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Abstract

In the study on the ring and module theory, projective modules and injec-
tive modules are very important. A projective module can be characterized
from the homological situation, from which an injective module can be de-
fined as the dual.

In 1953, Eckmann-Schopf showed the existence theorem of an injective
hull: Any module is essentially embeded in an injective module. On the
other hand, in 1960, Bass introduced the projective cover of a module as the
dual of the injective hull. In general, projective covers do not always exist.
Thus, Bass treated the existence of projective covers, and he introduced a
(semi-)perfect ring as a ring for which every (finitely generated) module has
the projective cover. As a generalization of artinian rings, these rings are
important.

An injective module has a property that any its submodule is essentially
extended in a direct summand. The module with such a property is called
an extending module or a CS-module. As a dual of the property, a projective
supplemented module has a property that any its submodule is co-essentially
lifted to a direct summand. The module having this property is called a
lifting module. In the history of ring theory, extending and lifting modules
are introduced in papers of Utumi and Bass, respectively. Actually, the right
continuous ring R by Utumi is a von Neumann regular ring which is extending
as a right R-module. On the other hand, the perfect ring of Bass means a ring
for which every projective module is lifting. Injective modules are extending
modules, but in general projective modules are not lifting modules.

From the beginning of 1980, these modules were extensively studied by
Harada, Oshiro, Mohamed, Miiller, Smith, Wisbauer and other many ring
theorists.

After Utumi’s works, continuous rings were generalized to continuous

modules and quasi-continuous modules. As generalizations of these modules,



relative continuous modules and relative quasi-continuous modules were in-
troduced by Lépez-Permouth, Oshiro, and Rizvi, and recently, as duals, rel-
ative discrete modules and relative (quasi-)discrete modules were considered
by Keskin-Harmanci.

From 1958 to 1959, Matlis and Papp studied injective modules over right
noetherian rings and they showed the following result: A ring R is right
noetherian if and only if every injective R-module has an indecomposable
decomposition.

As an improved version of this result, in 1982, the following was shown
by Miiller-Rizvi: A ring R is right noetherian if and only if every continuous
R-module has an indecomposable decomposition.

Futhermore, in 1984, Okado showed the following result: A ring R is
right noetherian if and only if every extending R-module has an indecom-
posable decomposition. By the way, a problem of “ When is a direct sum of
injective (continuous, quasi-continuous, extending) modules injective (con-
tinuous, quasi-continuous, extending)? ” was studied by many researchers.
In addition, by Oshiro, projective modules over perfect (semiperfect) rings
was studied by using a lifting property.

In 1972, the result of [Projective modules over right perfect rings have
an indecomposable decomposition| was shown by Anderson-Fuller. Also,
the result of Projective modules over right perfect rings have the exchange
property ] was given by Yamagata, Harada-Ishii.

In spite of such situations, the following fundamental problems are un-
solved as the biggest problems now in this field.

Problem (1): Does any lifting module have an indecomposable
decomposition ?

Problem (2): Does any lifting module have the (finite) internal
exchange property 7

Problem (3): Which ring R has the property that every lifting
R-module has an indecomposable decomposition 7

Problem (4): When is a direct sum of lifting (CS-) modules

necessarily lifting (CS-) module ?
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In this paper, we treat the above problems.

In Chapter 1, we describe known results as preliminaries. In particular,
by using a lifting property, we give some characterizations of perfect rings and
semiperfect rings including artinian rings. We note that these are implicitly

due to Bass and are explicitly shown by Oshiro.

In Chapter 2, we study Problem (1), (3) for right perfect rings and
semiperfect rings. And we introduce “ dual relative ojectivity ” and give
a sufficient condition for lifting modules over right perfect rings to satisfy the

exchange property. This is a result for Problem (2).

In Chapter 3, we give a characterization for a direct sum of relative (quasi-
Jcontinuous modules to be relative (quasi-)continuous modules. This is a
result about Problem (4).
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Introduction

Rings are algebras that are abstract mathematical objects with the binary
operations of + and x, and modules mean vector spaces over rings. In
the study on the ring and module theory, projective modules and injective
modules are very important. A projective module is defined as a direct
summand of a free module. This module can be characterized from the
homological situation, from which an injective module can be defined as the
dual.

In 1953, Eckmann-Schopf([9]) showed the existence theorem of an injec-
tive hull: Any module is essentially embeded in an injective module. On the
other hand, in 1960, Bass({5]) introduced the projective cover of a module as
the dual of the injective hull. In general, projective covers do not always ex-
ist. Thus, Bass treated the existence of projective covers, and he introduced
a (semi-)perfect ring as a ring for which every (finitely generated) module
has the projective cover. As a generalization of artinian rings, these rings are
important.

An injective module has a property that any its submodule is essentially
extended in a direct summand. The module with such a property is called
an extending module or a CS-module. As a dual of the property, a projective
supplemented module has a property that any its submodule is co-essentially
lifted to a direct summand. The module having this property is called a
lifting module. In the history of ring theory, extending and lifting modules
are introduced in papers of Utumi([39]) and Bass([5]), respectively. Actually,
the right continuous ring R by Utumi is a von Neumann regular ring which
is extending as a right R-module. On the other hand, the perfect ring of
Bass means a ring for which every projective module is lifting. Injective
modules are extending modules, but in general projective modules are not
lifting modules.

From the beginning of 1980, these modules were extensively studied by
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Harada, Oshiro, Mohamed, Miiller, Smith, Wisbauer and other many ring
theorists. These situations are witnessed in the following books on this field.

1. M. Harada: Factor categories with applications to direct decomposition
of modules, Lect. Notes Pure Appl. Math. 88, Marcel Dekker, New York
(1983).

2. S.H. Mohamed and B.J. Miiller: Continuous and Discrete modules,
London Math. Soc. Lect. Notes 147, Cambrige Univ. Press, (1990).

3. N.V. Dung, N.V. Huynh, P.F. Smith and R. Wisbauer: FEztending
modules, Pitman Research Notes in Mathematics Series 313, Longman Group
Limited (1994).

4. J. Clark, C. Lomp, N. Vanaja and R. Wisbauer: Lifting modules,
Birkhauser Boston, Boston (2007).

After Utumi’s works, continuous rings were generalized to continuous
modules and quasi-continuous modules. As generalizations of these modules,
relative continuous modules and relative quasi-continuous modules were in-
troduced by Lépez-Permouth, Oshiro, and Rizvi([25]), and recently, as duals,
relative discrete modules and relative (quasi-)discrete modules were consid-
ered by Keskin-Harmanci ([21]).

For more details of backgrounds and results with regard to relative (quasi-
)continuous modules and relative (quasi-)discrete modules, we can refer to
the following papers:

(1) K. Oshiro: Continuous modules and quasi-continuous modules, Osaka,
J. Math. 20(1983), 681-694.

(2) S.R. Lépez-Permouth, K. Oshiro and S.T. Rizvi: On the relative
(quasi-)continuity of modules, Comm. Algebra 26(1998), 3497-3510.

(3) D. Keskin and A. Harmanci: A relative version of the lifting property
of modules, Algebra Colloquium 11(3)(2004), 361-370.

(4) N. Orhan and D. Keskin: Characterization of lifting modules in terms
of cojective modules and the class of B(M,X), Int. J. Math. 16(6)(2005),
647-660.

From 1958 to 1959, Matlis([27]) and Papp([38]) studied injective modules

over right noetherian rings and they showed the following result: A ring R



is right noetherian if and only if every injective R-module has an indecom-
posable decomposition.

As an improved version of this result, in 1982, the following was shown by
Miiller-Rizvi([30]): A ring R is right noetherian if and only if every continuous
R-module has an indecomposable decomposition.

Futhermore, in 1984, Okado([31]) showed the following result: A ring
R is right noetherian if and only if every extending R-module has an inde-
composable decomposition. By the way, a problem of “ When is a direct
sum of injective (continuous, quasi-continuous, extending) modules injec-
tive (continuous, quasi-continuous, extending)? ” was studied by many re-
searchers(see [8], [28]). In addition, by Oshiro([33]), projective modules over
perfect (semiperfect) rings was studied by using a lifting property.

In 1972, the result of [Projective modules over right perfect rings have
an indecomposable decomposition | was shown by Anderson-Fuller([1]). Also,
the result of Projective modules over right perfect rings have the exchange
property] was given by Yamagata([43]), Harada-Ishii([14]).

In spite of such situations, the following fundamental problems are un-
solved as the biggest problems now in this field.

Problem (1): Does any lifting module have an indecomposable
decomposition ?

Problem (2): Does any lifting module have the (finite) internal
exchange property ?

Problem (3): Which ring R has the property that every lifting
R-module has an indecomposable decomposition ?

Problem (4): When is a direct sum of lifting (CS-) modules

necessarily lifting (CS-) module ?

Now, this paper is a summary based on the following two papers concern-
ing these problems;

(1) Y. Kuratomi and C. Chang: Lifting modules over right perfect rings,
Communications in Algebra, to appear.

(2) C. Chang and K. Oshiro: Direct sums of relative (quasi-)continuous



modules, East-West J. of Mathematics 6(2)(2004), 125-130.

In Chapter 1, we describe known results as preliminaries. In particular,
by using a lifting property, we give some characterizations of perfect rings and
semiperfect rings including artinian rings. We note that these are implicitly
due to Bass and are explicitly shown by Oshiro([33], cf., [45]).

Theorem A. Let R be a ring. The following conditions are equivalent:
(1) R is semiperfect;
(2) Every finitely generated projective right R-module is lifting.

Theorem B. Let R be a ring. The following conditions are equivalent:
(1) R is right perfect;
(2) Every projective right R-module is lifting.

In Chapter 2, we study Problem (1), (3) for right perfect rings and
semiperfect rings. And we introduce “ dual relative ojectivity ” and give
a sufficient condition for lifting modules over right perfect rings to satisfy the
exchange property. This is a result for Problem (2). The following results

are shown:

Theorem C. Let R be a right perfect (semiperfect) ring and let M be a
(finitely generated) lifting module. Then M has an indecomposable decompo-

sition.

Theorem C is a dual of the result of Okado mentioned above. In addition,
it expands the result of [Projective modules over right perfect rings have an
indecomposable decomposition] due to Anderson-Fuller([1]). In Anderson-
Fuller([1]), they also showed that projective modules over semiperfect rings
have an indecomposable decomposition. Therefore, it is a problem whether
Theorem C holds or not on semiperfect rings. We remain this as an open
problem.

By the way, the converse of Theorem C does not true, that is, the condi-
tion “ every lifting R-module has an indecomposable decomposition.” does
not characterize R to be a right perfect ring. In fact, there is a non-right

perfect ring for which every lifting module is semisimple.



Theorem D. Let R be a right perfect ring and let M be a lifting module.
If M is dual M-ojective, then M has the exchange property.

The result of Projective modules over right perfect rings have the ex-
change property | was shown by Yamagata, Harada-Ishii as stated above. We
notice that Theorem D implies the above result of Yamagata, Harada-Ishii
as a corollary. However, there is a non-right perfect ring for which every pro-
jective module has the exchange property(see, Kutami-Oshiro([24])), that is,

the converse of the result of Yamagata and Harada-Ishii is not true.

In Chapter 3, we give a characterization for a direct sum of relative (quasi-
)continuous modules to be relative (quasi-)continuous modules. This is a
result about Problem (4).

Theorem E. Let {M;}ic1 be a family of R-modules. Then the following
are equivalent:
(1) P =3 ®;crM; is N-(quasi-)continuous;
(2) (a) Each M; is N-(quasi-)continuous.
(b) 3" ®jer—giyM; is As-injective, for anyi € I and any A; € A(N, M;);
(8) (a) Each M; is N-(quasi-)continuous.
(b) For any distinct i,j € I and A; € A(N,M;), M; is A;-injective.
(c) For any i € I and A; € A(N,M;), the condition (B) holds for
(Ai, 3 Bjer—(ipM;).
A sufficient condition for a direct sum of (quasi-)continuous modules to be
(quasi-)continuous modules was given by Mohamed-Miiller([28]). Theorem
E generalizes the above result of Mohamed-Miiller. As a dual of the result

mentioned above, relative (quasi-)discrete modules was recently studied by
Orhan-Keskin([32]).
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BLiI+. —. X OEEZFSTEFAREHEL LIARETHY .
BLIZTO ORI PVEROZETHD, BEUCMEOHRICEE R
ThV, FECBVVHEEZFoTMEEE LT, HEMEE L AFNHELD 5,
IR OMEEL, BE R P—REENC I OBIFRIZ D D,

1953 £, Eckmann-Schopf([9]) {2 &> T, EBEOMBEHIASINFE D PITH
BICHER SN D L0 ) BB (injective hull) OFFFEEEIN RSN, —77,
1960 4£. Bass([5]) i2 & 0. BABKORR & L THEHTE (projective cover)
NEEINT, BARKENEWELX, FETIEREDOBVEZRVT—F
BN EE D, BABRKITEICHEET 20, HEHBIIBAGKLERRVEIL
FHETHERROAR, £2TBass IIHEHBEERL, T XTOHFRE
MBS REWB LB OWRERR L, TN TOMERREHRBLFOZER
BB L, ThbHOBRIL, Rink CMERROFEICB WV TERERKE %I
TedgmEiRolz,

ASINEE (EE OO IMBILEFIE FIZ essential IZ extend S5 &
W) WE AR, ZOMEE R OMEE% extending MNEE, BOE CS-MEEL
WH, FOXxE LT, supplemented HEMEIX EEOHSIEIIEMR
FIT co-essential IZ lift S D] LWHHEERD, T OWEEZFFOMEEDL
lifting MBETH B, ZH5OWEITZNZRESMICIE Utumi([39]) & Bk
?® Bass DL TEREINTVD LA TIN, EBE, Utumi OAEERE R I3,
von Neumann regular ring ¢, 4 R-M#E L LT extending MEETHHBRD Z
L ThbD, —F, Bass DERERE 1L, T XTOHFEMEED lifting (TROR%Z
BT 5, —RIZ. B OARMNET extending MEETH D3, £ DI 72tk
BFE LT, EEOHEMEE lifting MEETH D Z LI L2V, 1980 4
DIEON S, TS ONEEX, Harada. Oshiro, Mohamed, Miiller, Smith,
Wisbauer %% < OBRBHIFEE I Lo THEBEIHZEIN TN D, TDORGLITK
DEPHBEEINTNDZ END XL 05 ;

1. M. Harada: Factor categories with applications to direct decomposition
of modules, Lect. Notes Pure Appl. Math. 88, Marcel Dekker, New York
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(1983).

2. S.H. Mohamed and B.J. Miiller: Continuous and Discrete modules,
London Math. Soc. Lect. Notes 147, Cambrige Univ. Press (1990).

3. N.V. Dung, N.V. Huynh, P.F. Smith and R. Wisbauer: Eztending
modules, Pitman Research Notes in Mathematics Series 313, Longman Group
Limited (1994).

4. J. Clark, C. Lomp, N. Vanaja and R. Wisbauer: Lifting modules,
Birkhauser Boston, Boston (2007).

Utumi OEFERITZE OBEFINEE, EEEMBE~E —RIESh 7, FiZ,
BT INRE & MEEEEINEE A BT LW BB S 2 AV T, FLBRERTINGE & i
enEE~ & — i b &7z ([25])). . Keskin-Harmanci([21)) iIC& - T, H
B (HE) EFUMBEEOIBRE & U CTEE (%) BEBUNBER BRI TV 5,

LR (%) EERTINEE & bhi (M) BERUINEEIC DWW TOE R, BRRIZOWVT
FRDOBIXEBRT DI LBTED,

(1) K. Oshiro: Continuous modules and quasi-continuous modules, Osaka
J. Math. 20(1983), 681-694.

(2) S.R. Lépez-Permouth, K. Oshiro and S.T. Rizvi: On the relative
(quasi- ) continuity of modules, Comm. Algebra 26(1998), 3497-3510.

(3) D. Keskin and A. Harmanci: A relative version of the lifting property
of modules, Algebra Colloquium 11(3)(2004), 361-370.

(4) N. Orhan and D. Keskin: Characterization of lifting modules in terms
of cojective modules and the class of B(M, X), Int. J. Math. 16(6)(2005),
647-660.

1958 &> B 1959 FEIT 23T T Matlis([27]), Papp([38]) 1Z &>T. % Noether
B EOARMBESHR I, ER—F 8D [TXTOARNMBEIIERR S
a0l T L TREOIT LN,

Z OFEROILE L LT, 1982 I Miiller-Rizvi([30])) I L W, HR—F —
RTHDHIL L, ITRTOEGMBEIERNSEEZRE D] ZLIXRETH
R EhT,

BT, 1984 I Okado([B1) I ko T, AR —F—BWThHDHZ L &, ¥
~_T O extending MEIXEBENSEE RO ZERFAMETHD LWV O RERR
mENT



X, “ ONFHINEE GEFUINEE, ¥EEGNEE, CSINEE) OEFIIV-O ASIEE
GEfTHNEE, HEEGTINEE, CSINEE) 12722222 P2 WO RIEICBAL TH, %<
DHFFEEIZ XL VTS iz ([8], (28] B ).

1972 4Ei2iZ. Anderson-Fuller([1]) iz X 0, [E5EER EOSEMBEIIEEL
¥R EED) LV IORRBRINTWVWS, £ LT, Yamagata([43]). Harada-
Ishii([14]) 12 &> C. THE5ELR EOKEIMBEL exchange property Z #7279
EVORERBEZDLN TN D,

ZOXHMRIOT T, BIE. ZOFHTRORESRFREIT. ROER
B R R T & ThH D,

Problem (1): lifting N#FFXEEHSEERHRONH?

Problem (2): lifting M# (X (finite) internal exchange property &
=g

Problem (3): 3 RTO lifting MBHAEREN SR EF ORITFAN?

Problem (4): lifting(CS-) MEDEMILLD lifting(CS-) MBI
5h7?

BT, TNOOMBEICETARD ZOD@mXEL LI LTELE DT
HDThHD ;
(1) Y. Kuratomi and C. Chang: Lifting modules over right perfect rings,
Communications in Algebra, to appear.
(2) C. Chang and K. Oshiro: Direct sums of relative (quasi-)continuous
modules, East-West J. of Mathematics 6(2)(2004), 125-130.

FEONE X LLTITE~D,

w-EmT, BEE L THERORBREENS, B, Artin RE2E7E
BR RSB lifting 2 AVWEHE ST 2525, 2 ORERITERR
Wi BB D Bass I L B b D TH DB, Oshiro & &> THBERE TRD X 5
WZh x b7z, ([33], cf., [45])

Theorem A. R¥BEL T3, ZnLEx, RIEIFETHS :
(1) RIZBEZEERTH D ;

(2) HIRAERSEA R-MEE lifting MBETH D,

Theorem B. RZH ¢35, ZDLix, RIIFMETHD :
(1) RIEZERTHD ;



(2) TRTOFEHR R-MBEI lifting IMETH D,

% _E T, projective cover DIFENRIETE 5 (Artin REETe) 582
Bk OESE2BRIZ%T L T _EFE Problem (1), (3) (B89 5% % (Theorem C) &
B, FiZ, “dual relative ojective 1 ” #EA L, FH5ERE O lifting il
BEMS exchange property & Wi 729 72 D+53 % (Theorem D) & 525, Z
M iE EFE Problem (2) 2B T 5RRTH 2,

Theorem C. R #A525 (¥5ELR) & L. M & (FMRARK)lifting i
L343, ZOLE, MITEBSBEERED,

Theorem C 1%, ZIZiR <7z Okado RO TH Y. Z OFERIT.
Anderson-Fuller([1)) {2 & 2 H%2R EONEMBEIIEEN 3L &
VWD FEROYEIRIZ AR o TV B, Anderson-Fuller([1]) Tik, ¥ZEELRE LOHE
IEILEBE DR AR O Z L BRBRRENTWD, ZOBRN D RIVE, The-
orem CIIHEFRELBR LTV 2N E I 0DBMEL 250, BED L Z AR
’TH D,

LIAT, “HARERTHD I L L, 3T lifting MBHITEB AR &
oz L LIIEME TRV, 7 EBE, lifting MBS BB EL FOLER2R
TRVWERBFETHZ BMbh T3, (Example 2.2.6.)

Theorem D. R #HERRE L, M % lifting MEEE 5, ZDL x,
M %% dual M-ojective 72 H1X, M I exchange property #7279,

Yamagata, Harada-Ishii IZ X > T, [HE2R EOFEMELT exchange
property 7291 EWVWOHOBERNBRENTWS, Theorem D ZfE 21T, k
125 ~27~ Yamagata, Harada-Ishii OFERPEEICFERATE %, LML, &
B INEED exchange property 2T/ TAHAZEER CRVWRBPFET D L HH
LRTEH., ZOFIIE Kutami-Oshiro([24]) IZBEMAM EN TS, TDOZ i
Yamagata, Harada-Ishii DFERDOEREIL L RN & R LTWD, '

= ClX, _EFE Problem(4) {2 BEE U C Hhlspe iNAE (LLEAEEHEINEF)
DEFN HLBGEGE AR (HLEEEFNEE) ISR DT DR SIT 252 5,

Theorem E. {M;}ic; & NZM#EE L, P=) @i M; £ T2D, TDL
&, RIIRETH S :

(1) P =Y ®icrM; 13 N-(quasi-)continuous TH 5
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(2) (i) & M; # N-(quasi-)continuous T&H %
(ii) Y @®jer—i3 M; 25 Ai-injective TH D (7L, i € I, A; € A(N, My));
(3) (i) & M; »* N-(quasi-)continuous T&H 5
(i) ME22 0,5 € 1 & A; € AN, M;) \2xt LT M; 78 A-injective
b5
(iil) & i € I, A; € AN, M) &3 Bjer_pM; 123 LT (B) 2889

ATASH

1990 £, Mohamed-Miiller([28]) {Z X ¥, EEINEE (MEEFINEE) OEFID
ESTINEE (MEEGEMNEE) TH DO+ o&RMHAE X b, Theorem E I,
Mohamed-Miiller DfER%EZ —#LL7cbDTH D, Hii. LFLOREROICH
#y735ER L LT Orhan-Keskin([32]) 12 & ¥, HBSEGMER (HEAEEFINEE)
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Chapter 1

Preliminaries

In this chapter, we state notations, definitions and known facts for which
we can refer Anderson-Fuller [2], Mohamed-Miiller [32], Dung-Huynh-Smith-
Wisbauer [12] and Baba-Oshiro [5]. While proofs are often provided, the
reader can refer standard texts for the background details for the more com-

mon concepts.

Throughout this paper, all rings R considered are associative rings with

identity and all R-modules are unital.

81.1 Notations

The notation Mg is used to stress that M is a right R-module. Let M
be a right R-module. The notation N < M means that N is a submodule of
M, and the notation N <4 M means that N is a direct summand of M.

For a module M and an index set A, we denote by M4 the direct sum
of A copies of M.

Let M be a right R-module and K a submodule of M. K is called an
essential submodule of M (or M is an essential extension of K) if KNL # 0
for any non-zero submodule L of M. In this case we denote K <, M. Dually,
a submodule K of M is called a small submodule (or superfluous submodule)
of M, abbreviated K < M, in the case when, for every submodule L < M,
K+ L=M implies L =M.

For an element m € M, we denote by (0 : m), the right annihilator of
m which is the set {r € R | mr = 0}. By Z(M), we denote the singular
submodule of M, ie., Z(M) ={m € M | (0: m) <. Rg}. For R-modules
M and N, Hompg(M, N) means the set of all R-homomorphisms from M to
N. In particular, we put Homg (M, M) = Endg(M).
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§1.2 Closed submodules and extending modules

Proposition 1.1 ([17, Proposition 1.1]). (i) Let M be a module with
submodules K < L < M. Then K <. M if and only if K <, L and L <, M.

(it) Let I be any set and let {M; | i € I} be a family of submodules of M
with M = @;crM;. If N; <. M; for each i € I, then ®;c1N; <. M.

Proposition 1.2 (cf.,, [2, Proposition 5.17]). Let M be a module with
submodules K < L < M.

(i) If LK M, then K < M.

(i) If L< M and f : M — N is a homomorphism, then f(L) < N.

(iii) F K < M and L <g M, then K < L.

Proof. (i) Assume M = K+ X, X < M. Since K < L, M = L+ X, and
hence, by assumption, M = X. So K <« M. (ii) Assume that f(L)+N' = N,
N <N.Put N ={me M| f(m) € N} <M. Then N" + L = M. Since
L «<M,N'" =M. Since L M = N", f(L) < N'. Hence N' = N.
Therefore f(L) <« N. (iii) Suppose L = K +Y,Y < L. Since L <g M,
M=L®3L'=K+Y+L' Since K < M, M =Y + L'. By the modular
law, L=Y. Hence K < L. R

Proposition 1.3 ([2, Proposition 5.20]). Suppose that K; < M; < M,
K2 < M2 < M, anszMleBMg. Then
K, ® Ky < My ® M, if and only if Ky < M, and Ky < M.

Proof. (=) Assume that K; & Ky < M; & M,. Let p; : M — M, be a
projection, ¢ = 1,2. By Proposition 1.2(ii), p;(K1 & K») = K; < M;. (<)
Suppose that K; < M; and K, < M,. Consider an injection f; : M; — M,
i = 1,2. By Proposition 1.2(ii), fi(K;) = K; < M. Suppose M = L+ (K, ®
Kj), L < M. Since K; € M;, M = L. Therefore K; @ K, < M, ® M,. &

A submodule N of M is said to be closed in M (or a closed submodule
of M), if N has no proper essential extentions in M, that is, N <, N' in M
implies N = N'.
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Lemma 1.4 ([16, Theorem 2.6]). Let M be a module and K < L be
submodules of M. If K is closed in L and L is closed in M, then K 1is closed
n M.

For NN < N < M, N is called a closure of N in M if N is closed in M
and N' <, N in M.

A module M is said to be extending (or CS) if, for any submodule A of
M, there exists a direct summand A* of M such that A <, A* in M.

Lemma 1.5 (cf., [39, Proposition 1.4]). Any direct summand of an

extending module M is extending.

Proof. Let M = M; & M, and let A; be a submodule of M;. Since M
is extending, there exists a direct summand A] of M such that 4; <, A}
in M. Let m; : M = M, & My — M; be a projection, ¢ = 1,2. Then
A; < m(A7). Moreover, we can see from A; <. A} and A7 N M, = 0 that
Ay <, m1(A}); whence A; = m;(A}). This implies that A} = A; @ 12(A}) and
hence mo(A}) = 0 and A} = m(A]) = A;. Thus 4; <g M,. R

By Lemma 1.5, the following holds:

Lemma 1.6 ([32, Proposition 2.4]). A module M is extending if and

only if any closed submodule of M is a direct summand.
Proof. Obvious. B

A module M is said to have the (finite) exchange property if, for any
(finite) index set I, whenever M & N = @;c;A; for modules N and A;,
then M @ N = M & (®;e;B;) for some submodules B; < A;. A module
M has the (finite) internal ezchange property if, for any (finite) direct sum
decomposition M = @®;c;M; and any direct summand X of M, there exist
submodules M; < M; such that M = X @ (®ier M;).

Let {M; | i € I} be a family of modules and let M = @;c;M;. Then M

is said to be an extending module for the decomposition M = @;c; M; if, for
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any submodule X of M, there exist a direct summand X* of M and direct
summands M] of M; (i € I) such that M = X* @ (®ierM]) and X <, X*,
that is, M is an extending module and satisfies the internal exchange property

in the direct decomposition M = &;c; M;.

Lemma 1.7 ([42, Lemma 2.1]). Let P be a module with a decomposition
P = ®;c1M; such that each M; is extending. We consider the indez set I as
a well ordered set: I = {1,2,--+ ,w,w+1, ---}, and let X be a submodule
of M. Then there exist submodules T(i) <, T(i)* <g M;, decompositions
M; = T(#)* ® N; and a submodule ®;c; X (1) <. X for which the following
properties hold:

(1) X(1) =T(1) <. T(1)".

(2) X (k) < T(k) ® (©ick Vi) for allk € 1.

(8) o(X(k)) = T(k) <. T(k)*, X(k) =~ o(X(k)) (byo |xx)) forallk € I,
where o is the projection: P = @;c1T(1)* @ (Dic1 Vi) = ®icrT (3)*.

(4) X ~o(X) (byolx)

A module E is injective if for every R-module A, any monomorphism g :
X — A and any homomorphism f: X — FE, there exists a homomorphism h
: A — FE such that hg = f.

Let M and N be R-modules. M is called to be N-injective if, for any
monomorphism ¢ : X — N and homomorphism f: X — M, there exists a
homomorphism h : N — M such that hg = f. A module M is quasi-injective

(or self-injective) if M is M-injective.

Proposition 1.8 ([2, pp.204-206]). For a right R-module E, the follow-
ing statements are equivalent:

(i) E is injective;

(ii) Every homomorphism of a right ideal I of R to E can be extended to
a homomorphism of R to E;

(iii) For any module M, every monomorphism 0 — E — M splits;

(iv) E has no proper essential extensions.

For a given right R-module M, there exists an injective module E(M)
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containing M as an essential submodule. Here, F(M) is called the injective

hull of M. This existence theory is known as the Eckmann-Schopf theorem

([14]).

Proposition 1.9 ([32, Proposition 2.1]). Any (quasi-)injective module
M is extending with the following condition:
(Cs) If a submodule X of M is isomorphic to a direct summand of M,

then X s a direct summand of M.

Proposition 1.10 ([32, Proposition 2.2]). If a module M has (Cs), then
it satisfies the following condition:

(Cs) If My and M,y are direct summand of M such that My N My = 0,
then My, & M,y is a direct summand of M.

A module M is called continuous if it is extending with (Cs). M is called
quasi-continuous if it is extending with (C3). It is well-known from [32] that

the following implications hold:

“Injective = quasi-injective = continuous = quasi-continuous =

extending”.
In general, the converse is not true.

Example 1.11. (1) A Z-module Z/2Z is quasi-injective, but not injec-
tive.

(2) Let F be a field with a proper subfield K. Put Q =II2, F; (F; = F)
and R = {(f;) € Q| fm € K, m > nfor some n € N}. Then Ry, is continuous,
but not quasi-injective.

(3) Zgz is quasi-continuous but not continuous.

(4) A Z-module Z & Z is extending but not quasi-continuous.
Now, we introduce the generalized relative injectivity as follows.

Let A and B be R-modules. A is said to be B-ojective (or generalized B-
injective) if, for any submodule X < B and any homomorphism f : X — A,
there exist decompositions A = A; & Ay, B = B, & B>, a homomorphism
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hi: By — A; and an monomorphism hy : Ay — By, and for = b; + by and
f(.'IJ) = a; + ag one has a; = hl(bl) and by = hz(az). (Cf., [18])

A non-zero module M is said to be uniform if every non-zero submodule is
essential in M. We see that any uniform module is indecomposable extending

(quasi-continuous).

Remark. Let A and B be indecomposable modules. Then A is B-
ojective if and only if, for any homomorphism f: X — A and any monomor-
phism g : X — B, (i) if Ker f # 0, then f can be extended to B — A.
(ii) if Ker f = 0, then either f is extended to B — A or there exists an
monomorphism h : A — B such that hf = g. Note that in the case A is a

uniform module, A is B-ojective if and only if A is almost B-injective (cf.,

[4)-

Proposition 1.12 ([18, Proposition 1.4], [34, Proposition 8]). Let A; <g
A and By <g B. Suppose B is A-ojective. Then B, is A;-ojective.

For an R-module M, the (Jacobson) radical of M is defined as the in-
tersection of all maximal submodules of M, and denoted by Rad(M), i.e.,
Rad(M) = N{K < M | K is a maximal submodule of M}. If M has no
maximal submodule, we define Rad(M) = M.

For a ring R, we say that Rad(Rg)(= Rad(gR)) is the Jacobson radical
of R and denote it by J(R).

Proposition 1.13 ([2, Proposition 9.13]). Let M be a right R-module.
Then Rad(M) =X{L< M | L< M}.

For an R-module M, the socle of M is defined as the sum of all simple
submodules of M and is denoted by Soc(M), i.e., Soc(M) =2{K <M | K

is a simple submodule of M}.

A dual version of Proposition 1.13 is now given by the following charac-

terization of the socle.

Proposition 1.14 ([2, Proposition 9.7]). Let M be a right R-module.

19



Then Soc(M)=nN{L <M | L <. M}.

Proposition 1.15 (cf., [2, Proposition 5.2]). Let 0 — A; 5 B S
Ay — 0 be a short ezact sequence of R-homomorphism. Then the following
conditions are equivalent:

(i) There is an R-homomorphism k : B — Ay with kf = 14,;

(ii) There is an R-homomorphism h: Ay — B with gh = 14,;

(iii) Imf is a direct summand of B;

(iv) Kerg is a direct summand of B.

Proof. (i) = (iii) Let b € B. Then b = (b — fk(b)) + fk(b). Since
k(b— fk(b)) = k(b) — kfk(b) =0, b— fk(b) € Ker k. Thus b = (b— fk(b)) +
fk(b) € Ker k+1Im f. Hence B C Ker k +Im f. Therefore B = Ker k +Im
f. It is sufficient to show that Ker kNIm f = 0. Let b = f(a;) € Ker kNIm
f, where a; € A;. Then 0= k(b) = kf(a1) = a;. Thusb = f(a;) = f(0) =0.
Hence Im f @ Ker k = B. (ili) = (i) AsIm f <¢ B, B =Im f & 3C.
Thus b = f(a1) + ¢, where a; € Ay, ¢ € C. Define a map k : B — A; by
k(f(a1) + ¢) = a;. Then k is an R-homomorphism. Moreover, kf = 14,.
(i) = (iv) The proof of this part is similar to one of the part (i) = (iii).
(iv) = (ii) Since Ker g <g B, there exists a direct summand K <g B
such that B = Ker ¢ ® K. Since g | : K — Aj is an isomorphism, we put
(g9 |k)"! = h. Then gh = 14,. (iii) <= (iv) This is trivial. B

Proposition 1.16 ({2, Proposition 7.1]). For the R-module Rg, there
s a decomposition Rp = A1 ® Ay if and only if there exists an idempotent
e € R with A; = eR and Ay = (1 — e)R.

Proposition 1.17 ([2, Theorem 2.8]). Let M be a finitely generated R-
module and let K be a proper submodule of M. Then there erists a maximal
submodule L of M such that K C L.

This can be easily shown using Zorn’s Lemma.

8§1.3 Co-closed submodules and lifting modules
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Let Ny < Ny < M. Nj is a co-essential submodule of N5 in M, abbrevi-
ated N; <. N, in M, if the kernel of the canonical map M/N; — M/Ny — 0
is small in M/Np, or equivalently, if M = N, + X with N; < X implies
M=X.

Proposition 1.18. (i) Let A, B and C be submodules of M with A <
B<L<C. Then A< ,BinM and B<.C in M if and only if A <.C in M.

(i1)) Let A< B< M. Then A<.B in M if and only if M = A+ K for
any submodule K of M with M = B+ K.

(i11) Let A< C <M andlet M=A+B. fCNB <K M, then A<.C
in M. The converse is true if AN B = 0.

Proof. (i) follows from [38, Proposition 1.1] and (ii) is clear.

(ili) (=) Let M =C+ K. Since C=A+ (CNB)and CNB < M,
M=A+(CnNB)+K=A+K. Hence A <, C in M by (ii). (<) Assume
ANB=0and A<, C. Then C =A@ (BNC). Put B=(BNC)+ K.
Then M = A®@B=A+(BNK)+K=C+K = A+ K. Thus K = B.
Therefore (BNC) < M.

A submodule N of M is said to be co-closed in M (or a co-closed submod-
ule of M), if N has no proper co-essential submodule in M. ie., N' <, N in
M implies N = N'. Tt is easy to see that any direct summand of a module
M is co-closed in M.

Lemma 1.19. Let M be a module and K < L be submodules of M.
Then the following hold:

(i) If K is co-closed in L and L is co-closed in M, then K is co-closed in
M.

(it) If K < M and L is co-closed in M, K < L.

Proof. (i) follows from [12, Section 5] and [16, Lemma 2.6]. .(ii) follows
from [16, Lemma 2.5]. @

For N < N < M, N'is called a co-closure of N in M if N’ is a co-closed
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submodule of M with N’ <, N in M. Any submodule of a module has a
closure, however, co-closure does not exist in general, for example, 2Z does

not have co-closure in Zgz.

A module M is said to be lifting if, for any submodule A, there exists a
direct summand A* of M such that A* <, Ain M.

Lemma 1.20 (cf., [32] and [38]). Any direct summand of a lifting module
M is lifting.

Proof. Let N <g M. Assume X < N. Then there is a decomposition
M = M; & M, such that M; < X and X N My <« M,. From M, C N,
N = M; & (M, N N). Moreover, X N (M N N) = X N My, < M,. Since
M; N N <g M, by Proposition 1.2(iii), X N (M2 N N) < My N N. Hence N

is a lifting module. W

Let {M; | i € I} be a family of modules and let M = ®;c;M;. Then
M is said to be a lifting module for the decomposition M = @;c; M; if, for
any submodule X of M, there exist a direct summand X* of M and direct
summands M] of M; (i € I) such that M = X* & (®ic/M]) and X* <. X,
that is, M is a lifting module and satisfies the internal exchange property in

the direct decomposition M = @;c; M;.

A module F is free if F' has a free basis {b;}ic;, namely, each b;Rg ~ Rpg
canonically and every element f € F can be expressed uniquely in the form
f = X;erbir; where r; € R and all but a finite number of the r; are 0.

A module P is projective if given any epimorphism f: A — B and any
homomorphism g : P — B, there exists a homomorphism A : P — A such
that the diagram

commutes.

Let M and N be R-modules. M is called to be N-projective if, for any
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epimorphism f: N — X and homomorphism g : M — X, there exists a
homomorphism h : M — N such that fh = g. A module M is quasi-

projective (or self-projective) if M is M-projective.

Lemma 1.21 ([2, Corollary 16.11]). Let {Pa}aca be a set of R-modules.

Then ®qca Py is projective if and only if each P, is projective.
We frequently use the following fact.

Proposition 1.22 (cf.,, [32, pp.68-69]). (i) Let A and B be modules. If
A is B-projective, then A is C-projective for any submodule C of B.

(i1) Let A be a module and let {B; | i=1,--- ,n} be a family of modules.
Then A is &7 _, B;-projective if and only if A is B;-projective, (i =1,--- ,n).

(i%i) Let I be any set and let {A; | i € I} be a family of modules. Then
@icrA; is B-projective if and only if A; is B-projective for all i € 1.

Proposition 1.23 ([2, Proposition 17.2]). For an R-module P, the
following statements are equivalent:

(i) P is projective;

(i1) Every epimorphism M — P — 0 splits;

(i1i) P is isomorphic to a direct summand of a free R-module.

Proof. (i) = (ii) Suppose that f: M — P is an epimorphism. If P
is projective, then there is a homomorphism g such that fg = 1p, so the
epimorphism f splits.

(i) = (iii) This follows from the fact that every module is an epimorphic
image of a free module.

(iii) = (i) Every free module is projective. B
The following two lemmas are due to Oshiro [38].

Lemma 1.24 (cf., [46, 41.14]). Any projective module satisfies the fol-
lowing condition:

(D) If My and My are direct summands of M such that My N My < M
and M = My + My, then M = M, & M,.
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Lemma 1.25 ([38, Theorem 3.5]). If M is a lifting module with the

condition (D), then M can be expressed as a direct sum of hollow modules.

Let M and P be R-modules. An epimorphism g : P — M is called
superfluous if Ker g < M. A pair (P, g) is called a projective cover of the
module M if P is projective and there exists a superfluous epimorphism g :
P — M. In the case when we simply say that g : P — M is a projective
cover. This notion is dual to that of an injective hull. Projective covers do
not exist in general. For example, Z-module Z/2Z does not have a projective

cover.

Proposition 1.26 ([32, Proposition 4.38]). Any quasi-projective module
satisfies the following condition:
(Do) If X < M such that M /X is isomorphic to a direct summand of M,

then X is a direct summand of M.

Proposition 1.27 ([32, Lemma 4.6]). If a module M has (D,), then it
satisfies the following condition:

(Ds3) If My and M, are direct summands of M such that M = M, + Ms,
then My N My is a direct summand of M.

A module M is called discrete (or semiperfect) if it is lifting with (D).
A module M is called quasi-discrete (or quasi-semiperfect) if it is lifting with

(Dj3). 1t is well-known from [32] that the following implications hold:

“projective = quasi-projective # discrete = quasi-discrete = lift-

ing”.

The converse implications are not true in general.

Example 1.28. (1) A Z-module Z/2Z is quasi-projective, but not pro-
jective.

(2) Zyz is quasi-projective but not discrete.

(3) Let R be a discrete variation ring with a prime ideal P. Then an
injective hull E(R/P) of R/P is quasi-discrete but not discrete.
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(4) Put R =Z/4Z and Qg = R® R. Then a submodule M = (1,2)R&®
(1,0)R of Qg is lifting but not quasi-discrete.

Let M be a right R-module and N a submodule of M. We say N is a
fully invariant submodule of M if N is a right R-, left End(Mg)-bimodule of
M.

Theorem 1.29 ([5, Theorem 1.1.24}). For an R-module M, the following
hold:

(1) If M is a quasi-injective module, then M is a fully invariant submodule
of E(M).

(2) If M is a quasi-injective module, then any direct decomposition E(M) =
Ei1®---®FE, induces M=(MNE)®---d(MNE,).

(8) If M is a quasi-projective module with a projective cover ¢ : P — M,
Ker ¢ is a fully invariant submodule of P; whence any endomorphism of P
induces an endomorphism of M.

(4) If M is a quasi-projective module with a projective cover ¢ : P — M,
then any direct decomposition P =P, @ ---® P, induces M = p(P))®--- @

o(Pp).

We note that (1), (3) can be easily verified, and (2), (4) can be proved by
(1), (3), respectively.

Now we introduce the generalized relative projectivity as follows.

Let A and B be modules. A is said to be dual B-ojective (or generalized
B-projective) if, for any homomorphism f: A — X and any epimorphism
g : B — X, there exist decompositions A = A; @ A3, B = B; @ By, a
homomorphism h; : A; — B; and an epimorphism h, : By — Aj such that
ghy = f |4, and fhe = g |, (cf., [33]).

A non-zero module M is said to be hollow if every proper submodule is
small in M. We see that any hollow module is indecomposable lifting (quasi-

discrete).
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Remark. Let A and B be indecomposable modules. Then A is dual
B-ojective if and only if, for any homomorphism f: A —+ X and any epimor-
phism g : B — X, (i) if Im f # X, then f is liftable to A — B. (ii) if Im
f = X, then either f is liftable to A — B or there exists an epimorphism A
: B — A such that fh = g. Note that in the case A is a hollow module, A is
dual B-ojective if and only if A is almost B-projective (cf., [4]).

Proposition 1.30. Suppose A is B-projective. Then A is dual B-

ojective.
Proof. Obvious. B

Proposition 1.31 (cf., [33]). Let C be a direct summand of B. Suppose
A is dual B-ojective. Then A is dual C-ojective.

Proposition 1.32 ([28, Proposition 2.2]). Let A be a module with the
finite internal exchange property and let A* be a direct summand of A.

Suppose A is dual B-ojective. A* is dual B-ojective.

A right R-module M is said to be semisimple if M can be expressed as
a direct sum of simple submodules. In particular, a ring R is said to be

semisimple if R is semisimple, or equivalently, pR is semisimple.

Proposition 1.33 ([2, Theorem 9.6]). For an R-module M the following
statements are equivalent:

(i) M is semisimple;

(ii) Every submodule of M is a direct summand;

(111) Every submodule of M is semisimple;

(iv) Every homomorphic image of M is semisimple.

Proposition 1.34. Let R be a ring such that every mazimal right ideal

of R is a direct summand of Rg. Then R is semisimple.

Proof. Assume that Soc(Rgr) < Rg. By Proposition 1.17, there is a
maximal submodule I such that Soc(Rg) C Ir. By hypothesis, there exists
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a decomposition R = I @ X. Then, since X is a simple submodule of Rp,
we see X C Soc(Rpg) C I, which is a contradiction. Hence R = Soc(Rg). B

Proposition 1.35 ([2, Proposition 17.10]). Let R be a ring with J =
J(R) and P a non-zero projective right R-module. Then Rad(P) = PJ.

Proof. Proposition 1.23 allows us to assume that P is a direct summand of
a free module P @ P' = F = R, Then Rad(P) @ Rad(P') = Rad(RW) =
(Rad(R))W = JA) = RAJ = PJ @ P'J. So, since PJ < Rad(P) and
P'J < Rad(P'), we must have Rad(P) =PJ. R

Proposition 1.36 ([24, Lemma 3]). For a projective R-module P(%# 0)
over a ring R, we have PJ # P, where J = J(R). That is, every non-zero

projective module contains a mazimal submodule.

Proof. Let F be a free module such that FF = P& @ and let x € P.
Select a basis {u;} of F such that the expression of z in terms of that basis
has the smallest possible number of non-zero entries. Assume that PJ = P,
ie, PC FJ,z =X ury,ry # 0,1 € Ry uy =pi+¢;, pi € P, g € Q;
pi = X7 u;8i5, 8 € R,1=1,2,--- ,n. Then we have z = X,u;r; = Xipir; =
¥ juisijri. Thus we have ry = X2 sury, ie, (1 —su)r = Xl ,sur;. By
assumption, s;; € J, whence 1—sy; is invertible in R. Put s = 1/(1—s;1), and
we have r; = X% ,s8;17;. Therefore x = X ,(u; + uy8;15)r;. This is a shorter
expression for z, a contradiction if z # 0, since {u1,ug + U15218,- -+ ,Up +

U151, - } is a free basis. W

§1.4 Characterizations of semiperfect and perfect
rings

A ring R is called semiperfect (resp. right perfect) if every finitely gener-
ated right R-module (resp. every right R-module) has a projective cover.

Let M = M; & M, and let ¢ : M; — M, be an R-homomorphism. Put
(My; % M,) = {m; — ¢(m1) | m; € My}. Then this is a submodule of M
which is called the graph with respect to ¢. Note that M = M; ®& My =
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(My; 5 M) © M,.

Proposition 1.37. Py,---, P, are projective lifting R-modules if and
only if P= P, & --- @ P, is projective lifting.

Proof. (<=) This part is a direct consequence of Lemma 1.20 and 1.21.
(=) It is enough to show that P = P; @ P, is lifting. Assume that P, and
P, are projective lifting R-modules. Let X < P. For (X + P;) N Py < P,
since P, is lifting, there exists a decomposition P, = P; @ P3* such that
P* < (X+P)NPand [(X + P) NP NP; <« Py, This implies that
P, = [(X + P,) N Py] + Pj such that (X + P;) N Py < P;. Hence P =
X+P+P=X+P+[(X+P)NPB|+ Py =X+ P + P;. Similarly,
for (X + P;) N P, < Py, there is a decomposition P, = P/* @ Py such that
P < (X+P)NP and [(X + Py)N PN P < Pf. This implies that
P, = [(X + P5) N P] + Py such that (X + Py) N Py < P}. Therefore
P=X+P+P=X+P+[(X+R)NP|+P;=X+(PfoPF).

Furthermore, (Pf @ P;)NX < [PFN(X +P)|®[PsnN(X+F)] < [Pfn
(X+Py)|®[Pyn(X +Py)]. Since (X+P)NP; <« Py and (X+P5)NP; < Pf,
by Proposition 1.2(i) and 1.3, (P ® Ps)NX < Py @ Py.

On the other hand, P= X+ (Pf @ Pf) =P* @ Py*® Py @ P;.

Consider the canonical epimorphism 7 : P — P/X — 0. Then 7

Prop;
Pr*@®P; ¢ Pl**EB.Pz** — P/X

is a homomorphism. By Lemma 1.21, Pj* @& P;* is projective, hence there

P} & Py — P/X — 0is an epimorphism and 7

exists a homomorphism ¢ : Pf* @ Py* — Py @ Py such that the diagram

Pik* @Pz**

3y

s
o l lpirors-

R/X —0

Propr;

Tptery
commutes.
For any y — ¢(y) € (P}* ® P> 5 Py @ Py), n(y — ¢(y)) = (v |preps

)W) — (7 |pror;) (0(y) = (7 |prer;)(¥) — (7 |ppeory=)(y) = 0. Hence (P" &
P4 ProP)eKerm=X. Thus P=(P*OP* 5 ProP;)o P o P;.
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Lemma 1.38. Let e be an idempotent of a ring R. For any s € eRe,
s € J(eRe) = eJe if and only if sR < eR.

Proof. (=) Let s € J(eRe) = eJe. Then sR C eJ(R), so sR < R.
Therefore sR < eR. (<=) Assume that sR < eR. Then sR < R and hence
sR C J(R). Hence esRe C eJ(R)e. Therefore s = ese € eJ(R)e. B

A ring R is said to be local in case R has a unique maximal left (or right)
ideal.

For a subset S of aring R and a € R, the left multiplication map : S — aS
defined by s — as is denoted by (a). (Similarly, the right multiplication
map : S — Sa defined by s — sa is denoted by (a)r.)

Proposition 1.39 ([2, Corollary 17.20]). For an idempotent e of a ring
R, the following conditions are equivalent:

(1) eRe is a local ring;

(i) J(R)e is the unique mazimal submodule of pRe;

(iii) eJ(R) is the unique mazimal submodule of eRp.

Proof. We may show only (i) <= (iii).

(i) = (iii) Let K be a proper submodule of eRg and let eR = K + L.
Then eR/K ~ L/(LN K). Consider the canonical epimorphism f: L —
L/(LNK). Since eRp is projective, there exists a homomorphism p : eR — L
such that Im f + Ker f = L. Since p € End(eRg), p is realized by a left
multiplication (s); for some s € eRe. Since Ker f # L, Im p is not small
in L. By Lemma 1.38, s ¢ J(eRe) = eJ(R)e. Since eRe is a local ring, s is
unit. So Im p = L = eR, and hence K < eR, and K C eJ(R).

(iii) = (i) Since eRe ~ Hompg(eR, eR), it suffices to show that if f,g €
Hompg(eR, eR) are a non-unit, then f + g is a non-unit. Let f: eR — eR be
an epimorphism. Then f is an isomorphism. Thus f is not an epimorphism
if and only if f is a non-unit. Moreover, f is a non-unit if and only if f(eR) C
eJ(R). Then (f+g)(eR) = f(eR)+g(eR) C eJ(R)+eJ(R) C eJ(R). Hence
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f + g is a non-unit. W

An idempotent e of R is called primitive if eRg is an indecomposable
module, or equivalently, if g Re is an indecomposable module. If {ej,--- ,e,}
is a set of orthogonal primitive idempotents of R with 1 = e; +---+e¢,, then

the set is said to be a complete set of primitive idempotents of R.

Let I be an ideal in a ring R and let g + I be an idempotent of R/I.
We say that this idempotent can be lifted (to e¢) modulo I in case there is
an idempotent e € R such that g + I = e + I. We say that idempotents lift

modulo I in case every idempotent in R/I can be lifted to an idempotent in
R.

Lemma 1.40. Let R be a ring such that Ry is a lifting module. Then
the following statements hold:

(i) R = R/J(R) is semisimple.

(ii) If e is a primitive idempotent of R, then eJ(R) is the unique mazimal
submodule of eRp, i.e., eRe is a local ring.

(i) Every complete set of orthogonal (primitive) idempotents of R =
R/J(R) lifts to a complete set of orthogonal (primitive) idempotents of R.

Proof. (i) Let A be a submodule of Rp with A D J(R). We put A =
A/J(R) and R = R/J(R). We may show A <g R. Since Rp, is lifting, there
exists a decomposition Rg = A* @ A* such that A* < A and AN A™ K
R. Consider the canonical map ¢ = ¢ |y : R = R/J(R) — 0. Then
R = p(A) ® p(A**). In fact, o(A) = A. Hence A <g R, i.e., Therefore R is
semisimple.

(i) Consider Kg < eR. Since eRp is indecomposable lifting, K < eR.
Thus K C eJ(R). Therefore eJ(R) is the unique maximal submodule of
eRp.

(iii) Let R = ¢4R® --- ® g, R, where {g1,--- ,Jn} is a complete set
of orthogonal idempotents in B. We consider the canonical epimorphism
R % R — 0. Since Ry is lifting, there exists Rg = A; @ Ar such that
A<. 9o Y (gR) (i=1,2,---,n). Then Rp = A; +---+ A, + Ker ¢. Since
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Ker ¢ < Rg, Rp = A1 + -+ + A,. Moreover, A; N ¥,4+;A; < Rgr. By
Lemma 1.25, R = A1 ®- - -® A,,. Thus there exists a (necessarily) complete
set {e1,- - ,e,} of pairwise orthogonal idempotents in R with A; = ;R
(i=1,2,---,n). Thenl=¢;+---+&, &€ gR (i=1,2,--- ,n). On the
other hand, I = gy +- - +,. By the uniqueness, &; =¢; (i =1,2,--- ,n). B

Proposition 1.41. Let P be a projective lifting module and let Py, --- , P,
be indecomposable direct summands of P such that P = P, +--- + P, and
P=P® - ®P, Then P=P®---® P,.

Proof. First we show P, ® P, <g P. Since P, <g P, there exists a
decomposition P = P, @ P{'. Let mp, : P — P, and 7py : P — P be
p, ¢ Po — Pf. Then 7p:(P,) is
not small in P}. As Py is lifting, there is a decomposition P} = P; @ I‘T—f
such that mp;(Py) <. Pf. Then 7p:(P;) = Pf & (mp:(P2) N Pr). Since
wpe(Py) NP < P} < P, 1p:(Py) NPy < P. Hence mp:(Py) N Py C
Rad(P). On the other hand, P = P, + P, = P, @ P} = P, ® Py & ;.

Let 75

projections, respectively. We consider 7ps

: P — P and T5s P — P:f be projections, respectively. Then
1 —_— —
wpy (P) = mpz(P2) @ m5:(P,) and mp=(P,) = Pf. Since P is projective, the
1
sequence Py —3 W??(Pz) — 0 splits. Thus Ker (7rp—l*) <@ P». Since P; is

=
indecomposable, Ker (mpr) = 0. Hence P, ~ Tpr(F2). Now, we define a

map ¢ : wpr(P2) = P @ P{ by mpe(ps) = 7r (p2) + mp=(p)- Then g is

well-defined. Since P, C (P > P, @ P}), (Pf 5 PP P;) = P,® X for

some X. Hence we get P, + o =P, ® P, <g P. Weput P& P, = Q.
Using the casen — 1, weobtain P=P,+-- -+ P, =Q® P;®---® P,.

Thus, the induction works. H

Lemma 1.42 (cf, [2, Lemma 17.17]). Suppose that M has a projective
cover. If P is projective with an epimorphism ¢ : P — M, then P has a
decomposition P = Py @ P, such that Py < Ker p and ¢ |p, : P = M is a

projective cover of M.

Proof. Let M5 0bea projective cover. Then we have a homo-
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morphism h : P — @ satisfying fh = ¢. Since Ker f <« @, we see that
h is an epimorphism. Since () is projective, h splits, i.e., there exists an
R-homomorphism ¢ : Q — P such that hg = 1¢, and hence P = Ker h®Im
g. Put P, = Im g and P, = Ker h. Then P; < Ker ¢ since Ker h C Ker
fh = Ker ¢. Since P, ~ Q by h |p, and fg |p,= ¢ |p,, We see that ¢ |p, :
P, — M is a projective cover. B

Proposition 1.43. Let R be a ring such that A a right ideal of R. If
R/(A+ J(R)) has a projective cover, then so does R/A.

Proof. Consider the canonical epimorphisms : R ™% R/A e R/(A+
J(R)). Then, by Lemma 1.42, we can take an idempotent e € R for which
T(A+J(R)TA ler : eR — R/(A+ J(R)) is a projective cover, hence Ker
(T(a+(R)T A |er) <K eR. Since R = eR + A+ J(R), we obtain R = eR + A.
Hence 74 |cr : €R — R/A is an epimorphism. Since Ker (74 |.r) € Ker

(T(a+2(R)T A |er) K eR, T4 |er : eR — R/A is a projective cover. B

Proposition 1.44. The following statements are equivalent:
(1) Every cyclic right R-module has a projective cover;
(i) Rg is a lifting module.

Proof. (i) = (ii) Let A be a submodule of Ry and let ¢ : R — R/A
be the canonical epimorphism. Since R/A has a projective cover, by Lemma
1.42, there exists a decomposition Rp = eR & (1 — )R such that (¢ |er)
: eR — R/A — 0 a projective cover and (1 — e)R < A. This implies Ker
(¢ ler) = ANeR < eR. ie,, R=eR® (1 —e)R such that ANeR K eR.
Thus Rp is lifting.

(i) = (i) Suppose that R is lifting. We claim that R/A has a projective
cover. Since Rp is lifting, for any A < R, there exists A* <. A such that
R = A* @ A**. Then 7 |4+ : A* — R/A — 0 is a projective cover of R/A,

where 7 : R — R/A — 0 is the canonical epimorphism. l
As corollaries of Proposition 1.44, we obtain the following two results.

Corollary 1.45. Let P be a projective module. Then the following
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statements are equivalent:
(i) Every factor module of P has a projective cover;
(i1) P is lifting.

Corollary 1.46. The following statements are equivalent:
(i) Every simple right R-module has a projective cover;

(i1) Rg satisfies the lifting property for simple factor modules.

Proposition 1.47. Let R be a ring such that R/J(R) is semisimple and
every idempotent lift modulo J(R). Then Rg satisfies the lifting property for

simple factor modules.

Proof. Let M be a maximal right ideal of R. By the assumption, we
can take an idempotent e of R such that eR = M. Then (1 — e)R is simple
and eR+ J(R) = M + J(R) = M. Hence M = eR® (M N (1 -e)R) C
eR @ (1 — e)J(R). Because (1 —e)R is simple, (1 — e)J(R) is the unique
maximal submodule of (1 — e)Rg. Hence M N (1 —e)R < (1 — e)R as
desired. W

Proposition 1.48. Let R be a ring such that Rg satisfies the lifting
property for simple factor modules. Then Ry is a lifting module.
In other words, if every simple right R-module has a projective cover, then

every cyclic right R-module has a projective cover.

Proof. Let A < Rgr. We show that R/A has a projective cover. By
Proposition 1.43, we may assume that J(R) C A. By Proposition 1.17 and
1.34, R/J(R) is semisimple. By Proposition 1.33, (R/J(R))/(A/J(R)) =~
R/A, we see that R/A can be expressed as a direct sum of simple submodules.
Since any simple right R-module has a projective cover, R/A has a projective

cover. W
An idempotent e of R is called to be local if eRe is a local ring.

Theorem 1.49 (cf., [2, Theorem 27.6] or [7, Theorem 2.1]). Let R be a

ring. Then the following conditions are equivalent:
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(1) R is semiperfect;

(2) R/J(R) is semisimple and idempotents lift modulo J(R);

(3) R/J(R) is semisimple and every complete set of orthogonal (primi-
tive) idempotents of R/J(R) lifts to a complete set of orthogonal (primitive)
idempotents of R;

(4) R can be ezpressed as Rp = e;R® --- @ e, R, where {e;}}; is a
complete set of orthogonal primitive idempotents of R and each e; is a local
idempotent;

(5) R can be ezpressed as Rp = 1R @ --- & e, R, where {e;}}, is a
complete set of orthogonal primitive idempotents of R and each e;J(R) is the
unique mazimal submodule of e;Rp;

(6) Every cyclic right R-module has a projective cover;

(7) Every simple right R-module has a projective cover;

(8) Every finitely generated projective right R-module is a lifting module;

(9) Rg is a lifting module.

(10) Rg satisfies the lifting property for simple factor modules.

Proof. Let J = J(R) be the radical of R.

(1) = (6) = (7) are obvious. (1) <= (8) By Corollary 1.45, this part
is clear. (6) <= (9) This part is a direct consequence of Proposition 1.44.
(7) <= (10) This part is a direct consequence of Corollary 1.46. (8) = (9)
= (10) are trivial. (10) = (9) By Proposition 1.48, this part is clear.

(9) = (8) Let M be a finitely generated projective right R-module. Now
we can consider @ R, -+ M — 0, where R, = Rp. Since M is projective,
this epimorphism splits, i.e., there is a direct summand K <g @}, R; such
that K ~ M. By Proposition 1.37, ®?_, R; is projective lifting. Hence M is
lifting. (9) = (3), (4) are clear by Lemma 1.40. (2) = (10) This part is a
direct consequence of Proposition 1.47. (3) = (2) is obvious. (4) <= (5)
This part is a direct consequence of Proposition 1.39. (5) = (9) By (4),
Rr=eR®---® e, R. Since e;J is the unique maximal submodule of ¢; R,
for any proper submodule K of e;R, K C ¢;J < ¢;R. Thus K < e;R. Hence
e;R is a lifting module. By Proposition 1.37, Rp = e; R® - - - @ e, R is lifting.

34



A subset I of a ring R is right T-nilpotent if for every sequence ay, as, -+
in I, there is a positive integer n such that a,a,—1---a; = 0. (Similarly, I is
left T-nilpotent if for any sequence a1, ag, - - - in I, we have aias ---a, = 0 for
some n.) We note that if I is left or right T-nilpotent, then it is nil because

a,a,--- is a sequence in I whenever a € I.

Lemma 1.50 (cf., [2, Lemma 28.1]). Let F = @2z, R be a free right
R-module and put y, = Tn — Tny1an and G =Y o0y R < F. Then

(i) G is free with free basis yi,y2," -+ ;

(ii) G = F iff for each k € N, there is an n > k such that ay - - - ax = 0.

Proof. Let n > k and let ¢k, --- ,c, € R. Then yrcx + - + yncp =
TpCh+Tri1(Chy1—akCk)+ - +Zn(Cr—n_1Cn-1) —Tn410nCq. Thusif yrep+-- -+
YnCn = 0, then from the independence of the x’s we have ¢, = --- = ¢, =0,
which implies (i). Next, suppose that z; € G, say xx = y1€1 + -+ + UnCn.
Then clearly ¢; = -+ = ¢x_1 = 0. Comparing the coefficients of zy,--- ,z,
in this equation we see that ¢y = 1, ck41 = AkCk, Ch42 = Qk41Ck41,"** 1 Cn =
Gn-1Cn-1, OnCp = 0. SO @nan_1---ar = 0. This gives the necessity in (ii).
For the converse, let k¥ < n. Since for each i > 1, z; = y; + z;i+10;, we have
Tk = Yk + Y10k + -+ + Yn@no1 - k) + Tny1(an - - ag). Soif a,---ax =0,
then z, € G. B

Lemma 1.51 (cf., [2, Lemma 28.2]). With the hypotheses of Lemma
1.48 if G is a direct summand of F, then the chain Ra; > Rajay > --- of

principal left ideals terminates.

Proof. By Lemma 1.48, there is an isomorphism F' — G via T, = Yn.
Suppose the inclusion map G — F is split. Then there is an endomorphism
s: F — F such that s(y,) = z, (n € N). For each m € N, we write s(z,,) =
Yk ZkCmk aS a linear combination of zy,zs,---. Then z, = s(yn) = s(zn —
Tnt10n) = LkZk(Cnk —Cnt1k0n)- Hence cpgp—Cni1k0n = Onk, SO —Cpy1nln = 1—

Cnn a0d €01 = ¢;_1,, for each i < n and in particular, cppap_1 - a1 = Cip.
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Now for some k, ¢, = 0 for all n > k. So for each n > k, —cpy1n@n a1 =
(1 — Cun)@n_1""G1 = Qp_1°*+ 01 — CppGp_1*"* 01 = Gp_1---a;. That is, for

eachn >k, a,1---01 € Ra,---a;. R

Lemma 1.52 ([2, Lemma 28.3]). Let I be a right ideal of R. Then the
following statements are equivalent:

(i) I is right T-nilpotent;

(is) MI # M for every non-zero right R-module M ;

(11i) MI < M for every non-zero right R-module M;

(iv) FI1 < F for the countably generated free module F' = R®™.

Let M be a module, and let N and L be submodules of M. N is called
a supplement of L if it is minimal with respect to the property M = N + L,
equivalentlyy, M = N + L and NN L <« N. Note that any supplement
submodule (hence any direct summand) of a module M is co-closed in M.
Following [46], A module M is supplemented if every submodule of M has
a supplement. A module M is said to be amply supplemented if, for any
submodules A, B of M with M = A + B there exists a supplement P of A
such that P C B.

Propositon 1.53 ([32, Proposition A.2]). (i) Any lifting module is amply
supplemented.

(ii) Any amply supplemented module is supplemented.

Propositon 1.54 ([33, Corollaries 1.9 and 1.14]. (i) Every factor module
of a (amply) supplemented module is (amply) supplemented.
(ii) If A and B are supplemented modules, then M = A + B is supple-

mented.

Now we consider the following condition:

(x) Every submodule of M has a co-closure in M.
The following is due to Oshiro [38, Proposition 1.3].

Propositon 1.55. Any module M over a right perfect ring satisfies
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condition (x).

Propositon 1.56 ([26, Lemma 1.7]). A module M is amply supple-
mented if and only if M is supplemented with (x).

Lemma 1.57. Let P be a projective lifting module and A be a submodule
of P. Then there ezists a mazimal submodule A* of P such that A C A*.

Proof. It is suffcient to show that P/A has a maximal submodule. By
Corollary 1.45, P/A has a projective cover. Say @ EA P/A — 0. Thus Q/Ker
f =~ P/A. Since Q is projective, () has a maximal submodule L. Hence Ker
f € Rad(Q) C L. This implies that L/Ker f is a maximal submodule of
Q/Ker f. Therefore P/A has a maximal submodule. l

We state the following Bass’s theorem which is one of fundamental facts

in ring theory.

Theorem 1.58 ([2, Theorem 28.4]). Let R be a ring. Then the following
conditions are equivalent:

(1) R is right perfect;

(2) R/ J(R) is semisimple and J(R) is right T-nilpotent;

(8) R/J(R) is semisimple and every non-zero right R-module contains a
mazximal submodule;

(4) Every flat right R-module is projective;

(5) R satisfies DCC on principal left ideals;

(6) R contains no infinite orthogonal set of idempotents and every non-

zero left R-module contains a minimal submodule.
Moreover, we give characterizations for right perfect rings.

Theorem 1.59. Let R be a ring. The following conditions are equivalent:
(1) R is right perfect;

(2) Every projective right R-module is lifting;

(8) Every quasi-projective right R-module is lifting;

(4) Every countably generated free right R-module is lifting.
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Proof. (1) <= (2) This follows from Corollary 1.45.

(2) = (3) Let Qg be a quasi-projective module and let A be a submodule
of Q. Consider the canonical epimorphism f: Q@ — @/A. We can take a
projective module Pg such that ¢} is a homomorphic image of P, i.e., we
have an epimorphism g : P — (). Since P is a lifting module, by Lemma
1.42, there exists a decomposition P = P; @ P, such that P, < g7'(A), fg |p,
: P, = /A is a projective cover. Because () is a quasi-projective module, the
decomposition P = P;® P induces a direct decomposition Q = g(P,)®g(F)
by Theorem 1.29. Then g(P;) < A and g(P,) N A < g(P2) hold.

(3) = (2) Obvious.

(1) = (4) This follows from Theorem 1.58.

(4) = (1) By (4), R is semiperfect and R/J(R) is semisimple. Since R®
is lifting, there exists a decomposition R™ = X @Y such that X < Rad(R™)
and Rad(RM)NY <« Y. Because Rad(R™) = Rad(X) @ Rad(Y) and
X < Rad(R™), we see Rad(X) = X, which implies X = 0 and RV J(R) =
Rad(R™) <« RM. Hence, by Lemma 1.52, J(R) is right T-nilpotent. Thus
R is right perfect. B
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Chapter 2

Lifting Modules over
Right Perfect Rings

Okado [36] has studied the decomposition of extending modules over right
noetherian rings and, by using Oshiro’s lemma (Lemma 2), he obtained the
following: A ring R is right noetherian if and only if every extending R-
module can be expressed as a direct sum of indecomposable (uniform) mod-
ules. As a dual problem, we consider the following: Which ring R has the
property that every lifting R-module has an indecomposable decomposition?
Our purpose of this paper is to study this problem. Our main results can be
summarized as follows:

(1) Every (finitely generated) lifting module over a right perfect (semiper-
fect) ring can be expressed as a direct sum of indecomposable modules.

(2) Let R be a right perfect ring and let M be a lifting module. If
every hollow summand of M has a local endomorphism ring, then M has the

exchange property.

§ 2.1 Local summands

Definition. X @)cp X < X is called a local summand of X, if ¥ ®yer
X, <g X for every finite subset F' C A.

Lemma 2.1.1 (cf., [40]). If every local summand of M is a direct sum-

mand, then M has an indecomposable decomposition.
By Lemma 1.24 and [38, Proposition 3.2], the following holds:

Lemma 2.1.2. FEvery local summand of projective lifting modules is a

direct summand.

A family of modules {M; | i € I} is said to be locally semi-T-nilpotent
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if, for any subfamily M;, (k € N) with distinct i; and any family of non-

isomorphisms f : M;, — M;,,,, and for every x € M;,, there exists n € N

(depending on z) such that f,--- fofi(z) = 0.
The following is essentially due to Harada [19].

Theorem 2.1.3. Let M = @®yc1 My, where each M, has a local endo-
morphism ring. Then the following conditions are equivalent:

(i) M has the internal exchange property (in the direct sum M = @ac1M,);

(i) M has the (finite) exchange property;

(iii) Every local summand of M is a direct summand;

(iv) {Ma}aer is locally semi- T-nilpotent.
§ 2.2 Main results

In 1984, Okado [36] showed the following: A ring R is right noetherian
if and only if every extending R-module can be expressed as a direct sum
of indecomposable (uniform) modules. In this section, as a dual problem,
we consider the following: Which ring R has the property that every lifting
R-module has an indecomposable decomposition?

To consider this problem, we need some lemmas.

Lemma 2.2.1 (cf, [10, 3.2]). Let f : M — N be an epimorphism.
Suppose K <. K' in M. Then f(K) <. f(K') in N.

Proof. Assume that N = f(K') + L such that L is a submodule of N.
Since f is an epimorphism, there exists a submodule T of M with f(T) = L.
Then M = K' + T + Ker f. Since K <, K in M, M = K + T + Ker f.
Hence N = f(M) = f(K) + f(T) = f(K) + L. By Proposition 1.18(ii),
f(K)<c f(K')inN. W

Lemma 2.2.2. Let M be an amply supplemented module and let f :
M — N be an epimorphism with Ker f < M. If K is co-closed in M, then
f(K) is co-closed in N.
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Proof. Since M is amply supplemented, there exists a supplement sub-
module L of K in M. As N = f(M) is amply supplemented, there is a
co-closure T of f(K) in N. Then there exists a submodule K of K such
that f(K') = T. This implies N = f(M) = f(L)+ f(K) = f(L)+ T =
f(L)+ f(K'). Thus M = L+ K +Ker f. By Proposition 1.18(iii), K’ <. K
in M. Since K is co-closed in M, K = K'. Therefore f(K) = f(K') =T is
co-closed in N. B

We show the following result.

Theorem 2.2.3. If R is a right perfect (semiperfect) ring, then every

local summand of (finitely generated) lifting modules is a direct summand.

Proof. First assume that R is a right perfect ring. Let M be a lifting
module and let ¥ ®;c; X; be a local summand of M. Since R is a right perfect
ring, M has a projective cover, say Ker f < P Mo By Theorem 1.58,
P is projective lifting. So there exists a decomposition P = P; & Py (i € I)
such that P, <. f~1(X;) in P. By Lemma 2.2.1, f(P) <. f(f74(Xy)) = Xi
in M. As X; is co-closed in M, f(P,) = X;. First we prove that ¥;c;F; is
direct. Let F' be a finite subset of I — {¢}. Since ¥ @®;c; X; is a local summand

of M, we see
f(Pi+ ZjerP;) = Xi @ (Z ®jer X;) <o M.

So there exists a direct summand Y of M such that M = X;®(XD,crX;)®Y .
As P is lifting, there exists a decomposition P = @ @ Q* such that Q <.
f7Y(Y) in P. Then f(Q) =Y. Thus we see

PZH—FEJ'GFP]'—I—Q—*—KGI'JE=E+Ej€FPj+Q.

Then P,N(Z;erPj+Q) C Ker f <« P. Similarly, we see QN(Pi+X;erPj) < P
and P; N (P; + Eiep—y P + Q) < P. By Lemma 1.25, we obtain P =
P, ® (LjerPj) ® Q. Hence X P; is direct. By the same argument, we see
Y @icr P, is a local summand of P. By Lemma 2.1.2, ¥ ®;c; P; <¢ P. So
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(X @ier P,) is co-closed in M by Lemma 2.2.2. Since M is lifting, we see
Y ®ier Xi = f(Z ®ier Pi) <o M.

Thus any local summand of M is a direct summand.

Next, we assume that R is a semiperfect ring. Let M be a finitely gen-
erated lifting module and let Ker f < P LM —=0bea projective cover of
M. Since M is finitely generated, there exist a finitely generated projective
module ) and an epimorphism g : Q — M. As @ is projective, there exists
a homomorphism h : ¢ — P such that fh = g. By Ker f < P, we see
P = h(Q) + Ker f = h(Q). Hence h is an epimorphism and so h is split.
Thus P is finitely generated. By the same argument as the case of right

perfect rings, we see that any local summand of P is a direct summand. Il
By Lemma 2.1.1. and Theorem 2.2.3, we obtain the first main theorem.

Theorem 2.2.4. FEvery (finitely generated) lifting module over right

perfect (semiperfect) rings has an indecomposable decomposition.

By Theorem 2.2.4, “R is a right perfect ring = Every lifting R-module
has an indecomposable decomposition.” But the converse is not true, as the

following shows:

Proposition 2.2.5.  Every lifting module over a commutative semi-

artinian von Neumann regular ring R is semisimple.

Proof. Let M be a lifting R-module. For Soc(M), M has a decomposition
M =X @Y with X <, Soc(M). Then Soc(M) = X & (Y N Soc(M)) and
Y NSoc(M) < Y. Assume 0 # Y N Soc(M), then we can take a non-zero
simple module 7" in Y N Soc(M). But R is a commutative von Neumann
regular ring, as is well known, T is injective; hence 0 # T <g Y, which
contradicts to T < M. Therefore Soc(M) = X. As Soc(M) <, M, we see
Soc(M)=M. R

Example 2.2.6 (cf., [6, Proposition 4.7] or [13, Lemma 17]). Let F' be
afieldand R:=% 2 ®F+F -1={(f1,- ,fa. [, f,--*)} CIl;=; F. Then
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R is a commutative von Neumann regular ring. As Soc(R) = ) 20, &F, it
is easy to see that Soc(R) <. R. We show that R is semi-artinian, that is,
every non-zero right R-module has an essential socle. To show this, it suffices
to show that every cyclic right R-module has an essential socle. Consider the
cyclic right R-module zR. Let Z(zR) be a singular submodule of zR. First
assume that zR is singular, that is, Z(zR) = zR. Then zR - Soc(R) = 0,
hence zR is R/Soc(R)-module. Therefore Soc(zxR) = xR. Next assume
that R is not singular. If Z(zR) <. zR, then Soc(zR) <., zR. Now we
assume Z(zR) is not essetial in zR. Take a submodule T of R such that
Z(zR) ® T <. zR. Then T is non-singular. Let 0 # ¢ € T. Then tR is non-
singular, as is well known, ¢tR is embedded in the maximal quotient ring
of R. Since Soc(R) <. R, we see that any submodule of Qg has an essential
socle; whence tR has an essential socle for any 0 # ¢ € T. Hence we see that
Soc(T) <. T, hence it follows Soc(zR) = Z(zR) @ Soc(T) <. zR.

For this ring R, by Proposition 2.2.5, every lifting R-module has an in-

decomposable decomposition. But R is not right perfect.

We recall that a module H is called hollow if H is indecomposable lifting.
By Theorem 2.1.3, 2.2.3 and 2.2.4, we obtain the following.

Theorem 2.2.7. Let R be a right perfect ring and let M be a lifting
module. If every hollow summand of M has a local endomorphism ring, then

M has the exchange property.
By the proof of [45, Proposition 1], we have the following.

Lemma 2.2.8. Let H be a hollow module. If H @ H has the internal

exchange property, then H has a local endomorphism ring.

Lemma 2.2.9 (cf., [28, Theorem 3.7]). Let H be a hollow module. Then
H @ H is lifting with the internal exchange property if and only if H is dual

H-ojective.

By Lemma 2.2.8, 2.2.9 and Theorem 2.2.7, we have the following.
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Theorem 2.2.10. Let R be a right perfect ring and let M be a lifting
module satisfying one of the following:

(a) M has the finite exchange property,

(b) M & M has the finite internal exchange property,

(c) If M is dual M-ojective.

Then M has the exchange property.

The following follows from Theorem 2.2.10.

Corollary 2.2.11 (cf., [20], [47]). Any projective module over right perfect
rings has the exchange property.
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Chapter 3

Direct Sums of Relative (Quasi-)
Continuous Modules

In [30], relative (quasi-)continuous modules are introduced, and several
fundamental results are given. In this chapter, we shall give necessary and
sufficient conditions for direct sums of relative (quasi-)continuous modules to
be relative (quasi-)continuous modules.

Let N and M be R-modules. By A(N, M), we denote the family of all
submodule A of M such that f(X) <. A for some X < N and some f in
Hompg (X, M). It is easy to see that this family A(N, M) is closed under

submodules, essential extensions and isomorphic images.

Definition. For A(N, M), we consider the following conditions :

(Cy) For any A € A(N, M), there exists a direct summand A* <g M
such that A4 <, A*

(Cy) For any A € A(N,M) and X <g M, A~ X implies A <g M

(C3) For any A € A(N,M) and X <¢ M,if A<g M and ANX =0
then A®X <g M

M is said to be N-continuous if (C;) and (C;) hold, and it is said to
be N-quasi-continuous if (C1) and (C3) hold. Furthermore, M is said to be
N-extending if (C;) holds.

We note that these modules are closed under direct summands (cf., [39]).

One easily obtains the following implications:
“M is N-continuous = M is N-quasi-continuous = M is N-extending”.

Clearly, the notion of relative continuity generalizes the concept of conti-
nuity. On the other hand, relative injectivity does not imply relative continu-
ity. For example, all modules are S-injective whenever S is a simple module
while, on the other hand, if S is a simple module which is not injective then

M = S @ E(S) is not S-continuous since 0 @ S is isomorphic to the direct
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summand S @ S of M, an element of A(S, M).

For R-modules M = > @®;c;M; and X, we use the following conditions :

(A) For every choice of distinct k; € I (i€ N) and m; € M, if the
sequence (0 : m;) is ascending, then it becomes stationary.

(B) For every choice of m; € My, (i € N) for distinct k; € I such that
(0:z) € NX,(0: m;) for some z € X, the ascending sequence M;>, (0 :
m;) (n€ N) becomes stationary.

(C) For any z € X and for every choice of distinct k; € I (i€ N) and
m; € My,, with (0: z) C (0 : m;), if the sequence (0 : m;) is ascending, then

it becomes stationary.

For these conditions, the reader can refer [32]. We note that (B) implies

(©).

Lemma 3.1.1 (cf., [3]). For R-modules X and {M;}ic;, the following
are equivalent:
(1) 3 ®ierM; is X -injective;
(2) (a) each M; is X -injective
(b) the condition (B) holds for X and {M,;}icr.
So, in this case (C) holds.

Lemma 3.1.2 (cf., [30]). For an N-(quasi-)continuous module M, the
following hold:

(1) Any direct summand of M is N-(quasi-)continuous.

(2) For any X <g M and A € A(N,M) with XNA =0, X is A-
injective.

(3) For any A,B € A(N,M) with ANB =0 if A <¢ M and A ~ B then
B<g M.

Lemma 3.1.3. Consider two modules P = (3 ®ic1T;) ® N and Q =
(3" @iciW;) ® N such that Q <. P. If Y ®@iciT; satisfies (A) and, for any
finite subset F C I, if P = (3. ®icrW:i) ® (O ®jer-rT;) ® N then P = Q.

Proof. Assume that P # ). Since Y ®;c;7; satisfies (A), we can take a
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finite subset F' of I and an element ¢ € ) ®;crT; such that ¢ ¢ @Q and, for
any j €I —F and se€T;,if (0:¢) C (0:s) then s € Q.

Since ) <. P, we can take 7 € R such that 0 # tr € Q). So there exists a
finite subset G C I such that tr € > ®;ccW; @ N.

We take G'as G 2 F'. Weexpresstin P = () @iccW;)® (3. ®jer-cT;)®
N ast=w+s+mn, where w € Y ®iecW;, s € > @jer—¢Tj and n € N.

Since ) @jer—¢T; 3 sr =tr—wr —nr € (3 BiccW;)® N, we see st = 0
; 50 (0:¢) C (0:s). This implies s € @ and hence t = w+ s +n € Q, which

is a contradiction. Hence P = (. B

By a slight modification, we can prove the following result by using

Lemma 1.7.

Lemma 3.1.4. Let {M,}ic1 be a family of N-extending modules and let
A€ A(N,P =3 ®;c1M;). Then there exist submodules T(i) <. T(i)* <g
M;, decompositions M; = T'(i)* @ N; and a submodule > @®;crA(i) <. A for
which the following properties hold:

(1) A(i) <T@ ® (32 ®;<ilN;)

(2) 0(A(2)) = T(i) and A(%) alé(i) T(i) (by o |ag)) for each i € I, where
o is the projection : P = (3 ®;ciT(3)*) ® (O ®icrNi) = 3. BicrT(2)*.

So, T(i), T(i)* € AN, M;) and A2 o(4) <, ¥ @i T(i)".

We first show the following theorem which is a generalization of [32,
Theorem 2.13].

Theorem 3.1.5. Let {M;}ic; be a family of R-modules. Then the
following are equivalent:
(1) P =Y ®;erM; is N-quasi-continuous;
(2) (a) Each M; is N-quasi-continuous.
(b) > ®jcr—iyM; is As-injective, for anyi € I and any A; € AN, M;);
(3) (o) Each M; is N -quasi-continuous.
(b) For any distinct i,j € I and A; € A(N, M), M; is A;-injective.
(c) For any i € I and A; € A(N,M;), the condition (B) holds for
(Ai, 22 Bjer—giy M;).
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Proof. (1)==(2) follows from Lemma 3.1.2.

(2)<=>(3) follows from Lemma 3.1.1.

(2)=(1). First we show that P = Y @;c;M; is N-extending. Let X €
A(N, P). By Lemma 3.1.4, we have submodules T'(i) <. T(i)* <g M,
decompositions M; = T(i)* @ N; and a submodule 3 ®;; X (i) <. X such
that, for each 7 € I,

(i) o(X (i) =T()

(i) X()) ~T(@)  (by o |x,)

, where o is the projection: P = (3 ®iciT (1) )® (D ®ierNi) = D @ierT(4)*.
So, we see

(i) X % 0(X) <. X @:erT(i)

Since X € A(N,P), we see that X (i) € A(N,M;), whence T(i)* €
A(N, M;) for each i € I. So, by (b), Y @jer—{iyN; is T'(¢)*-injective for each
i € I. On the other hand, by (a), N; is T(7)*-injective. Hence ) ®;c/N; is

T (7)*-injective for each i € I.

Now, by (iii), the mapping ¢ : 0(X) = Y @ic1N; given by ¢(o(z)) =
7(z) is a homomorphism, where 7 is the projection: P = (D ®ie;T(4)*) @
(> ®ierNi) = 3- @ic1 Ni-

Since Y @®;crN; is Y @;erT(7)*-injective, ¢ can be extended to a homo-
morphism ¢* : Y @i T(1)* = Y. @iecrN;. We put

Xt ={z+¢"(z) |z € X ®ierT(2)"}.

Then P = X* @ () ®ierV;) and moreover, we see from X ag o(X) <e
S ®ierT(i)* that X <, X*. Accordingly, P is N-extending. Here we note
that if X < P, then X = X*, X & " @ie/T(5)", P = X & (¥ ®iesNy), and
moreover »  ®;erN; is X-injective.

Next we will show that P = " @;c1 M; satisfies (C3) for N.

Let A € A(N,P) and X < P, and assume that both A and X are direct
summands with ANX = 0; Put P = X®Q = Y®A and let 7 and 7x be the
projections: P=X®Q — @ and P = X ®Q — X, respectively. Since X N
A=0, A=~mg(A) by mg |- Since Q is N-extending and mo(A) € A(N, P),
there exists a direct summand mg(A)* <g @ such that mg(A4) <. mo(A)*.
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Since mg(A)* <g P, as we noted above, P = mo(A)* @ (3 ®iesN;) for some
N; <@ M; and 3" @;crN; is mo(A)*-injective.

Since X Nmg(A)* = 0, X is isomorphic to a submodule of ) ®ic1V;.
Hence X is mg(A)*-injective. Here consider the mapping ¢ : mg(4) — X
given by ¢(mg(a)) = nx(a). Then ¢ is a homomorphism. So ¢ can be
extended to a homomorphism ¢* : mg(A4)* = X.

Putting A* = {g + ¢*(q) | ¢ € mo(A)*}, we see that X @& A* <g P and
A <, A*. Since A <g P, it follows A = A" and hence X ® A <g P as
required. W

We generalize [32, Theorem 3.16] as follows:

Theorem 3.1.6.  Let {M;}ic; be a family of R-modules. Then the
following are equivalent:
(1) P =Y ®icrM; is N-continuous;
(2) (a) Each M; is N -continuous.
(b) > Djer—(iyM; is Ai-injective, for any i € I and any A; € A(N, M;);
(3) (a) Fach M; is N-continuous.
(b) For any distinct i,j € I and A; € A(N,M,;), M; is A;-injective.
(c) For any i € I and A; € A(N,M,), the condition (B) holds for
(Ai, P =3 ®jer-1iyM;)-

Proof. As in the proof of Theorem 3.1.5, we may only show that P =
3 @ierM; satisfies (Cp) for A = A(N,P). So, let A,B € A such that
A<g Pand A~ B.

By Lemma 3.1.4, there exist submodules T'(i) <, T'(i)* <g¢ M;, decom-
positions M; = T'(i)* & N; and a submodule Y _ @;c;B(i) <. B such that, for
each i € I, (i) o(B(%)) =T(2)

(i) B(s) =T () (by o |s)

, where o is the projection: P = (3 ®ic;T (1) )B(3. ®icr Ni) = D ®ier T (0)*.

Put A(z) = 771(B(z)) for each i € I. Since A is N-extending, for each
i € I, there exists direct summand A(i)* <g A such that A(z) <. A(2)*.

Fix 7 € I. By the proof of Theorem 3.1.5, there exist direct sum-
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mands K; <g M, such that A(i)* is isomorphic to Y @;crKj; say A(ip)* £
2. Djer K.

Now put B(ip)* = 7(A(%p)*). Then B(ig) <. B(ip)* and B(ip)* aiolfB;SiO)*
0i,(B(i0)*) <e T(io)*, where o;, is the projection: P = (3 @i T(3)*) @
(3> @ierNi) — T(do)*.

Since Y ®jer—(i)Mi o = 2 Bjer—{ior K = 0iTP(X Djer—{io) K;) (by
Oig TP |E®j61—{io}KJ’) and 0,703 Bjer—1io} K;) C T(io)* <o M, we see
from (b) that 0,70 (> ®jer—{in1 K;) <o T'(i0)*.

On the other hand, 0;,79o(K;,) <g T(i)* by (a). As a result we see
that T(ip) <e 0i,To(Y Bic1Ki) <o T(i0)*; whence 04T (d PicrKi) =
0i,(B(i0)*) = T(ip)*. Thus we have P = B(ig)* ® (3 ®icr—{in)T(1)*) @
(3 ®ier Vi)

Inductively, we see that, for any finite subset F of I, P = (3_ ®;crB(1)*)®
(X ®ier-rT(1)") @ (32 Bies Vi)

Here using Lemma 3.1.3 we get‘ P = " ®ierB(i)*) & (3 ®ierN;) and
hence B =) ®ic1B(i)* <g P. B

Remark 1. In Theorem 3.1.5, Y ®;crM; is N-quasi-continuous for any
finite subset F' of I if and only if (a), (b) in (3) hold.

Remark 2. In Theorem 3.1.6, > ®;crM; is N-continuous if and only if
(a), (b) in (3) hold (See [30]).

Remark. Recently, D. Keskin and A. Harmanci [27] defined the family
B(M,X)={A < M|3Y < X,3f € Homg(M,X/Y),Ker f/A < M/A},
for two R-modules M and X and they considered the following conditions:

B(M, X)-(D,): For any A € B(M,X), there exists a direct summand
A* <g M such that A/A* < M/A*

B(M, X)-(D,): For any A € B(M,X), if B <¢ M, M/A ~ B implies
A<g M

B(M, X)-(D3): For any A € B(M,X) and B <g¢ M, if A <g M and
M=A+Bthen ANB<g M

They defined that M is said to be X -discrete if B(M, X)-(D;) and B(M, X)-
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(D,) hold, and is said to be X -quasi-discrete if B(M, X)-(D,) and B(M, X)-
(D3) hold. Furthermore, M is said to be X-lifting if B(M, X)-(D;) holds.
The notions of B(M, X)-(D;), B(M, X)-(Ds), and B(M, X)-(Ds) are dual
to those of (C}), (Cs), and (C3). Further, N. Orhan and D. Keskin [37]
generalized dual ojective modules via the class B(M, X) and they obtained
the following results: (1) Let M = M; & Ms be an X-amply supplemented
module with the finite internal exchange property. Then for every direct
decomposition of M = M; & M;, M; is dual B(M;, X)-ojective for i # j, M,
and M, are X-lifting if and only if M is X-lifting.

(2) Let M = M; & M, be an X-amply supplemented module such that
M; and M, are indecomposable X-lifting modules, if M, is dual B(M;, X)-
ojective and M, is small-dual B(Ms, X)-ojective then M is X-lifting.
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Open problem

Last in this thesis, we state the following problems with new problem;
Problem A. When is a direct sum of lifting modules lifting?

Also, Problem A relates to the following problem;
Problem B. When is an infinite direct sum of lifting modules lifting for
this decomposition?
Problem C. Does any lifting module have the (finite) internal exchange
property?
Problem D. Let R be a von Neumann regular ring and let M be a lifting
right R-module. Is M semisimple? This question is open even for right
semi-artinian von Neumann regular rings.

Problem E. When is a direct sum of relative lifting modules relative lifting?

Recently N. Orhan and D. Keskin [37] generalized dual ojective modules
via the class B(M, X) and they gave the following results:

(1) Let M = M, & M, be an X-amply supplemented module with the
finite internal exchange property. Then for every direct decomposition of
M = M; & M;, M; is dual B(M;, X)-ojective for i # j, M, and M are
X-lifting if and only if M is X-lifting.

(2) Let M = M; & M, be an X-amply supplemented module such that
M; and M, are indecomposable X-lifting modules, if M, is dual B(M;, X)-
ojective and M is small-dual B(M, X)-ojective then M is X-lifting.
Problem F. Does any lifting module over a semiperfect ring have an inde-

composable decomposition?
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