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Abstract—This is an extension of results represented in
ISIT2003. Concavity of the auxiliary function which appears in
the random coding exponent as the lower bound of the quantum
reliability function for general quantum states is proven for
0<s<1.
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I. INTRODUCTION

In quantum information theory, it is important to study the
properties of the auxiliary function E, (7, s), which will be
defined in the below, appearing in the lower bound with respect
to the random coding in the reliability function for general
quantum states. In classical information theory [7], the random
coding exponent ES(R), the lower bound of the reliability
function, is defined by

B2 (R) = max [E.(p,s) — 1]

As for the classical auxiliary function E.(p,s), it is well-
known the following properties [7].
(a) E.(p,0)=0.

(b) Mh:o =1(X;Y), where I(X;Y) presents the

classical mutual information.

(¢) E.(p,s)>0(0<s<1).
E.(p,s) <0 (-1<s<0).
OE.(p,s)

d ————=>0,(-1<s<1).
82Eas(p s)
(e) TSO, (-l1<s <.

In quantum case, the corresponding properties to (a),(b),(c)
and (d) have been shown in [11], [10]. Also the concavity of
the auxiliary function E4(m, s) is shown in the case when the
signal states are pure [3], and when the expurgation method is
adopted [10]. However, for general signal states, the concavity
of the function E,(w, s) which corresponds to (e) in the above
has remained as an open question [11] and still unsolved
conjecture [10].
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II. QUANTUM RELIABILITY FUNCTION

The reliability
defined by

function of classical-quantum channel is

1
—liminf = log P.(2"% n), (1)

n—oo n

0<R<C,

E(R)

where C' is a classical-quantum capacity, R is a transmission
rate R = % (n and M represent the length and the
number of the code words, respectively), P.(M,n) can be
taken any minimal error probabilities of minyy y P(W, X) or
minw x Ppax (W, X). These error probabilities are defined by

M
_ 1
F«vvaAﬂ = jZ:ZE:}%(Vvaﬂga
7j=1
Pmax(W7X) = 121];?5\430/\)72();

where
Pj(W,X) =1-TrS,;X;

is the usual error probability associated with the positive op-
erator valued measurement X = {X;} satisfying Z]]Vil X; <
I. Here we note S,,; represents the density operator corre-
sponding to the code word w7 choosen from the code(blook)
W = {w',w?, -, wM}. For details, see [9], [11], [10].
We assume that the words in the codebook WV are chosen at
random, independently, and with the probability distribution
IP{U): u1r~~

yin)} = iy oo T,

for each word. We shall denote expectations with respect to
this probability distribution by the symbol £. In [3], it was
conjectured that the random coding bound is given in the
following;

Emin POW, X)
X

n

IN

a . 1+s
¢ inf (M —1)* |Tr (Z«ﬁﬁ) . Q)

0<s<1
- i=1
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1
The bound (2) holds for pure states S; in which case Sim =
S; and ¢ = 2. For commuting S; it reduces to the classical
bound of Theorem 5.6.2 in [7] with ¢ = 1. By putting M =
27F it implies the lower bound for the reliability function
defined in Eq.(1), when we use random coding, is given by

E(R) > EY(R) = max sup [E, (m,s) — sR],

T 0<s<1
where m = {m1, 2, -+, T} is a priori probability distribution
o a
satisfying > ;_, m; = 1 and

E,(m,s)

a L 1+s
= —logTr (Z msim> , 3
i=1

where each S; is a non-degenerate density operator which cor-
responds to the output state of the classical-quantum channel
i — S; from the set of the input alphabet A = {1,2,---,a}
to the set of the output quantum states in the Hilbert space
‘H. For the problem stated in previous section, a sufficient
condition on concavity of the auxiliary function was given in
the following.
Proposition 2.1 ([6]): If the trace inequality

a i . 2
Tr | A(s)® ijsjm <logSj1+s)
=1

2
1 >
s

A(s)hts Z m; H (SJ”
j=1

> 0. “

holds for any real number s (=1 < s < 1), any density
matrices S;(i = 1,---,a) and any probability distributions

7 = {m;};_,, under the assumption that A(s) = >°¢_, mSl“
is invertible, then the auxiliary function E, (,s) defined by
Eq.(2) is concave for all s (-1 < s < 1). Where H(z) =
—xlogx is the matrix entropy.

We note that our assumption “A(s) is invertible” is not so
special condition, because A(s) becomes invertible if we have
one invertible S; at least. Moreover, we have the possibility
such that A(s) becomes invertible even if all S; is not
invertible for all 7; # 0.

n [13], Yanagi, Furuichi and Kuriyama proved the concav-
ity of E, (m,s) in the special case a = 2 with 71 = 7y = %
under the assumption that the dimension of H is two by
proving the trace inequality (4). And recently in [5], Fujii
proved (4) in the case a = 2 with 711 = my = % under any
dimension of H. In this paper we prove (4) for any a under
any dimension of #. Then it is shown that E,(m, -) is concave

on [0, 1].
III. MAIN RESULTS

We need several results in order to state the main theorem.

Definition 3.1 ([1],[2]): Let f, g be real valued continuous
functions. Then (f, g) is called a monotone (resp. antimono-
tone) pair of functions on the domain D C R if

(f(a) = f(b))(g(a) — g(b)) 2 0 (resp. <)
for any a,b € D.

Proposition 3.2 ([1],[2],[5]): If (f,g) is a monotone (resp.
antimonotone) pair, then

Tr[f(A) X g(A)X] < Tr[f(A)g(A)X7] (resp. 2)

for selfadjoint matrices A and X whose spectra are included
in D.
Now we state the main theorem.
1

Theorem 3.3: Let S;** = A; (i =1,...,a). Then

[(ZW;CA;C) Zm logA
_ (;kak)s (;mAilogAi)Q

>0,

for s > 0.
We have to need the following lemma to prove the theorem.

Lemma 3.4 ([8]): For the continuous function f : [0,a) —
R, (0 < a < c0), the following statements are equivalent.

(i)  f is operator convex and f(0) < 0.

(i) For the bounded linear operators K, (i =
1,2,...,n) satisfying o(K;) C [0,a), where o(Z)
represents the set of all spectrums of the bounded
linear operators Z, and the bounded linear operators
Ci,(i=1,2,...,n) satisfying > | CFC; < I, we
have

f(iC:KiCi) < ici*f([( C
i=1 i=1

Proof. We apply Lemma 3.4. If Z C;
=1

C; = I, then

EajC;‘X?Ci > (ZajC;Xici)z

i=1 i=1

holds for any Hermitian operators X;, since f(z) = z? is

operator convex on any interval. We put

X, =logA;, C;=

1/2(27”“4’6)*1/2
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,a. Since Z C;C; = I, we have

fori=1,2,...
i=1
Z (Z”Ak) o 2(7fiAi)1/2(10gAi)2
(ﬂ.iAi)l/z(Zﬂ_kAk>—l/2
k=1
—1
> E (Zﬂ'kAk) (771 i)'/%log A;

i=1

(WiAi)l/z ( i '/TkAk) —1/2

And so we have

(Z 7rkAk —1/2 Z(WiAi)l/z (IOg A2)2

=1

(WiAi)lm(Z ﬂ,kAk)fl/Z

k=1
> (iﬁkAk)71/2(i7TiAi logAi)
k=1 i=1

e —1/2
(o mecte)

Hence it follows that

a

D (miAi)' P (log Ai)? (i Ay

i=1

( iﬂ'iAi IOgAi) (i ﬁkAk) -
=1 k=1
(za:ﬂ'iAi IOgAl)
=1
Then we have
(ikak) iml (log A;)?
k=1 =1
(iﬂ-kAk)s/Q
k=1
@ s/2 e
(;mk)l(;mxi log 4;)
(Zkak)s/Q
k=1

Thus

|: iﬂ'kAk iﬂ'zAz IOgA)
=1
|: za:ﬂ'kAk (za:ﬂ',AZlOgA,)
i=1
() (S moss)
k=1 =1

Since f(z) = z* (s > 0) and g(z) = ™', it is clear that
(f,9g) is an antimonotone pair. By Proposition 3.2,

(Z’/TkAk) Zm (log A;)?
(Zkak) 1(;ﬂiAilogAi)2
0.

v

We conclude that in this paper we finally solved the open
problem given by [10] [11] that E,(m,-) is concave on [0, 1].
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