Shock-Proof Design of Head Disk Assembly
Subjected to Impulsive Excitation*
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This paper reports a study on the transient response of a head disk assembly
(HDA) subjected to a half-sine shock pulse in the axial and pitching directions. The
solution is obtained using the multi-modal expansion approximation and applying the
Galerkin method to the resulting equations. Numerical results are obtained by the
Newmark £ method for a 3.5” hard disk-head system. It is found that the relative
distance between the head and the disk reduces to the minimum when the input
duration r is about 1.5 times the natural half-period of the fundamental (0, 0) mode.
Results obtained also show that the shock-proof head satisfies (1/27) (&/m) = fo,
where k£ is the stiffness of the head arm, m the head mass and fw the (0, 0) mode
frequency of the rotating disk, and that the head slider should be designed so that the
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assembled system of the head and the disk has a high air-film stiffness.
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1. Introduction

With the development of information-intensive
cultures, it has become commonly observed that elec-
tronic equipment is subjected to mechanical distur-
bances. A typical example is a notebook computer
which is prone to being knocked, jolted and bumped
while being carried. It is therefore of technological
importance to investigate the dynamics of such vibra-
tion-sensitive systems, to further improve their dura-
bility to the dynamic loading.

Limiting the problem to the dynamic response of
magnetic disk drives, Ono et al obtained the
deflection of a rotating flexible disk under a stationary
concentrated lateral force. Furthermore, Chonan and
Jiang® and Jiang et al.® studied the vibrations of a
read/write head floppy disk system subjected to axial
and pitching oscillations. Honda et al.*’ calculated the
steady-state response of a rotating disk to a concen-
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trated harmonic force. Yano and Kotera® investigat-
ed the stability of a spinning disk with a stationary
spring at the outer periphery. Ono et al.®®, Fukui et
al.” and Odaka et al.® studied the floating clearance
between the head slider and the magnetic disk experi-
mentally and theoretically.

Furthermore Chonan et al.®® studied the shock
response of rotating magnetic disks to impulsive load-
ing. It was found that the peak displacement and
acceleration that appear on the disk take maxima
when the input duration is about 1.5 times the half-
period of the fundamental (0, 0) mode of the disk.
Furthermore, the shock pulse with a duration 11 ms,
which is currently used as a standard input for the
shock test of disk drive units, produces only 60 - 70%
of the maximum displacement and acceleration that
may occur for the rotating disk. In our previous
study®, however, the effect of the floating head was
not taken into account in the analysis. In some cases,
the head impacts against the disk when the system is
excited by an impulsive acceleration, and this dam-
ages the data during the process of writing or reading.
It is therefore of importance to investigate the
dynamics of head-disk systems subjected to impulsive
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loading. In this context, the problem discussed in this
paper is that of the transient vibrations of the rotating
hard disk-floating head system subjected to a half-
sine shock pulse in the axial and pitching directions. A
solution is obtained by introducing both the Galerkin
method in the space domain and the Newmark A
method in the time domain.

Nomenclature

a : Outer radius (m)
b : Inner radius (m)
¢ : Coefficient of viscous damping (s)
D . Er¥/12(1—?) Flexural stiffness of disk
(N-m)
E : Young’s modulus (N/m?
Ga, Gp . Acceleration amplitudes in axial and pitching
directions (g)
h : Thickness (m)
k . Stiffness of head arm (kg/m)
kair - Stiffness of air film between head and disk

(kg/m)
m > Mass of head (kg)
t:Time (s)
u © Displacement of disk in (u«, 7, ) coordinates
(m)
ux - Displacement of head in (%, 7, ) coordinates
(m)
0?2case /0t? . External impulsive acceleration to disk
case

(u,7,7) : Coordinate frame moving with disk case
v : Poisson’s ratio

o : Density (kg/m®)
or, 07 - Centrifugal stresses due to the disk rotation
(N/m?

z > m/w Duration of impulsive acceleration (s)
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Fig. 1 Geometry of problem and coordinates

Series C, Vol. 38, No. 3, 1995

£ : Revolution speed (rad/s)

@ : Rate of impulsive acceleration (rad/s)

2. Formulation of the Problem

Figure 1 shows a hard disk of outer radius ¢ and
inner radius b rotating at a constant angular speed 2
in the clockwise direction. The disk unit is excited by
an impulsive axial or pitching acceleration Zcase. The
R/W head is modelled by a mass-spring system and
the air film between the head and the disk is approx-
imated by an elastic foundation of stiffness 4. In the
following, one denotes the coordinate frame fixed on
the disk case by (u, 7, 7) and the lateral displacement
of the disk in the (u, », ) frame also by . In this
case, the equation of motion of the disk with respect
to the coordinate frame (u, 7, n) is

D1+ C(a_i_ga%ﬂw” + ph(a—at—.Qa—f?Yu

_h 0 (_ _Ou\ h _0(_ Ou
v or (‘W ao> r 377<6” 737/>
el — )3 — 7o) 2L =E)

O %ase
=Toh 5 (1)

The equation of motion of the head is

“mp 2
m%“i‘(k‘l’ka]r)u}]—kairu:_m%’ (2)

where zcase/0t2 is the input acceleration to the disk
drive unit. It is assumed that the disk is subjected to
a half-sine shock wave pulse in the axial or pitching
direction. In this case, the acceleration is written
generally in the form

5 Zense :{[Ga + G,,(%)cos v]sin wt for0<i<r,

a7
o 0 for r<t¢,

(3)
where r (=n/w) is the duration of the shock pulse and
Ga, Gp are the peak accelerations in the axial and
pitching directions, respectively.

The solution of Eq.(1) may be written in the
form

ulr, 7, l‘)=mIZZ}0 ,?Z.‘O[Cmn(t)cos(nﬂ)

+ Sun()sin(#9) | Run(7), (4)
where Cnn(#) and Sun(¢) are the time functions deter-
mined in the following analysis; m and » are the
numbers of nodal circles and diameters on the disk,
and M and N the numbers of terms of the series taken
into account in the analysis. Rn» are space functions
satisfying the boundary conditions, which are approx-
imated by the mode functions of a non rotating disk,
ie,

Ron :]n<Kmnl) + Fon Yn(Kmnl>
a a
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where J. and Y. are Bessel functions and I and Kx
are modified Bessel functions of order # ; Fu. through
Ko are constants determined from the clamped-free
boundary conditions.

Substituting Eq.(4) into Eq.(1), further multi-
plying the resulting equation by #Rq(7)cos(/y)-dndr
and integrating from =54 to « and #=0 to 2z, one
obtains a system of simultaneous ordinary differential
equations of the form

M N .. .. .
P [amncmn+6mn8mn+/1mnCmn

= n=0+ﬂmnSmn+ ¢mncmn+ UmnSmn]ql
+ Anquttn = fau, (6)
q=0,1,2,...M; [=0,1,2,...,N.

In the same way, substituting Eq.(4) into Eq.(1),
multiplying by #Rq(7)sin(lp)dpdr and integrating
gives

mz: ’IZZIO[ FnnSmnt EnnCont AnnSn
4 ZunCmn+ G unSmn~+ Z7mnCmn]ql
+ Augittn= fql, (7)
q=0,1,2,...M; 1,2,....N;
where
Ann= Am =<R%rm>6mq3nl;
Emn= Emn=0,
Ann= A= T R tin{ R%n> maOn,
= - 2nQ{ R%nD Smalns,
ﬁmn—Zn.Q(Rin)@mq@nz,
¢mn (k mn nzgz)<R%zn>5mq8nt

+<aR;fzz>5m+—Bl—Ealr< CuRE:

¢mn:(/; Z-QZ)<R n>6mqanl
+<(7Rm@nl+ kair<Sanmn>z,

Umn= — nE-Qk‘;rm<R%nn>6mq8nl
- Fun(S.CREY

Umn= ngm‘;rm<Rgrm>8mqanl
+ Eaurl CaSIRELY

Aqu: _%Eaerql( E_)COS 1770,
/Tqu: - Eaiqul( E_)Sinlﬂo,
1
Riny= [ 7Rin(7)ad7,

o a2

_-177_6'7le( 77)}qu( 7)d7,

{CaiRELY i =08 n70: C0S Io: Run( E)Ral E2),

<SnClR7llIl£l>i=Sinr R7Joi COS lﬂo:‘ erm( f_i)th( é_i);

CCnSRELY i=cos no: Sin Ino; Run( E)Ral E1),

<Sanr%>i=Sin No: sin 17701' Rmﬂ( E_i)qu( E_i),
(2 for!=0

’81_{1 for [+0’
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3':{1 for i=j
“ 0 fori+j’
—[Gal PR S10+ Gp{ 72 R Sulsin @ T
far= for0<T< T,
0 for < T
]—[_qlzo- ( 8 )
Similarly, substitution of Eq.( 4 ) into Eq.(2) leads to
anityt+ ¢HZ£H
+mE_ mE [ @nnCornt+ CnnSmn)=fu, (9)
where
an ="M,
du= E+ kair,

Omn=— FairRun( & )cos n7,
Wpn=— kawRna( € )sin n7y,
— [ Gat+ Go&cos nolsin @T
fy—{ for0<T< 7. (10)
0 for < T
The nondimensional parameters introduced in the
above equations are as follows.

r(Gr ()

= ha' \z hat \z
_Q=<P ) 2, :<p a ) ’
? 1 1D (11)
__ v =
C—< pha4> c, m phazﬂm’
2 _ 2
F=+—t, Faiw=—>—kar,
_r &
F=— é pr

With the use of matrix expressions, Egs.(6), (7) and
(9) are rewritten as
MX+CX+KX=F, (12)

where X is a matrix of Cur, Sm» and ux, m=0,1,2, ...,
M; n=1,2,...,N. In the following, the Newmark £
method is introduced to obtain the transient response
of the system from Eq.(12). To this end, Eq.(12) is
further discretized in time as

[M +3(40) C+B(At)ZK]Xs+1

=(At)2[BFs+1—!—(l——ZB)FS+ ,BFs—l]

+[2M —(1—-2B8)(4t K] X

- [M —Lnc+ B(At)zK]Xs-l.
Substituting the X determined from Eqs.(13) into Eq.

(4) gives the solutions both for the displacement of
disk # and that of head ux.

(13)

3. Numerical Results

Numerical results that follow are for a 3.5” hard
disk rotating at 3 600 rpm, the physical parameters of
which are listed in Table 1. The parameters of the R/
W head in Table 2 were quoted from Ref. (6)-(8).
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Since the value of the equivalent air film stiffness Zair
depends on the floating space between the R/W head
and the disk surface; and on the shape of the head
slider, two extreme values (lower and upper bounds)
were considered in the example. The series terms in
Eq.(4) were considered up to M =3 and N=6. Here-
inafter, the mode of vibration with m nodal circles
and # nodal diameters will be denoted by the symbol
(m, n).

Figure 2 shows the variations of the natural fre-
quencies as functions of the rotation speed 2. Figure
2(a) is for the case when the stiffness Zar is zero, Fig.
2(b) the case of kar=1X10°N/m, and Fig. 2(c) the
case of kar=>5%X10° N/m. In the figures, the broken
line shows the natural frequency of the R/W head, and
the solid lines the frequencies of the rotating disk. It is
seen from the figures that the natural frequency of the
head fneaqa is about 30 Hz in Fig. 2(a ), and 3 kHz and

Table 1 Physical parameters of hard disks

Outer radius ¢ (m) 47.5x1073
Inner radius 5 (m) 15.5x10~3
Thichness h  (m) 1.25x10~3
Young’s module E (N/m?) 7.06x101°
Density p (Kg/m®) 2.66x10°
Poisson‘s ratio v 0.33
Revolution speed Q (rad/s) | 377.0 (3600 rpm)

Table 2 Physical parameters of R/W head

5.6 kHz in Figs. 2(b) and(c), respectively, i.e. fieaq
is strongly dependent on the air film stiffness %ar. The
frequencies of the disk, on the other hand, are not
significantly affected by the stiffness kar. The fre-
quency of the (0, 0) mode is about 1 kHz at 2=0. It
becomes higher with an increase of the rotation speed.
However, the increase is not significant, and it is less
than 19 at 3 600 rpm. Every mode other than (0, 0)
has two natural frequencies for non-zero rotation
speeds as evident from the (0, 3) curves shown in the
figure. The upper curve is the frequency of a flexural
wave rotating in the same direction as the disk rota-
tion, while the lower curve is the frequency of a wave
travelling in the opposite direction to the disk rota-
tion.

The following figures show the transient response
of the disk-head system when it is subjected to an
impulsive acceleration. The results are obtained by
the Newmark £ method with #=1/4 and 4¢=0.02 ms.

Figure 3 shows the time response of the spinning
disk-head system when it is subjected to an axial
half-sine shock pulse of peak acceleration 5¢(49 m/s?).
The results are shown for the point on the disk (7, »)
=(0.7, 0) and the damping coefficient ¢=1.406"%. The
vertical dot-dashed line in the figures shows the time
when the system acceleration in the axial direction
ceases. The duration of the pulse is (a) r=0.1 ms,
(b) r=1ms and (¢) r=11ms. The solid line shows
the response of the disk and the broken line the
displacement of the head. The parameters of the head

Mass Stiffness | Air Stiffness | Floating Space
m(Kg) |k (N/m) | kair (N/m) (um) are m=3X10"*kg, £#=10 N/m and Aar=1X10°N/m. It
3.43x10~% | 108 1-5 x10° 0.50 was assumed that the initial displacements of the head
Ref 6 3.06x10~% | 108 — 0.65 and the disk are both zero at #=0. It is found that the
Ref.7 - - 2-4 x10° 0.30 head vibrates inphase with the rotating disk at the
—4 J— JR— . .
Ref$ 2.35x10 14.7 frequency of about 1kHz, which is the (0, 0) mode
. 157x10~4 | 7.35 - . — natural frequency of the rotating disk. The natural
This study | 300 100 | 1°5x10 frequency of the head in this case is about 3 kHz as
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Fig. 2 Natural frequencies of 3.5” hard disk-head system versus rotation speed. m=3x10""kg,
k=10 N/m, ( a ) ka]r:(), ( b ) s kairzl X 105N/m, ( C ) Fair=5 X 105N/m
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Fig. 3 Displacement response of spinning disk-head sys-
tem to axial excitation. m=3X10""kg, £=10N/
m, kar=1X10°N/m, G.=5g, G»=0, (v/a, 7)=(0.7,
0

evident from Fig. 2(b), which means that the head is
not vibrating at its own natural frequency but it is
simply following the vibration of the disk. This is
attributed to the fact that the inertia of the disk is
much greater than that of the head, and that the
stiffness of the air film kar is also greater than the
head arm stiffness 4. The figures also show that the
displacements of both the disk and the head take peak
values before or shortly after the system was released
from the disturbance, and that the peak values
increase or decrease depending on the duration of the
input impulse, which leads to an understanding that
there is a duration for which the peak displacement
takes a maximum.

Figure 4 shows the variation of the relative dis-
placement, which was obtained from Fig. 3 by
subtracting the disk displacement from the head dis-
placement. Since the initial displacements of the head
and the disk were set equal to zero in the numerical
calculation, the relative displacement sometimes
takes a negative value as observed from the figure.
However, there is an initial floating space between the
head slider and the disk due to the air film between
them. Then, if the relative displacement is less than
the value of the initial space, the head-disk system
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Fig. 4 Relative displacement of head to disk for the
system of Fig. 3

will experience no impact during operation. This
condition is satisfied for the case of Fig. 4 since the
initial space between the head and the disk is 0.5 - 0.65
pm (6,7) and the negative maximum of the peak rela-
tive displacement is —0.23 pm. Thus the disk-head
system has no crash and is safe under an impulsive
acceleration of 5g. It is also noted that the peak values
of the negative relative displacement increase or
decrease depending on the value of the input duration.
Thus there is a duration for which the peak relative
displacement takes a negative maximum.

Figures 5-8 show the variations of the peak
displacement and the peak negative relative displace-
ment as functions of the input duration. Figures 5 and
7 are the variations of peak displacement for the axial
and the pitching excitations, and Figs. 6 and 8 are the
corresponding results for the peak negative relative
displacement. The abscissa of the figures is the non-
dimensional duration of impulse r/mo, Where myo is the
half-period of the (0, 0) vibration mode. For the 3.5”
hard disk under consideration, the frequency of (0, 0)
mode is foo=1kHz, and the half period is given by wo
=1/2/fo(=0.5 ms). It is found from Figs. 5 and 7 that
both the head peak displacement and that of the disk
take maxima at 7=1.5m. A similar result has already
been found in the analysis of the rotating disk system
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Fig. 5 Variation of peak displacements of disk and head
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Fig. 7 Variation of peak displacements of disk and head
versus input acceleration duration (pitching ex-
citation). m=3%x10"*kg, £=10N/m, Aur=1X10°
N/m, Ga=0, Gp=5g

without a head (see Ref. (9)). It is seen from Figs. 6
and 8 that the peak negative relative displacement
takes a maximum again at 7=1.5m.

The half -sine acceleration with a duration of
11ms is currently commonly used by computer
manufacturrs as a standard input for the shock test of
disk drive units. The figures given above show that the
shock pulse with a duration 11 ms produces only
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Fig. 9 Displacement response of spinning disk-head

systemn with high air film stiffness kar=5Xx10°
N/m. m=3%10"*kg, £#=10 N/m

60 -70% of the maximum displacement that may
appear in the disk-head assembly.

Figure 9 shows the displacement response for the
case of kar=5X10°N/m which is the upper bound of
the air film stiffness given in Table 2. By comparison
with Fig.3 it is seen that an increase of the air
stiffness decreases the difference in displacement
between the head and the disk, which means that the
air stiffness plays an important role in the shock-
proof design of the head-disk assembly. There are
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three parameters that are involved in the design of the
disk-head assembly. They are the mass and the
stiffness of the read/write head-arm system, m and &,
and the stiffness of the air film Aar. Among these
parameters, the control of the air film stiffness
requires a detailed discussion depending on the opti-
mum design of the head slider, which is beyond the
scope of this paper. In the following, attention will be
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Fig. 10 Variation of peak negative relative displace-
ments of head to disk versus stiffness of head arm
L (axial excitation). m=3x10"*kg, kar=1X10°
N/m
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Fig. 11 Displacement response of spinning disk-head
system with optimal stiffness £#=1.3 X 10‘N/m. m
=3X 10_4kg, kar=1X 105N/m

JSME International Journal

417

focused on the optimum values of the stiffness of the
head arm k4.

Figure 10 shows the variation of the peak nega-
tive relative displacement as a function of the head
arm stiffness k. In the figure, the solid line shows the
result when the duration of input impulse is =11 ms,
the dashed line the case of =1 ms, and the dotted line
the case r=0.1ms. It is clear from the figure that
there exist some values of %4 that maintain the peak
negative relative displacement minimum and keep the
space between the head and the disk constant. It is
seen from the figure that the optimal value of % is
(1~2)*10*N/m, which is on the order of one-tenth of
the air film stiffness Aar(=1X10°N/m). Figure 11
shows the displacement response when £ is 1.3X
10°N/m. Comparing with the case of £#=10 N/m (Fig.
3), it is seen that the difference is displacement
between the head and the disk has been greatly
reduced for £=1.3X10*N/m. Furthermore, compari-
son of Fig. 11 with Fig. 9 shows that the results
obtained are almost the same in both cases, which
implies that the stiffness of head has little effect on the
head tracking ability to the disk surface when the air
film stiffness is Aair sufficiently high.

Figure 12 shows the variations of peak negative
relative displacement as functions of the input dura-
tion. The solid line is the result of Fig.11 and the
broken line that of Fig.6. It is observed that the
negative peak displacement for the case of optimal
stiffness £=1.3X10*"N/m is smaller than the displace-
ment for £#=10 N/m regardless of the value of r under
consideration. Thus, it is said that the introduction of
optimal £ is effective in preventing the impact of the
head to the disk surface.

Figure 13 is the result obtained by reducing the
air film stiffness from Aar=1X10°N/m to 1X10‘N/m,
and Fig. 14 that obtained by increasing the head mass
from m=3x10"*kg to 3X107%°kg. In both cases, the
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Liead e | NI | M

0.1
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Fig. 12 Variation of peak negative relative displacement
of head to disk versus input acceleration duration
(axial excitation). m=3X10"*kg, £=10N/m,
—: £=13%10'N/m, --—-: £=10N/m
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Fig. 14 Variation of peak negative relative displace-
ments of head to disk versus stiffness of head-
arm % (axial excitation) with large mass m=23X
107%kg. kar=1X10°N/m

physical parameters, except &air and m, are as given in
Fig. 10. Comparison of Figs. 10, 13 and 14 shows that
the optimal stiffness £ is influenced less by the varia-
tion of the air film stiffness %air than by the magnitude
of the head mass m. This finding is interpreted as
follows. For the case of &ar-=0, the natural frequency
of the head is given by (1/2x)(k/m)"?>. When the
natural frequencies of the heads given in Figs. 10, 13
and 14 are calculated from this equation, they are
obtained as in Table 3. It is evident that the natural
frequencies of the heads in those cases have the same
value, 1.05 kHz. This is simply the (0, 0) mode fre-
quency, fo, of the spinning disk. This means that when
the disk~head system is impulsively excited, the head
and the disk will vibrate at the same frequency, and
with the same phase angle. In this case, since the
relative force between the head and the disk is small
even if the air film stiffness /Aair is introduced, then the
influence of stiffness kar is not significant either. The
optimal stiffness of the head arm % is therefore deter-
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Table 3 Natural frequencies of head for far=0

Fig.10 | Fig.13 | Fig.14
Mass m (x10~* Kg) 3 3 30
Stiffness k (x10¢ N/m) 1.3 1.3 13
Natural Frequency of head (KHz) | 1.05 1.05 1.05

mined from

1 [k
fo=gmi ]2 (14)

Furthermore, it is evident from the comparison of
Figs. 10, 13 and 14 that the region of stiffness that
guarantees a safe operation of the system is narrowed
if the air film stiffness kuir is very small or the head
mass m is very large. In this case, if the stiffness £ is
not selected carefully, a possibility of impact would
not be avoidable.

4. Conclusions

A theoretical study has been presented on the
response of rotating hard disk-R/W head systems
subjected to a half-sine shock acceleration in the
axial and pitching directions. The results obtained can
be summarized as follows.

(1) The peak negative relative displacement,
which is a measure of the possibility of impact
between the disk and the head, takes the maximum
when the input shock duration is about 1.5 times the
half-period of the fundamental (0,0) mode. The
shock pulse with a duration 11 ms, which is currently
commonly used as a standard input for the shock test
of disk drive units, prodces only 60 -709% of the
maximum displacement that may appear for the
rotating disk.

(2) The difference in the displacement between
the head and the disk becomes smaller with an
increase of the air film stiffness. Thus the head slider
should be designed so that the assembled system of the
head and the disk has a high air film stiffness.

(3) The optimal head arm stiffness £ is deter-
mined from

1 k

Joo= AT
where foo is the fundamental (0, 0) mode frequency of
the rotating disk, and  is the mass of the head.

(4) The durability of disk-head systems to the
shock pulse can be evaluated by the method presented
in this paper.
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