite as follows;
(5% — 1)(s2077) — 1) > 4p(1 — p)(s — 1)?.

We assume that a, 8 > 0. We put p = a/(a + ) and s/(@+#) =¢. Then

(tga o 1)(t25 o 1) > %(ta-ﬁ@ _ 1)2.
Then we have
(70 )22 — 1) — 1) > (fiﬁﬁ)i(tl” +HDXE -0 (38)

In order to have the aimed inequality, we have to show that
(P + 12— 1) > Aot B~ 1)
It is sufficient to prove the following inequality
P (P —1) > 2(a + B)(t — 1)

for t > 1 and o, > 0,a+ 08 > 1or a+f < % We put a« + 8 = k and
f@) =%+ 1)(t* —1) — 2k(t — 1). Then

) = 1=kt F e —1)+ k@ + )tk — 2k
(1=K —t") + k(1 +t"1) — 2k.

and

Flt)y = (L= k)kt™ " 4 k(k — 1)tF2
= Rk — 1) — R,

Whenk:a+ﬁzlork:a+6§%, it is easy to show that f”(t) >0fort>1.
Since f'(1) =0, we have f'(t) > 0 for ¢t > 1. And since f(1) = 0, we have f(t) > 0
for t > 1. Hencewehaveforoz+,8210ra+ﬁ§%,

P - P —1) > 2(a+ B)(t —1).
It follows from (3.8) that we get

(P L D22 — 1D)(#* — 1) > 16a8(t — 1)~



Proof of Theorem 3.1. Since
(Fe 12 - 1) - 1)
— (t + 1 + ta—i—ﬁ + tl—a—B)Z _ (ta + tl—a + tﬂ + tl_ﬂ)Z,

Ai
we put t = 1o (3.7). Then we have
J

A\ A\ a+f8 A\, 1—a—p 2 s « A\, 11—« \, B
e () O )
Aj Aj Aj Aj Aj Aj

Then we have

A+ A5+ fars(Ni Aj) = fa(Xi, Aj) = fa(Ais Aj)}

X{Ni + A+ farsNi Aj) + fa(Nis Ag) + fa(Ni, Ag) }
= N+ F farsOi, A)2 = (fa(i, A) + fs(Ni, A7)
> 16aB(\; — A\))%

Since
Trlp[A,B]] = Tr[p[Ao, Bo]]
= 21ImTr[pAyBo)
= 2 Z()‘i — ) Im (@il Ao|@;) (65| Boldi),

i<j

Trlpl A Blll = 21D (A = A Im{ei] Aoly) (5] Bol i)

i<j

IA

2> [ = Al ITm{eil Aolé;) (5] Bol i)l

i<j
Then we have
2
| Tr[p[A, B]J|* < 4 {Z [Ai = /\j’um<¢i|A0|¢j><¢j’BO|¢i>‘} :
i<j
By (3.9) and Schwarz inequality,

aB|Tr(p[A, B]]|*

(3.9)



IN

1<j

2
daf {Z A — /\j||]m<¢i|A0|¢j><¢j|Bo|¢z’>|}

A~ =

{24\/—|)\ Al [Im ¢1|A0|¢]><¢]|BO|¢Z>|}

1<j

IN
AN

{Z INZES Aj||<¢i|Ao|¢j>||<¢j|Bo|¢i>|}

1<j

< i{Z{K2_L2}1/2|<¢i|A0|¢j>H<¢j’BO‘¢i>|}
< 3 S - D@l Alo) P x 5 SR + DI 6Bl

1<j 1<j
where K = A\, + A\j + fars(Ni, Aj) and L = fo (AN, Aj) + f3(Aiy Aj). Then we have
Ip.a5(A) Jpa5(B) > aB|Tr[plA, B]|*.

We also have

Ipa3(B)Jpas(A) = aB|Tr(plA, Bl
Hence we have the final result (3.1). O
Remark 3.1 We remark that (2.10) is derived by putting f =1—« in (3.1). Then
Theorem 3.1 is a generalization of Theorem 2.1 given in [12]. Moreover, considering

the proof, if the dimension is finite and the density operator p is invertible, then (3.1)
holds even if a + 3 > 1.

Remark 3.2 When o, > 0 and % < a+p <1, we can show an example which
Theorem 3.1 does not hold as follows; Let

0 1 01 1 1
= (13)a= (5 )nm (1) mm b

Then we have
Upa,3(A)U, 0 p(B) = 0.00448729,
af | Tr[p[A, B]]| = 0.125.

O Rlw
= O
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