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ABSTRACT

This paper presents a study on the vibration
and stability of a read/write head disk system
subjected to external axial and pitching
oscillations and a parametric study on the optimum
design of the coupled system. The solution is
obtained by applying the Galerkin method with the
multi-modal expansion approximation. In the
analysis, the read/write head is modeled as a
mass-spring system and the stiffness of the air
film in the disk cover is approximated by the

‘stiffness of the springs uniformly distributed
under the disk. Both axial and pitching
excitations are considered as external
disturbances. Numerical results are given for the
5.25" floppy disk drive system.

INTRODUCTION

With the - development of technology it has
become commonly observed that the computers are
installed in transport vehicles such as
automobiles, ships and aircrafts. The vehicle
vibration causes the excitation of the floppy disk
drive unit. In some cases it leads to the signal
loss 1in the computer and, as a.result, decreases
the reliability of the disk read/write process.
It is therefore of technological importance to
investigate the dynamic behavior of the disk
system in such circumstances, in order to take
suitable measures.

Many papers have been published during the
past years on the vibration of rotating disks.
Barasch and Chen(l) studied the transverse linear
and nonlinear vibrations of circular and annular
disks rotating freely about their axes with a
constant angular velocity. Benson and Bogy(2)
addressed the problem of steady deflection of
flexible spinning disks subjected to transverse
forces that are fixed in space. Hutton, Chonan
and Lehmamn(3) analyzed the dynamic response
characteristic of rotating disks when subjected to
the effect of forces produced by stationary spring
guides. As a related problem in this field, Iwan
and stahl(4) and Mote(5) studied the vibration and
stability of a stationary disk excited by mass-
spring—damper systems moving around the disk in a
circular path, with a constant angular velocity.
Further Iwan and Moeller(6) and Good and Lowery(7)
invéstigated the response of spinning disks with a
stationary mass-spring-dashpot system or multiple

degree-of-freedom structure, the read/write head
floppy disk system.

This paper is concerned with the vibration
and stability of a read/write head disk system
subjected to external axial and  pitching
disturbances. The parametric study on the optimum
design of the coupled system is also presented.
The solution is obtained by applying the Galerkin
method with the multi-modal expansion
approximation. Numerical results are given for
the 5.25" floppy disk drive system.
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Fig. 1 Geometry of problem and co-ordinates

FORMULATION OF THE PROBLEM

Figure 1 shows a floppy disk of outer radius
a and inner radius b, rotating with a constant
angular speed @ in the clock wise direction. The
disk has a stationary R/W head, which is
represented by a mass-spring system. The
stiffness of the air film in the disk cover 1is
approximated by the stiffness K of the springs
lying uniformly under the disk. Three coordinate
frames are introduced in the following analysis,
considering that the disk is spinning about the
axis and at the same time it is excited by the
external displacement inputzoo. One denotes the

frame rotating with the disk but stationary in the
axial direction by (z, », 0 ); the frame fixed on
the rotating disk by (w,r , 6); and the frame
fixed on the excited disk unit by (u,r , n). The
radial coordinate r is common in three cases,
while 3 and w are related through

z2=w+wo - i @
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In the following one denotes . the lateral
displacement of the plate in the (z,r,0) frame by
z and the corresponding displacement in (w ,»r ,0 )
by w .

In this case the equation of motion of the

plate is, with respect to the (2 ,r ,0 ) frame
oh(P2[0t*) rdOdr + k(z— we) rdrd@
=(0/0r)(Qrrd8)dr +(3/36)(Qedr) rd6
+(0/dr ) orhrd8ow/dr)dr
+(9/r36)(oehdrdw(ral) rdf
+(3/r36) orehdrdw/dr) rd6
+(9/or Y orehrdBow(r3b)dr

+ qrdrdd : (2)
where )
Q.= —D(dfar) P w/or*+ (1 [r)dw/or
+(1/r?)Pwlo6%)
Qo=—D(3/rd0)[Fw/ar*+ (1 [r)ow/or
+(1/r")*w/a6%] 3)

Here, p is the mass density, % the thickness and k
the stiffness of uniform springs; g is the lateral

force per wunit area applied to the disk by the -

mass-spring system; gr and Og are the centrifugal

stresses generated by the disk rotation. By using
the delta function, gis expressed as

a(7, 8, )=~[m.3z/ot* + k(2 — wn)]
X[8(0—3»*Qt+2ﬁn)/r]8(r—6) %)

where my, and kL are the equivalent mass and
stiffness of R/W head, (g, eo) the head location on

the disk; #i is chosen so that 2AT E'Qtég(ﬁ+l)ﬂ
Combining egs.(2)-(4) and further introducing
eq.(1) to transform the coordinate frame -from
(z,»r,0) to (w, », 8), one has

DP*w+ phPw/lot*+ phc?’wo/c?t’.+ xw
— h[Q/rX8/or)(rordw/ar)
+(1/r)X(8/86)(003w/36))
=—(m. w/ot* + m.3 wo[3t*+ kyw)

x[8(6—G—Qt +27x)/r}o(r—£&) )
where
D=Enr[1201—1?)
v'=[&lar*+(1/r)dlor + (1 /r )& /367 (6)

Here, E is the Young's modulus and V the Poisson's
ratio.

To describe the system response with respect
to the frame fixed on the disk unit, one further
transforms the-coordinate frame from ( w,r, 6) to
(4, », n). With the use of

O=n+2t-2#nr

w(r, 6, )=ulr,n,t)

o7, O)=0:(r,7), a7, 8)=0c.(r, 7)
"w/dr™="ufdr®, "w/o6™="ulop™

3" w/ot™=(a/dt — Q0/on)"u

3™ wo/ot™=(3/0t)"wo(r, 1, t) ' (7)

the equation of motion transformed is obtained as

DV*u+ ph(3* [ot* — 208 [anat + Q2@ JonD)u
+xu~ h[(1/rX3/3r X ro,0uldr)
+(1/r)*(3/07)(020u/o7))
+[mu(3* /012~ 208 /670t + 223 [p?) u
+ku)o(n—m)d(r—€)/r
= — phd® wo/dt*— m.* we/
0t*8(n—m)o(r—&)/r : (8)

The solution of equation (8) may be written
in the form

u(r, 7, )= 33 2 [Can(t) cos (17)
+San(t) sin (n9)Run(r/a) (%)

where M and 7 are the number of nodal circles and
diameters; M and N are the number of series terms
to be considered; C‘mn(t) and Smn(t) are unknown

functions to be determined in the following
analysis; Rmn(r’/a) are space functions satisfying

the boundary conditions. In the present analysis
they are given by the mode functions of a non-
rotating disk, i.e.,

Run(7/8)=Ja(knun?/a)+ FuunYa(kmn7/a) '
+G-n!n(kaur/a)+HunKn(k-m7’/d) (10)

where J and Y are Bessel functions and I and X
. " n n 1)

are modified Bessel functions of the order 3, an
through kmn are constants determined from clamped-

free boundary conditions.
Substituting eq.(9) into eq.(8), multiplying
the resulted equation by r'RqZ (r) coslndndr and

integrating from r=b to a and from n= 0 to 2m, one
has a simultaneous ordinary differential equations
of C and S as

mn mn

ﬁoé[a-nyCm/aT'+ E-nazSum/a Tz

+ A-uaC-n/aT + ﬂ.nasﬁm/a}
+ ¢uC-ur-ns-n]¢l=fql cos woT (11)
¢=0,1,2,--,M:1=0,1,2,-\ N

In the same way, substituting eq.(9) into eq.(8),
multiplying by I’qu (#) sinindndr and integrating

one has
'.Zto‘.z:)[fnnazc-"/arz_" 5-:;:825!"/3 TZ

+ ZandCan/dT + AundSmn/dT
+ ?uncgn‘*' 5uu$un]ql=fql cosweT (12)
q=01 lp 2. R M : l=10 2' % N

With the use of the matrix expression, equation
(11) and (12) are rewritten as

BA SR )

o el

o } cos wo T (13)
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Fig. 2 Resonance curve of disk under axial excitation

RESULTS AND DISCUSSION

Numerical results that follow are for the
5.25" floppy disk of inner clamped radiusp = 16.39
mm and outer free radius q = 65.09 mm. Physical
parameters used are F= 5.3%10°% N/m2 p = 1.4x103
kg/m®,v =0.3 and %#=0.077 mm. The R/W head, which
is modeled as a mass-spring system, has equivalent
parameters of my = 0.00415 kg and kL = 38.58 N/m

(mLO = 2.89 and kLO = 234.82 in nondimensional

values).
two cases.

The results are given for the following

Disk response to external disturbances
When the disk unit is subjected to axial and
pitching displacement excitation, one has wo as

-~ wo=Aa cos wt + Ap(r/a) cos 7 cos w? (14)

where Aa is the axial input amplitude, g the

pitching amplitude and  the angular frequency.
In this case the right hand terms of eq.(13)
become

) fu=A.a)5(rR.4)6m+A,a£(r’R.‘>3u
+ mLowg(Ac'f'AngOS m)(Cqu)ﬂz
Sau=miowi(Aa+ Ao cos 7)<SRu> (15)

The solution of eq.(13) is written in the form
[Cnn. S-"]T=[C‘l“' SL"]T cos we T
+[Chr, S%:)  sin o T (16)

2

The constants Cl . Sl , 02 y S are determined by
mn mn’ Tmn

mn
substituting eq.(16) into eq.(13). Thus, the
lateral displacement of disk is finally obtained
in the form

u=Acos wT+BsinwT 7))
where
M N .
A=P°‘§,(CL. cos np+ Sha sin n7)
M N .
B=§°§°(C£. cos np+ S, sin np) (18)

Figure 2 shows the displacement amplitude
VAZ+BZ of the disk wunder axial excitation.
Figures 2(a),(b) and (c) show the results when the
R/W head are located at (&,n,) = (0.5,0), (0.7,0),

(0.9,0) respectively. The excitation frequency is
varied from O Hz to 500 Hz. It is found that ' the
resonance frequencies of the disk are not much
affected by the head location. However, as the
head approaches the periphery the peaks of the
resonance curve become concentrated in the low
frequency range. Thus, it is said that when the
head is located at & = 0.5,the displacement inputs
with the excitation frequency 0-200 Hz should be
isolated, while it should be 0-100 Hz for the case
of £ = 0.9 to make the disk unit stable.

Figure 3 shows the displacement of the disk
when it is subjected to a pitching oscillation
about the line n = m/2. Figure 3(a) is the case
when the head is located at (& ,no) = (0.7,0),

while Figure 3(b) the case when it is located on
the nodal line of the pitching oscillation (& ,no)

= (0.7, w/2). It 1is again observed that the
resonance frequencies are not much affected by the
head location. It is found however by comparing
the figures that the response amplitude in Figure
3(b), on the whole, is lower than that in Figure
3(a), particularly in the high frequency range.
This comes from the fact that in the latter case
the head 1is located just on the pitching node.
Thus, it 1is said when the system is under a
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Fig. 3 Resonance curve of disk .under pitching excitation

"Thus, it 1is said when the system 1is under a 20
pitching excitation the head should be located on
the pitching nodal ‘line.

Stability analysis and selection of optimum
parameters
One puts the input amplitude to zero or

qu = fql = 0 in eq.(13). In this case the complex

frequency of the system is written as
a=0+ip=F(Qy,mposKkrqsK0585N4) a9

The disk system with no magnetic head is realized
by putting m o = 0, kLO = 0 and K=0, the natural

complex frequency of which is shown in Figure 4 by
dashed lines. Figure 5 shows the frequency curves
for the case of m;, = 2.89, kLO = 234.816, Ky= 0,

€ = 0.7 and Ng= 0. The solid lines in Figure 5(b)

are just to make clear the AB and CD regions. For
the case of the disk with no magnetic head (dashed
lines in Figure 4) the frequency 0 have only
_ imaginary parts, i.e.0 =0, p# 0. In this case the
frequency decreases monotonially with an increase
of the rotation speed, and finally comes to zero,
at which speed a static resonance(run-out) appears
in the system when the disk is subjected to a
static lateral load. The rotation speed at p =0 (b)
is generally referred to as the critical speed ch.

It is the maximum speed that can reach to
the disk in stable.
under .consideration, one has ch=5.5.

is attached to the disk, the frequency
both real
example in the region AB one has 0 # O

and imaginary parts (Figure 5).
and p # O.

operate

For the physical parameters
When a head

can have
For

In this case the disk vibrates sinusoidally with

an amplitude increasing with time.
is hereinafter called the flutter
region and the speed at point A is

flutter critical speed & . For the
fer

The AB region
instability
called the
rotation

-2

-3

1 Il 1

D

speed within the region of CD, one has o = *0 with
p=0.. In this case the lateral displacement of the
disk increases.exponentially with time because of
a=0>0. Thus, the CD region is called the

divergence instability region and the speed at
point C the divergence critical speed Qdcr . In

Figure 5, the flutter critical speed § op = 0.55

fer

(56rpm) is much lower than the divergence critical

0 2 4 6 8
2o

Fig. 4 Natural complex frequencies as functions
of the disk rotation speed QO. - - - ~,Frequency
of disk without R/W head; ,frequency of

disk with R/W head; M=3, N=6, m,.=2,89, K0=50.0,

_ 0
k,,=234.816, £=0.7, n,=0.
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Fig. 5 Natural complex frequency as a function
of the rotation speed of disk Qo. M=3, N=6,

=2.89, k;,=234.816, K,=0, £=0.7, ng=0-

Mro 0

speed Qdcr = 4.3 (430rpm), hence the maximum

operation speed of disk is 2, =0.55. It is noted
that in Figure 5 the stiffness of air film in the
disk cover is assumed at K0=O. For the case K0=5O

the corresponding frequency curves are shown in
Figure 4 with the solid lines. In this case the
maximum stable operation speed ch,is Qdcr= 4.3,

This means the stiffness of the air film KO plays

an important role in stabilizing the head disk
system. P

Figure 6 shows the maximum operation speed
as a function of the mass mLO and the

sifffness kLO of head for the parameters Kg =0,
£ = 0.7 and ng= 0. When~kL0 = 0 (Figure 6a), the
maximum operation speed Qcp is the divergence
critical speed Qder regardless of the value of mLO‘
In this case the speed ch have maximum value at

mLO = 0. Here, mLO = 0 is the optimum mass for the

(a)

cr

Fig. 6 Maximum operation speed of disk as a
function of the mass m;, and the stiffness kLO'

@0, (0710, (k<1003 k=0, nG=0 ,

£=0.7.

case of kLO = 0. When kLO = 10.0 (Figure 6b), the
maximum stable operation speed Qer is the flutter
critical speed ber in the region m,, < 0.4 while

Lo -
the divergence critical speed Qder for m 2 0.4.

Lo
In this case the speed ch has its maximum - value
at mLO = 0.4, hence the optimum mass corresponding
to ELO = 10.0 is Mrq = 0.4. Figure 6¢c is the case
for kLO = 100.0, which shows that the optimum mass
is mLO = 3.2. From those figures it is said that

there is an optimum combination between the mass
and the stiffness of the head to keep the disk-
head system stable in operating at a high rotation
speeds. ’

—329 —



100 200 300 400
Fig.7 Optimum mass MLQ versus optimum stiffness KLO'
b/a=0.2518, v=0.3, £=0.7, n0=0.

Figure 7 is a plot of the mass MLO versus the

stiffness KfO , which brings the operation speed

maximum. The slope of the curve is dependent on
the stiffness KO of the air film in disk cover,
i.e.

Mo Lo (20)
Here, one has

A=1.034/(32.802+K0) + 0.0001 (21)

for a 5.25" floppy disk system. With the use of

the relations
_ 2
MLO—ML/pha m

_ 2
KLO—KLa /D

kg=ka"/D , D=ER®/12(1-v*) (22)

one has the corresponding dimensional equation as
_ b

ML-Aph(a /D)KL (23)

where. E(N/m?), p(kg/ma), A(m), q(m), Mi(kg), Ki

(N/m), (N/m3) and v = 0.3, b is given by b/a =

0.2578. : ‘
Equation (23) means that when the head

stiffness kiand the air film stiffness K are given

one should select the head mass ML equal to or
larger than (Apha”/D)ki in order to make the disk

rotate in stable at a high operation speed.

CONCLUSIONS
~

A theory has been developed for the response
of a rotating R/W head floppy disk system
subjected to the external axial and pitching
oscillations. A parametric study has also been
presented for the system to operate it in the
stable condition. Results obtained can be
summarized as follows:
1) The location of the R/W head on the rotating
disk does not have much influence on the resonance
frequencies of the system. However, for the disk
excited in the axial direction, the high response

amplitude becomes to be concentrated to the range
of low frequencies as the head approaches the
disk periphery. A similar tendency is observed for
the disk under pitching excitation when the head
comes near the nodal line of oscillation.

2) The air stiffness within the disk cover plays
an important role on the stability of the system.
There are optimum parameters for the R/W head to
make the system response stable over a wide range
of rotation speed. < The equation to evaluate the
optimum parameters is

1.034
32.802+ka"/D

+0.0001) (pha* /D) X}
(24)

where g (N/m2), p(kg/m?®), A(m), a(m), Mi(kg), X

(N/m), k (N/m3) and vy = 0.3, b is given by b/a =

0.2578.

Mp=(
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Appl.

APPENDIX

1. Non-dimensional parameters:

T=(Dlpha')*t, 2=(pha'/D)'"Q
. ro=(ha*/D)a», 0w=(ha*/D)ao,
xo=(a*/D)x, wo=(pha'/D)""w
mee=mufoha*x, kie=(a*/zD)k.

F=rla, E=¢&la



