On some double coset decompositions of the Weyl group of the simple Lie algebra of type F_4

KASAI, Shinichi

Department of Mathematics, Faculty of Education, Yamaguchi University

(Received September 25, 2009)

Introduction. Let \mathfrak{G} be a complex semisimple Lie algebra, R the root system of \mathfrak{G} , $\Pi = \{ \alpha_1, \cdots, \alpha_l \}$ the simple roots of \mathfrak{G} . The group W = W(R) generated by the reflections r_{α_i} with respect to α_i ($1 \leq i \leq l$) is called the Weyl group of \mathfrak{G} . Put $r_i = r_{\alpha_i}$ and sometimes we write simply i for r_i . Let $S = \{ r_1, \cdots, r_l \}$ and the length $\ell(w)$ of $w \in W$ with respect to S is defined to be the smallest t for which $w = \tau_1 \cdots \tau_t$, where τ_i is a reflection with respect to some simple root. For a subset I of S, let W_I be the subgroup generated by I. For subsets I and J of S, let $(W_J \setminus W/W_I)_s$ be the representatives of $W_J \setminus W/W_I$ consisting of the shortest element in each double coset. We write $(W/W_I)_s$ for $(W_\emptyset \setminus W/W_I)_s$.

In this note, we consider the case where \mathfrak{G} is the simple Lie algebra of type F_4 : $\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \text{and} \quad S - I \text{ consists of one simple reflection } r_i \text{ and}$ we shall obtain the coset representatives in $(W/W_I)_s$ and $(W_I \setminus W/W_I)_s$.

1

From [1] and [2], we have the following:

Lemma. (1) For subsets I and J of S, we have $(W_J \setminus W/W_I)_s = \{ w \in W ; (i) \ \ell(xw) > \ell(w) \text{ for } \forall x \in J, \ (ii) \ \ell(wy) > \ell(w) \text{ for } \forall y \in I \}.$

(2) For $I \subset S$, put $\Pi_I = \{ \alpha \in \Pi : r_\alpha \in I \}$. Let W'_{Π_I} be the set of $w \in W$ such that $w\Pi_I > 0$. Then each $w \in W$ can be written uniquely w = w'w'' with $w' \in W'_{\Pi_I}$ and $w'' \in W_I$. Hence $(W/W_I)_s = W'_{\Pi_I}$.

By simple calculation, we obtain the following propositions.

Proposition 1.1. In the case of $S - I = \{1\}$, the coset representatives of $(W/W_I)_s$ consist of 24 elements that are given by the diagram as in Figure 1.

Proposition 1.2. In the case of $S-I = \{4\}$, if we replace i by 5-i $(1 \le i \le 4)$ in Figure 1, we obtain the diagram which gives the coset representatives of $(W/W_I)_s$.

Proposition 1.3. In the case of $S - I = \{2\}$, the coset representatives of $(W/W_I)_s$ consist of 96 elements that are given by the diagram as in Figure 2.

Proposition 1.4. In the case of $S-I=\{3\}$, if we replace i by 5-i $(1 \le i \le 4)$ in Figure 2, we obtain the diagram which gives the coset representatives of $(W/W_I)_s$.

2

By propositions in §1, we obtain the following results.

Proposition 2.1. In the case of $S - I = \{1\}$, $(W_I \setminus W/W_I)_s$ consists the following five elements.

Proposition 2.2. In the case of $S - I = \{4\}$, $(W_I \backslash W/W_I)_s$ consists the following five elements.

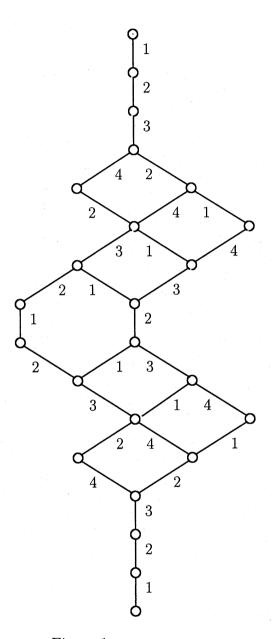


Figure 1: •—○⇒○—○

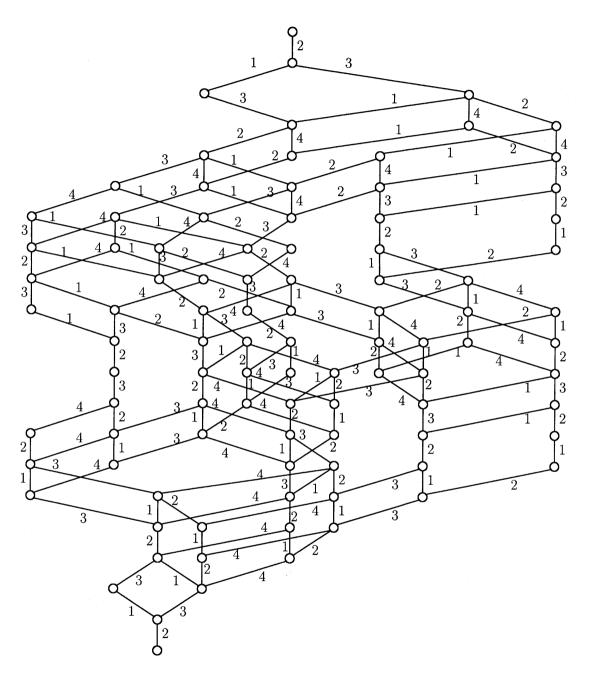


Figure 2: 0——0

Proposition 2.3. In the case of $S - I = \{ 2 \}$, $(W_I \backslash W/W_I)_s$ consists the following 17 elements.

(1) e

(2) 2

(3) 232

(4) 2132

(5) 234232

(6) 2321232

(7) 2324132

(8) 2314232

(9) 23214232

(10) 2321234232

(11) 2324321232

(12) 23412321432

(13) 231231432132

(14) 2324132314232

(15) 23241232314232

(16) 2324123243214232 (

 $(17) \ 23241234213243214232$

Proposition 2.4. In the case of $S - I = \{3\}$, $(W_I \backslash W/W_I)_s$ consists the following 17 elements.

(1) e

 $(2) \ 3$

(3) 323

(4) 3423

(5) 321323

(6) 3234323

(7) 3231423 (10) 3234321323 (8) 3241323

(9) 32341323 (12) 32143234123

(13) 324324123423

(11) 3231234323 (14) 3231423241323

(15) 32314323241323

(16) 3231432312341323

(17) 32314321342312341323

References

- [1] Bourbaki, N., Groupes et algèbres de Lie, Ch. 4, 5 et 6, 1968.
- [2] Steinberg, R., Endomorphisms of linear algebraic groups, Memoirs of the AMS, 80, 1968.