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Abstract. We give a trace inequality related to the uncertainty relation of
generalized Wigner-Yanase-Dyson skew information which is two parameter’s
extension of our result in [12].
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1 Introduction

Wigner-Yanase skew information

Iρ(H) =
1

2
Tr

[(
i
[
ρ1/2, H

])2]
= Tr[ρH2]− Tr[ρ1/2Hρ1/2H]

was defined in [9]. This quantity can be considered as a kind of the degree for non-
commutativity between a quantum state ρ and an observable H. Here we denote
the commutator by [X, Y ] = XY − Y X. This quantity was generalized by Dyson

Iρ,α(H) =
1

2
Tr[(i[ρα, H])(i[ρ1−α, H])]

= Tr[ρH2]− Tr[ραHρ1−αH], α ∈ [0, 1]

which is known as the Wigner-Yanase-Dyson skew information. It is famous that
the convexity of Iρ,α(H) with respect to ρ was successfully proven by E.H.Lieb in
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[6]. And also this quantity was generalized by Cai and Luo

Iρ,α,β(H)

=
1

2
Tr[(i[ρα, H])(i[ρβ, H])ρ1−α−β]

=
1

2
{Tr[ρH2] + Tr[ρα+βHρ1−α−βH]− Tr[ραHρ1−αH]− Tr[ρβHρ1−βH]},

where α, β ≥ 0, α+β ≤ 1. The convexity of Iρ,α,β(H) with respect to ρ was proven by
Cai and Luo in [2] under some restrictive condition. From the physical point of view,
an observable H is generally considered to be an unbounded opetrator, however in
the present paper, unless otherwise stated, we consider H ∈ B(H) represents the set
of all bounded linear operators on the Hilbert space H, as a mathematical interest.
We also denote the set of all self-adjoint operators (observables) by Lh(H) and the
set of all density operators (quantum states) by S(H) on the Hilbert space H. The
relation between the Wigner-Yanase skew information and the uncertainty relation
was studied in [8]. Moreover the relation between the Wigner-Yanase-Dyson skew
information and the uncertainty relation was studied in [5, 10]. In our paper [10]
and [12], we defined a generalized skew information and then derived a kind of an
uncertainty relations. In the section 2, we discuss various properties of Wigner-
Yanase-Dyson skew information. In section 3, we give an uncertainty relation of
generalized Wigner-Yanase-Dyson skew information.

2 Trace inequality of Wigner-Yanase-Dyson skew

information

We review the relation between the Wigner-Yanase skew information and the un-
certainty relation. In quantum mechanical system, the expectation value of an
observable H in a quantum state ρ is expressed by Tr[ρH]. It is natural that
the variance for a quantum state ρ and an observable H is defined by Vρ(H) =
Tr[ρ(H − Tr[ρH]I)2] = Tr[ρH2]− Tr[ρH]2. It is famous that we have

Vρ(A)Vρ(B) ≥ 1

4
|Tr[ρ[A,B]]|2 (2.1)

for a quantum state ρ and two observables A and B. The further strong results was
given by Schrödinger

Vρ(A)Vρ(B)− |Covρ(A,B)|2 ≥ 1

4
|Tr[ρ[A,B]]|2,

where the covariance is defined by Covρ(A,B) = Tr[ρ(A−Tr[ρA]I)(B−Tr[ρB]I)].
However, the uncertainty relation for the Wigner-Yanase skew information failed.
(See [8, 5, 10])

Iρ(A)Iρ(B) ≥ 1

4
|Tr[ρ[A,B]]|2.

2



Recently, S.Luo introduced the quantity Uρ(H) representing a quantum uncertainty
excluding the classical mixture:

Uρ(H) =
√

Vρ(H)2 − (Vρ(H)− Iρ(H))2, (2.2)

then he derived the uncertainty relation on Uρ(H) in [7]:

Uρ(A)Uρ(B) ≥ 1

4
|Tr[ρ[A,B]]|2. (2.3)

Note that we have the following relation

0 ≤ Iρ(H) ≤ Uρ(H) ≤ Vρ(H). (2.4)

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of (2.4). In
[12], we studied one-parameter extended inequality for the inequality (2.3).

Definition 2.1 For 0 ≤ α ≤ 1, a quantum state ρ and an observable H, we define
the Wigner-Yanase-Dyson skew information

Iρ,α(H) =
1

2
Tr[(i[ρα, H0])(i[ρ

1−α, H0])]

= Tr[ρH2
0 ]− Tr[ραH0ρ

1−αH0] (2.5)

and we also define

Jρ,α(H) =
1

2
Tr[{ρα, H0}{ρ1−α, H0}]

= Tr[ρH2
0 ] + Tr[ραH0ρ

1−αH0], (2.6)

where H0 = H − Tr[ρH]I and we denote the anti-commutator by {X, Y } = XY +
Y X.

Note that we have

1

2
Tr[(i[ρα, H0])(i[ρ

1−α, H0])] =
1

2
Tr[(i[ρα, H])(i[ρ1−α, H])]

but we have

1

2
Tr[{ρα, H0}{ρ1−α, H0}] ̸=

1

2
Tr[{ρα, H}{ρ1−α, H}].

Then we have the following inequalities:

Iρ,α(H) ≤ Iρ(H) ≤ Jρ(H) ≤ Jρ,α(H), (2.7)
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since we have Tr[ρ1/2Hρ1/2H] ≤ Tr[ραHρ1−αH]. (See [1, 3] for example.) If we
define

Uρ,α(H) =
√

Vρ(H)2 − (Vρ(H)− Iρ,α(H))2, (2.8)

as a direct generalization of Eq.(2.2), then we have

0 ≤ Iρ,α(H) ≤ Uρ,α(H) ≤ Uρ(H) (2.9)

due to the first inequality of (2.7). We also have

Uρ,α(H) =
√

Iρ,α(H)Jρ,α(H).

From the inequalities (2.4),(2.8),(2.9), our situation is that we have

0 ≤ Iρ,α(H) ≤ Iρ(H) ≤ Uρ(H)

and
0 ≤ Iρ,α(H) ≤ Uρ,α(H) ≤ Uρ(H).

We gave the following uncertainty relation with respect to Uρ,α(H) as a direct gen-
eralization of the inequality (2.3).

Theorem 2.1 ([12]) For 0 ≤ α ≤ 1, a quantum state ρ and observablea A,B,

Uρ,α(A)Uρ,α(B) ≥ α(1− α)|Tr[ρ[A,B]]|2. (2.10)

Now we define the two parameter extensions of Wigner-Yanase skew information
and give an uncertainty relation under some conditions in the next section.

Definition 2.2 For α, β ≥ 0, a quantum state ρ and an observable H, we define
the generalized Wigner-Yanase-Dyson skew information

Iρ,α,β(H)

=
1

2
Tr

[
(i[ρα, H0])(i[ρ

β, H0])ρ
1−α−β

]
=

1

2
{Tr[ρH2

0 ] + Tr[ρα+βH0ρ
1−α−βH0]− Tr[ραH0ρ

1−αH0]− Tr[ρβH0ρ
1−βH0]}

and we define

Jρ,α,β(H)

=
1

2
Tr

[
{ρα, H0}{ρβ, H0}ρ1−α−β

]
=

1

2
{Tr[ρH2

0 ] + Tr[ρα+βH0ρ
1−α−βH0] + Tr[ραH0ρ

1−αH0] + Tr[ρβH0ρ
1−βH0]},
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where H0 = H − Tr[ρH]I and we denote the anti-commutator by {X, Y } = XY +
Y X. We remark that α + β = 1 implies Iρ,α(H) = Iρ,α,1−α(H) and Jρ,α(H) =
Jρ,α,1−α(H). We also define

Uρ,α,β(H) =
√
Iρ,α,β(H)Jρ,α,β(H).

3 Main Theorem

We give the main theorem as follows;

Theorem 3.1 Let ρ be a density operator, A and B observables and α, β ≥ 0. If
α + β ≤ 1

2
or α + β = 1, then the uncertainty relation

Uρ,α,β(A)Uρ,α,β(B) ≥ αβ|Tr[ρ[A,B]]|2 (3.1)

holds.

We use the several lemmas to prove the theorem 3.1. By spectral decomposition,
there exists an orthonormal basis {ϕi, }∞i=1 consisting of eigenvectors of ρ. Let {λi}∞i=1

be the corresponding eigenvalues, where
∑∞

i=1 λi = 1 and λi > 0. Thus, ρ has a
spectral representation

ρ =
∑
i

λi|ϕi⟩⟨ϕi|. (3.2)

We use the notation fα(x, y) = xαy1−α + x1−αyα. Then we have the following
lemmas.

Lemma 3.1

Iρ,α,β(H) =
1

2

∑
i<j

{λi + λj + fα+β(λi, λj)− fα(λi, λj)− fβ(λi, λj)}|⟨ϕi|H0|ϕj⟩|2.

Proof of Lemma 3.1. By (3.2),

ρH2
0 =

∑
i

λi|ϕi⟩⟨ϕi|H2
0 .

Then
Tr[ρH2

0 ] =
∑
i

λi⟨ϕi|H2
0 |ϕi⟩ =

∑
i

λi∥H0|ϕi⟩∥2. (3.3)
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Since
ραH0 =

∑
i

λα
i |ϕi⟩⟨ϕi|H0

and
ρ1−αH0 =

∑
i

λ1−α
i |ϕi⟩⟨ϕi|H0,

we have
ραH0ρ

1−αH0 =
∑
i,j

λα
i λ

1−α
j |ϕi⟩⟨ϕi|H0|ϕj⟩⟨ϕj|H0.

Thus

Tr[ραH0ρ
1−αH0] =

∑
i,j

λα
i λ

1−α
j ⟨ϕi|H0|ϕj⟩⟨ϕj|H0|ϕi⟩

=
∑
i,j

λα
i λ

1−α
j |⟨ϕi|H0|ϕj⟩|2. (3.4)

By the similar calculations we have

Tr[ρβH0ρ
1−βH0] =

∑
i,j

λβ
i λ

1−β
j ⟨ϕi|H0|ϕj⟩⟨ϕj|H0|ϕi⟩

=
∑
i,j

λα+β
i λ1−α−β

j |⟨ϕi|H0|ϕj⟩|2. (3.5)

Tr[ρα+βH0ρ
1−α−βH0] =

∑
i,j

λα+β
i λ1−α−β

j ⟨ϕi|H0|ϕj⟩⟨ϕj|H0|ϕi⟩

=
∑
i,j

λα+β
i λ1−α−β

j |⟨ϕi|H0|ϕj⟩|2. (3.6)

From (2.5), (3.3), (3.4), (3.5), (3.6),

Iρ,α,β(H)

=
1

2

∑
i,j

(λi + λα+β
i λ1−α−β

j − λα
i λ

1−α
j − λβ

i λ
1−β
j )|⟨ϕi|H0|ϕj⟩|2

=
1

2

∑
i

(λi + λi − λi − λi)|⟨ϕi|H0|ϕi⟩|2

+
1

2

∑
i<j

(λi + λα+β
i λ1−α−β

j − λα
i λ

1−α
j − λβ

i λ
1−β
j )|⟨ϕi|H0|ϕj⟩|2

+
1

2

∑
i<j

(λj + λα+β
j λ1−α−β

i − λα
j λ

1−α
i − λβ

j λ
1−β
i )|⟨ϕj|H0|ϕi⟩|2

=
1

2

∑
i<j

(λi + λj + fα+β(λi, λj)− fα(λi, λj)− fβ(λi, λj))|⟨ϕi|H0|ϕj⟩|2.

2
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Lemma 3.2

Jρ,α,β(H) ≥ 1

2

∑
i<j

(λi + λj + fα+β(λi, λj) + fα(λi, λj) + fβ(λi, λj))|⟨ϕi|H0|ϕj⟩|2.

Proof of Lemma 3.2. By (2.6), (3.3), (3.4), (3.5), (3.6), we have

Jρ,α(H)

=
1

2

∑
i,j

(λi + λα+β
i λ1−α−β

j + λα
i λ

1−α
j + λβ

i λ
1−β
j )|⟨ϕi|H0|ϕj⟩|2

=
1

2

∑
i

(λi + λi + λi + λi)|⟨ϕi|H0|ϕi⟩|2

+
1

2

∑
i<j

(λi + λα+β
i λ1−α−β

j + λα
i λ

1−α
j + λβ

i λ
1−β
j )|⟨ϕi|H0|ϕj⟩|2

+
1

2

∑
i<j

(λj + λα+β
j λ1−α−β

i + λα
j λ

1−α
i + λβ

j λ
1−β
i )|⟨ϕj|H0|ϕi⟩|2

= 2
∑
i

λi|⟨ϕi|H0|ϕi⟩|2

+
1

2

∑
i<j

(λi + λj + fα+β(λi, λj) + fα(λi, λj) + fβ(λi, λj)|⟨ϕi|H0|ϕj⟩|2

≥ 1

2

∑
i<j

(λi + λj + fα+β(λi, λj) + fα(λi, λj) + fβ(λi, λj)|⟨ϕi|H0|ϕj⟩|2.

2

Lemma 3.3 For any t > 0 and α, β ≥ 0, α + β ≥ 1 or α + β ≤ 1
2
, the following

inequality holds;

(t1−α−β + 1)2(t2α − 1)(t2β − 1) ≥ 16αβ(t− 1)2. (3.7)

Proof of Lemma 3.3. It is sufficient to prove (3.7) for t ≥ 1 and α, β ≥ 0, α+β ≥ 1
or α + β ≤ 1

2
. By Lemma 3.3 in [12] we have for 0 ≤ p ≤ 1 and s ≥ 1,

(1− 2p)2(s− 1)2 − (sp − s1−p)2 ≥ 0.

7



Then we can rewrite as follows;

(s2p − 1)(s2(1−p) − 1) ≥ 4p(1− p)(s− 1)2.

We assume that α, β ≥ 0. We put p = α/(α + β) and s1/(α+β) = t. Then

(t2α − 1)(t2β − 1) ≥ 4αβ

(α+ β)2
(tα+β − 1)2.

Then we have

(t1−α−β + 1)2(t2α − 1)(t2β − 1) ≥ 4αβ

(α+ β)2
(t1−α−β + 1)2(tα+β − 1)2. (3.8)

In order to have the aimed inequality, we have to show that

(t1−α−β + 1)2(tα+β − 1)2 ≥ 4(α + β)2(t− 1)2.

It is sufficient to prove the following inequality

(t1−α−β + 1)(tα+β − 1) ≥ 2(α + β)(t− 1)

for t ≥ 1 and α, β ≥ 0, α + β ≥ 1 or α + β ≤ 1
2
. We put α + β = k and

f(t) = (t1−k + 1)(tk − 1)− 2k(t− 1). Then

f
′
(t) = (1− k)t−k(tk − 1) + k(t1−k + 1)tk−1 − 2k

= (1− k)(1− t−k) + k(1 + tk−1)− 2k.

and

f
′′
(t) = (1− k)kt−k−1 + k(k − 1)tk−2

= k(k − 1)(tk−2 − t−k−1).

When k = α + β ≥ 1 or k = α + β ≤ 1
2
, it is easy to show that f

′′
(t) ≥ 0 for t ≥ 1.

Since f
′
(1) = 0, we have f

′
(t) ≥ 0 for t ≥ 1. And since f(1) = 0, we have f(t) ≥ 0

for t ≥ 1. Hence we have for α + β ≥ 1 or α + β ≤ 1
2
,

(t1−α−β + 1)(tα+β − 1) ≥ 2(α + β)(t− 1).

It follows from (3.8) that we get

(t1−α−β + 1)2(t2α − 1)(t2β − 1) ≥ 16αβ(t− 1)2.

2
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Proof of Theorem 3.1. Since

(t1−α−β + 1)2(t2α − 1)(t2β − 1)

= (t+ 1 + tα+β + t1−α−β)2 − (tα + t1−α + tβ + t1−β)2,

we put t =
λi

λj

in (3.7). Then we have

{
λi

λj

+ 1 +

(
λi

λj

)α+β

+

(
λi

λj

)1−α−β
}2

−

{(
λi

λj

)α

+

(
λi

λj

)1−α

+

(
λi

λj

)β

+

(
λi

λj

)1−β
}2

≥ 16αβ

(
λi

λj

− 1

)2

.

Then we have

{λi + λj + fα+β(λi, λj)− fα(λi, λj)− fβ(λi, λj)}
×{λi + λj + fα+β(λi, λj) + fα(λi, λj) + fβ(λi, λj)}

= (λi + λj + fα+β(λi, λj))
2 − (fα(λi, λj) + fβ(λi, λj))

2

≥ 16αβ(λi − λj)
2. (3.9)

Since

Tr[ρ[A,B]] = Tr[ρ[A0, B0]]

= 2iImTr[ρA0B0]

= 2i
∑
i<j

(λi − λj)Im⟨ϕi|A0|ϕj⟩⟨ϕj|B0|ϕi⟩,

|Tr[ρ[A,B]]| = 2|
∑
i<j

(λi − λj)Im⟨ϕi|A0|ϕj⟩⟨ϕj|B0|ϕi⟩|

≤ 2
∑
i<j

|λi − λj||Im⟨ϕi|A0|ϕj⟩⟨ϕj|B0|ϕi⟩|.

Then we have

|Tr[ρ[A,B]]|2 ≤ 4

{∑
i<j

|λi − λj||Im⟨ϕi|A0|ϕj⟩⟨ϕj|B0|ϕi⟩|

}2

.

By (3.9) and Schwarz inequality,

αβ|Tr[ρ[A,B]]|2
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≤ 4αβ

{∑
i<j

|λi − λj||Im⟨ϕi|A0|ϕj⟩⟨ϕj|B0|ϕi⟩|

}2

=
1

4

{∑
i<j

4
√
αβ|λi − λj||Im⟨ϕi|A0|ϕj⟩⟨ϕj|B0|ϕi⟩|

}2

≤ 1

4

{∑
i<j

4
√
αβ|λi − λj||⟨ϕi|A0|ϕj⟩||⟨ϕj|B0|ϕi⟩|

}2

≤ 1

4

{∑
i<j

{K2 − L2}1/2|⟨ϕi|A0|ϕj⟩||⟨ϕj|B0|ϕi⟩|

}2

≤ 1

2

∑
i<j

(K − L)|⟨ϕi|A0|ϕj⟩|2 ×
1

2

∑
i<j

(K + L)|⟨ϕi|B0|ϕj⟩|2,

where K = λi + λj + fα+β(λi, λj) and L = fα(λi, λj) + fβ(λi, λj). Then we have

Iρ,α,β(A)Jρ,α,β(B) ≥ αβ|Tr[ρ[A,B]]|2.

We also have
Iρ,α,β(B)Jρ,α,β(A) ≥ αβ|Tr[ρ[A,B]]|2.

Hence we have the final result (3.1). 2

Remark 3.1 We remark that (2.10) is derived by putting β = 1−α in (3.1). Then
Theorem 3.1 is a generalization of Theorem 2.1 given in [12]. Moreover, considering
the proof, if the dimension is finite and the density operator ρ is invertible, then (3.1)
holds even if α + β ≥ 1.

Remark 3.2 When α, β ≥ 0 and 1
2
< α + β < 1, we can show an example which

Theorem 3.1 does not hold as follows; Let

ρ =

(
3
4

0
0 1

4

)
, A =

(
0 i
−i 0

)
, B =

(
0 1
1 0

)
, α =

1

2
, β =

1

4
.

Then we have
Uρ,α,β(A)Uρ,α,β(B) = 0.00448729,

αβ |Tr[ρ[A,B]]|2 = 0.125.
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