Paper presented at the 1st International Conf. on Motion and Vibration Control, Yokohama, September 1992
Session : Information Instruments

VIBRATION AND DEFLECTION OF A SILICON-WAFER SLICER CUTTING
THE CRYSTAL INGOT

Seiji Chonan and Zhong-wei Jiang

Department of Engineering Science, Tohoku University, Aramakiaza Aoba, Aoba-ku, Sendai, 980 Japan
Yasuhiro Yuki

Toyo Engineering, Co., Ltd., Japan

ABSTRACT

Vibration and deflecton of a silicon-wafer slicer cutting the crystal ingot is studied analytically. The blade
is clamped at the outer boundary and stressed initially in the radial direction, while the inner periphery
is subjected to distributed in-plane and lateral slicing loads from the workpiece. The stresses from the
tensioning, spinning and loading from the workpiece are taken into account in the stress distribution in
the blade. The solution is obtained by introducing the multi-modal expansion and applying the Galerkin
method to the governin% equation of the blade. Numerical results are presented for an actua,l%US 301 blade
cutting a 6" diameter silicon ingot. Results obtained show that the initial tensioning has a significant effect
on the natural frequencies of the blade, while the lateral deflection of the blade 1s much affected by the
lateral reaction force from the ingot.
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INTRODUCTION

Information-intensive culture has accelerated the development and production of computers and their pe-
ripheral equipments, which also has stimulated the development of semiconductor industry and accelerated
the production of silicon wafers.

The ID(inner—dia.meterg saw blade is nowadays commonly used in the crystal wafering. It is a thin annular
blade with diamond abrasive at the inner edge while clamped along the the outer periphery. The blade
is tensioned initially at the outer edge to increase the stiffness. Still, the blade vibration and the lateral
displacement can cause the degradation of the blade flatness and leads to a damage of the wafers. It is
therefore of technological importance to investigate the behaviours of the ID saw blade cutting the crystal
ingot.

A lot of papers have been published on the vibration characteristics of spinning blades. Most of them are
concerned with the blade tﬁat is clamped at the center and free along the outer edge. Iwan and Moeller[1]
studied the stability of a spinning clamped-free elastic disk moving in contact with a stationary mass, spring,
and dashpot. Radcliffe and Mote[2] and Srinivasan and Ra.ma.murtik')']) extended the buckling and vibration
stability theories for centrally clamped rotating disks to include the effects of concentrated inclined edge
loads. Benson and Bogy[4] addressed the problem of steady deflection of a very flexible spinning disk to
transverse loads that are fixed in space. Further, Ferguson and White[5] studied the free vibration charac-
teristics of a clamped-free disk under the action of a static in-
plane peripheral load and having the constraint at the outer
periphery. Jiang et al.[6][7] studied the steady state response of
a read /write head floppy disk system to axial and pitching oscil-
lations. As for the free-clamped blade, only a few papers have
been published during the past years. Forman and Rhines[§]
obtained the natural frequencies and associated mode shapes of
the crystal slicing ID saw blade. The effect of stresses from ini-
tial tensioning was taken into acount, while the flexural rigidity
of blade and the stresses from rotation were ignored. Chonan
and Sato[9] investigated the flexural vibration and stability of
freely rotating free-clamped blades. Further, Chonan et al.[10]
obtained the in-plane stress distribution in a silicon-wafer shcer
cutting the crystal ingot.

This paper is a study on the vibration and deflection of a silicon-
wafer slicer cutting the cylindrical crystal ingot. The stresses in
the blade caused from the tensioning, spinning and loading from
the workpiece are all taken into account in the analysis. The
solution is obtained by introducing the method of multi-modal
expansion and applying the Galerkin method to the governing
equations of the system. Numerical results are presented for .
an actual SUS 301 blade cutting a 6diameter silicon ingot at “

,,1550rpm, Fig. 1. Geometry of problem and co-ordinates.
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FORMULATION AND ANALYSIS

Figure 1 shows an ID saw blade slicing a silicon ingot at a constant angular speed Q. The blade has a
. thickness h and is free at an inner radius (r = b). After tensioned in the radial direction at the outer radius
(r = @'}, the blade is clamped from both sides by rigid rings in the range r = a—a'. In the figure, the (r,0) is
the co-ordinate frame rotating with the blade, while the (r,n) the frame fixed in space. The inner periphery
of the blade is acted upon by the radial compressive force N (N/m?) and the circumferential shear force
T (N/m?), both of which are distributed uniformly over the arc | 9 | < 70. The resultant of N and T is
denoted by P, and the inclination of P to T by 8y as shown in the figure. In the analysis that follows, the
lateral (out-of-plane) force acting uniformly along the inner periphery | 7 | < 5o is approximated by a series
of concentrated lateral forces. By denoting the concentrated force at the point (rg,nm:) by gi, the lateral
force ¢(r,n,t) acting on the plate is written as

K

K
g(rm,t) =Y a(1/0)6(r —re)6(n —me), 3 ax = Zr, (1)
k=1

k=1

where §( ) is the Dirac delta function, Z; is the resultant lateral force acting on the plate, and K is the
total number of concentrated forces assumed.

The stresses in the blade cutting the silicon ingot are, with respect to the co-ordinate frame fixed in space
(r,n), (Chonan et al., 1991)

o (r,n) =0c.(r) + 0p,(r) + on-(r,9) + o1, (1, 7), (2)

ao(r,n) =ocn(r) + 0By (r) + ony(r,n) + o1y (7, ), (3)
Try (7'7 77) =TNr17("a 77) + Treg (7') 77)' (4)

Here, o, is the in-plane, radial normal stress, ¢y, the hoop stress, and 7., the shear stress in the blade; a¢.(7)
and ooy (r) are the stresses due to the initial tension o along the outer periphery r = ¢/, and op,(r) and
oy (r) are the stresses induced by the centrifugal force from the blade rotation; non-axisymmetric stresses
represented by oy, (7,) — 7ryq(r, n) are the stresses due to the in-plane reaction force from the sliced ingot
at the inner periphery.

The governing equation for the flexural vibration of the blade referred to the co-ordinate frame fixed in
space is

D[8%/0r% + (1/r)0/Or + (1/7)28% /80> w + ph[0/8t — Q8 /dn]*w
— h[(1/r)8/8r(ra, 0w/dr) + (1/r2)0/8y(a, 0w/8) + (1/7)8/0r(7eq 0w /[0n) + (1/7)8 (0077, 0w/ 3r))]

K
=Y ar(1/)8(r — r2)(n — m), ' (5)

k=1
where w(r,7,t) is the lateral displacement of the blade, D(= Eh3/12(1 — v?)) is the flexural rigidity, E is
the young’s modulus, v is the Poisson ratio and p is the mass density of the blade.

One assumes the solution of equation (5) in a series form

M N
w(r,n,t) = Z Z[C”"‘ (t) cos(ny) + Smn(2) sin(nn)] Rma (7). (6)

m=0n=0

Here, R, is the mode function of a non-rotating stationary blade with a free inner edge (r = ) while
clamped along the outer boudary (r = a), and m and n are the numbers of modal circles and diameters on
the blade. Ry, is given by

R»mn(r) = Jn(kmn"') + anYn(kmnr) + GmnIn(kmnT) + Hmnl{n(kmn"‘): (7)

where J, and Y, are Bessel functions of the first and second kinds, and I, and K, are modified Bessel
functions ; Finn —~ Hpp, are unknowns and k,,,’s are eigenvalues determined from the boundary conditions

of the blade.

Substituting equation (6) into equation (5), further applying Galerkin method to the resulting equation,
one has a system of simultaneous ordinary differential equations of the form

-

MX +TX + KX = Q, (8)
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where Table 1. Physical Parameters of Slicing Blade

X = [COO(t); COl(t)) SOl (t)a Ty Cmn(t)) Smn(t)]T-

a' = 0.3125 (m) v =0.28
Here, M, T', and I){( are t?e m:«;tltgcels1 of i;he dimensionh[(zlzl +  a=0.298 (m) p = 7.84 x 10%(kg/m®)
D29+ 1] x[(p+1)(2¢+1)], an the column vector which is — —
a,%)(pgared):liue[(to the lateral {oading at the disk inner periphery, 0=0120(m) = E=199x 10% (N/m?)

- -3 - 8 2
Equation (8) reduces to that of the natural vibration when one h=0.15x107" (m) oo =7.05 x 10° (N/m?)

puts Q = 0. In this case, the equation is further modified as

Table 2. Edge Loading Distribution

a = Ha, o (9)
where ) P(x10'N/m?) 6  Z; (N)
0 I ' 10° 154.08 66.79° 0.49
i=[X, X|¥, H= [ - . ] . 20° 277.10 75.09°  2.06
’ ’ -M7K -M~T 30° 290.74 74.89° 3.14
X 39.42° 295.50 74.10° 4.32
Substituting
a = A exp(iw?) (10) 78.4 r
into equation (9), one has
. N
|H —iwl|=0. (11)
This is the frequency equation for a freely rotating blade with 2
the in-plane slicing load at the inner periphery. On the other § ,,| i
hand, when one assumes that a long time has passed since the =
lateral force was applied to the blade, one obtains the steady 2
state response of the blade from 7
KX = Q. (12)
: . »
After having X from the above equation, the displacement of R \1&
the blade is determined from 0 03 0
M N Cutting Depth of Ingot z;/2as
w(r,n) = Z Z[C,,m cos(nn) + Spmn sin(ny)| Rmn(r). (13) Fig. 2. Slicing load (measured).

m=0n=0

NUMERICAL RESULTS AND DISCUSSIONS

Numerical results that follow are for a SUS 301 blade of inner radius 0.120 m, outer radius 0.3125 m and
thickness 0.15 mm cutting the slicon ingot. The physical parameters measured are shown in Table 1. g is

the initial tension applied at the outer periphery (r = a’) for which the inner hole of the blade is widened
by Ab = lmm.

The depth of cut of the ingot, z, is a function of the angle of contact 1y between the ingot and the slicing
blade, i.e.,

3[(770) _ {a,I - b(l — COS 77()) - (a% — b?sin? 1)0)1/2 for 0 < z;(no) < .’Bj(noMAx), (14)

ar —b(1 — cosno) + (a% — b® sin? 170)1/2 for zr(nomax) < zr(no) < 2ar.

- Here, ay is the radius of ingot, and fomes(=arcsin(as/b)) is the maximum contacting angle between the
blade and the ingot.

Figure 2 shows the variation of the slicing load measured for an actual sawblade cutting a 6" diameter
silicon ingot. In the figure, N1 and 7T are respectively the resultant in-plane radial and circumferential
cutting forces, while Z; is the lateral force acting on the inner edge from the ingot. Combining Figure 2
with equation (14), one can describe the variation of the loads as functions of the contacting angle ng. Some
results are presented in Table 2. The slicing loads at no = 30° correspond to the loads at the depth of cut
z7 = 13.15 mm in Figure 2. .

. Figures 3(a)—(c) show the variations of the radial normal and circumferential hoop stresses, ¢, and o,, and
the shear stress 7., along the 7 = 0° line for the case of load distribution 79 = 30°. In the figures, the curve
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Fig. 3. In-plane stresses versus radial coordinate;
Curvel=Stress from slicing edge load; Curve2 =Stress from rota-
tion; Curve3=Stress from tensioning at the outer edge; 5 = 0°,
@ = 1550 rpm, P = 290.74 x 10* N/m?, 8; = 74.89°, no =
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Fig. 5. Effect of the slicing load on natural frequncies; (oo =
7.05 x 108 N/m?)
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o Natural frequencies with slicing load (P = 290.74 x 10* N/m?,
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1 is the stress from the sliced ingot, the curve 2 the stress induced by the centrifugal force at the rotation
1550 rpm, and the curve 3 the stress from the initial tensioning along the blade outer periphery r = a’. The
curve 14243 is the actual, resultant stress given by the superposition of curves 1 through 3. For the cases
of normal and hoop stress distributions (Figures 3(a) and (b)), the streses from the slicing load and the
centrifugal force are negligibly small compared with the stress from the tensioning at the outer edge. The
shear stress (Figure 3(3) 1s just the stress from the slicing load, since the centrifugal force and the initial
radial tension are both axisymmetric and induce no shear stresses in the blade. The results that follow are
for the blade with the stress distribution presented in Figures 3(a)—(c).

Figures 4 and 5 show the variations of natural frequencies of laterally vibrating blade versus the rotation
speed. Figure 4 is the result for the blade with no slicing load (P = 0 N/m?), and no initial tensioning (oo =
0 N/m?). The symbol (m,n) indicates that the curve is for the frequency of the mode with m nodal circles
and n nodal diameters on the blade. It is seen that each mode, except the (0,0) mode, has two natural
frequencies for a speed of revolution. The higher frequency is the one for the flexural wave travelling in
the same direction as the blade rotation, while the lower frequency is the frequency for the regressive wave
propagating in the opposite direction to the blade rotation. It is seen that the frequency of the backward
wave deceases monotonously with an increase of the rotation speed. After decreasing to zero, it again
increases when the rotation speed increases further. The frequency of the forwarding wave, on the other
hand, first becomes greater with an increase of the rotation speed. However, after ariving at the maximum
it then decreases and coalesces with the frequency of the backward wave. After the coalescence, the two
frequencies take complex conjugate values. A flutter type of instability appears on the blade if the rotation
speed increases further. The frequency of fundamental (0,0) mode decreases as the rotation speed increases.
After arriving at zero it then takes a purely imaginery value if the speed becomes higher. The rotation
speed at which the frequency drops to zero is the speed that brings about a divergence type of instability
on the blade. The blade in this case is buckled by the centrifugal force from the rotation.

Figure 5 shows the frequencies of the blade having an initial tension gy = 7.05%10% N/m?. The solid lines
are the frequencies for the blade with no slicing load (P = 0 N/m?), while the circles in the figure show the
frequencies for the blade whth a slicing load (P = 290.74x10* N/m?, 8y = 74.89°, no = 30°) at the inner edge.
It is found that the slicing load has no considerable effect on the blade frequencies. Further, comparison
with Figure 4 shows that the natural frequencies are increased significantly by the initial tensioning of the

blade. For the operation speed of 1550 rpm or for the nondimensional rotation speed (x/30)+/pha*/DQ =
63.43, the blade without initial tension is unstable due to the buckling. It is said that the stress from the
initial tensioning increases the blade stiffness and stabilizes the blade response.

Next, one obtains the deflection of the blade that is cutting a 6" diameter silicon ingot. In the calculation,
the lateral load was approximated by concentrated forces uniformly distributed over 100 points along the
inner arc of periphery |n| < 70, which means that the lateral load in equation (1) is assumed by ¢ = Z;/K
with K = 100. The results that follow are for the series terms of equation (6) taken up to M = 2 and N =
3. .

Pigure 6 shows the variation of the blade tip displacement versus the depth of cut of the ingot z; when the
in-plane and the lateral forces acting on the blade is varied as shown in Figure 2. The displacement takes
on the maximum at the maximum contact angle o = 39.42° or at the depth of cut z5/2a;r = 0.32. It is
also noted that the variation of the displacement is significant at the initial and finishing stages of slicing.

Figure 7 shows the variation of the blade deflection plotted with the operation speed 2 taken as a parameter.
The in-plane and lateral forces applied at the edges were fixed at constant magnitudes. The displacement is
nearly constant at the lower operation speeds, however it increases rapidly as the revolution speed approaches
the first critical speed, i.e., the speed at which the frequency of (0,1) mode drops to zero.

Figure 8 is the variation of the blade deflection when the lateral force Zy is increased. The displacement
becomes greater monotonously with an increase of Zy. Figure 9 shows the variation when the in-plane
slicing load P is increased. It is noted from the figure that the in-plane force has no significant effect on the
blade response. Finally, Figure 10 shows the variation of the displacement when the width of distribution of
the lateral cutting force Zy is varied, with the in-plane cutting force P retained at 3.14 N. The magnitude
of lateral force acting per unit length of edge is Z;/(2n7bm/180) N/m, where 277 is the width of distribution
of the lateral load. Comparison with Figure 8 shows that the tip deflection of the blade is much affected by
the magnitude of the lateral load, but not to the width of the distribution.

CONCLUSIONS

(1) The initial tensioning has a significant effect on the natural frequencies of the working blade. The
freqencies for the lateral vibration of the blade are much increased by the stresses from the tensioning. The
stresses from the in-plane slicing load and the centrifugal force, on the other hand, have no noticeable effects
on the blade frequencies.

(2) The lateral deflection of the blade is not much affected by the in-plane cutting force. On the other hand,
it is sensitive to the variation of the lateral reaction force from the ingot. The lateral deflection becomes
" greater and takes on the maximum as the lateral force increases and comes to the maximum.
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Fig. 7. Deflection of the blade inner edge with varied rotation speed
Q; P=290.74x10* N/m?, 6'= 74.89°, Z; = 3.14 N, no = 30°,
oq = 7.05 x 108 N/m?. (a) Q=1550rpm; (b) = 733Lrpm;
(c) ©=17105rpm; (d) O =24436rpm.
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Fig. 8. Deflection of the blade inner edge with varied lateral load
(Zr); 9 = 1550 rpm, Z; = 3.14 N, P = 290.74 x 10* N/m?,
6o = T4.89°, no = 30°, oo = 7.05 x 108 N/m?. (a) Z; = 2N;
(b) Zr=4N; (c¢) Zr=6N; (d) Zr=8N.
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