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Abstract

Efforts to develop practical expert systems have been mostly concentrated on how to
implement experience-based machine learning successfully. Recently several active
researches on machine learning have been undertaken from the viewpoints of knowledge base
management. The aim of this study is to develop the Concrete Bridge Rating(Diagnosis)
Expert System with machine learning employing the combination of neural networks and
bidirectional associative memories (BAM). Introduction of machine learning into this system
facilitates knowledge base refinement. By applying the system to an actual in-service bridge,
it has been verified that the employed machine learning method using results of questionnaire
surveys on bridge experts is effective for the system.

Keywords: concrete bridge, serviceability assessment, expert system, fuzzy rule, neural
network, machine learning.

1. INTRODUCTION

The authors have been working for some time on the development of a Concrete
Bridge Rating Expert System[1,2] that can evaluate the serviceability of concrete
bridges on the basis of knowledge and experience acquired from domain experts. The
task of refinement of the knowledge base, however, in the development of a practical
expert system has turned out to be very time- and labor-consuming and has been a
bottleneck in expert system development.

The final goal of the present system is to evaluate the structural serviceability of
bridges on the basis of the specifications of target bridges, environmental conditions,
traffic volume, and other subjective information such as one obtained through visual
inspection. The inference mechanism in the system first selects a membership function
(I function parameters) defined in the knowledge base on the basis of the knowledge
acquired from domain experts to achieve the lowest level subgoals of the diagnostic
process. The inference mechanism then combines the subgoals with a higher level
subgoals according to Dempster’s rule of combination and repeats this process[1]. In
evaluating the serviceability which is evaluated by a combination of “load carrying
capability” and “durability” of a target bridge, which is the final goal of the expert
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system, the inference mechanism performs fuzzy mapping considering the degree of
influence and the degree of confidence, and outputs the result of serviceability
evaluation of the bridge accordingly. It has become known, however, that for certain
types of inputs, the system sometimes outputs inconsistent results because the relevant
knowledge accumulated in the system is incomplete[3]. It is no easy task, however, to
refine the knowledge base in the system while maintaining the integrity of the system.
Consequently, the procedure of knowledge base management needs to be simplified by
introducing machine learning into the expert system.

In this study, an inference system combining the neural network[4] and the
bidirectional associative memory (BAM)[5] was constructed as part of the Concrete
Bridge Rating Expert System. The results of questionnaire surveys conducted on
domain experts during field tests were used as teacher data (objective criteria) to give
the system the ability to learn and verify the effectiveness of the learning method.

2. MACHINE LEARNING USING NEURAL NETWORKS

2.1 Concept of Neural Network and Refinement of Knowledge Base of

the Expert System
The neural network refers to a method of information processing using a network of
processing elements modeled after the structure of the human brain[4]. The reason
why the neural network is worthy of note is that it can learn. In other words, the neural
network can reorganize itself by altering the strength of connection between the
processing units according to some learning algorithm. In the neural network, given an
input, the network processes the information, compares the output with the ideal
response, and modifies the weights for connections according to the errors. In this way
the network reorganizes its own internal structure so that it gives proper outputs
corresponding to input data. If applied to the Concrete Bridge Rating Expert System,
therefore, the neural network makes it possible to modify the knowledge base easily
on the basis of input data on target bridges and the results of serviceability evaluation
by experts or of field tests.
The Concrete Bridge Rating Expert System acquires knowledge by defining a
membership function for the consequent (part of IF-THEN rules that comes after
THEN) of a fuzzy rule according to the results of questionnaire surveys conducted on
domain experts[1,2]. It can be said, therefore, that individual rules reflect the
knowledge and experience of those domain experts. Since, however, the inference
process involves multidimensional, multistage fuzzy inference, the degree of
uncertainty tends to increase as inference progresses, that is, at higher levels of
diagnostic process. Since the combination of fuzzy rules varies according to the rules
of combination, and rules of combination are usually not compatible with the thinking
of the human mind, results that can be obtained by combining rules do not necessarily
satisfactory to domain experts. In addition, there is no learning function to improve
performance. Nevertheless, fuzzy inference is advantageous in that it is based on IF
-THEN rules, which permit the representation of knowledge in natural language.
The greatest advantage of inference using the neural network is a powerful learning



Development of Neuro-Fuzzy Expert System for Serviceability Assessment of Concrete Bridges 337

algorithm. In addition, it can be said that outputs from the neural network-based
inference perfectly reflect expert knowledge because the results of serviceability
evaluation by domain experts or of field tests are used as teacher data. There are also
disadvantages, however, that since inference by the neural network is represented as
behavior of the entire network, the inference system becomes a “black box” that
makes the representation of knowledge in the form of rules impossible. Also a large
network of this type can be less flexible with the addition and alteration of rules.
Furthermore, there is a need to deal somehow with ambiguity due to human
involvement in constructing a neural network-based bridge rating system.

Thus, at present fuzzy inference and neural network-based inference differ
considerably in nature. It is possible, however, to construct a more powerful inference
system by overcoming the weaknesses and combining the advantages of the two
methods. In order to help prevent the neural network from becoming a black box, in
this study subnetworks were constructed for individual subgoals for the floor slab and
the main girder in the diagnostic process, and these subnetworks were combined at a
higher level. It was also decided that an inference system capable of fuzzy inference
would be developed by introducing associative memory.

2.2 Fuzzy Inference System Based on Neurval Network

2.2.1 Structure of Infevence System

Generally, inferences are drawn according to [F'-THEN rules. In this study, the /F
-THEN rules were divided into three parts: IF-THEN relationships, antecedents and
consequents. In constructing the inference system, the antecedents and consequents
were represented by neural networks and were interconnected by bidirectional
associative memories (BAM)[5,6]. Fig. 1 shows the structure of the inference system.
The IF-THEN relationship was represented by two interconnected BAMs
(relationship M) as shown in Fig. 2. Here, the three levels (input level I, middle level M,
output level O) correspond to the antecedent, the concept of the rule, and the
consequent, respectively. Each neuron at the input level represents the recall factor[6]
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Fig. 1. Structure of Inference System
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Fig. 2. IF-THEN Relationship Represented by Associative Memory

for the antecedent, and the number of neurons at the input level equals the number of
membership functions that define input variables. Each neuron at the middle level
represents the recall factor for each rule, and the number of neurons at the middle level
equals the number of rules. Similarly, since each neuron at the output level represents
the recall factor for the consequent, the number of neurons at the output level equals
the number of membership functions that define output variables.

2.2.2 Representation of Fuzzy Rules[7]

A type of fuzzy model that is generally said to be capable of a high degree of
representation has been adopted. It is assumed that if input and output are represented
by u and y respectively, the object of modeling can be expressed as follows:

y = f(u) (1)
In this case, the system in question can be expressed using # fuzzy rules:
R, : IF u;=C,, and- - +and u,=C,, THEN y,=f ()

R, : IF ,=C,, and- - -and u,=C;, THEN y,=f;(u) (2)
R, : IF w,=C, and----and u,= C,, THEN y,=f,(u), where, C,; to C,, are fuzzy variables.
Usually, f(u) is a linear function, but in this study, a neural network model instead of
a linear function is used. The effect of this is similar to that of using a nonlinear
equation for the consequent of each inference rule. It is also possible here to identify

the overall nonlinear relationship using a single neural network model. For purposes
of this study, however, it was decided to use one neural network model for the rule for
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each subgoal in the diagnostic process constructed for the floor slab and the main
girder. This, it is believed, makes a clear representation of the overall nonlinear
relationship possible and helps make the model transparent.

The final output y can be expressed, using the weight a for the consequent determined
by associative memory, as follows:

Y=2 a; X:/2, a (3)
i=1 i=1

where, v, is the output from the i-th neural network, and «; is the weight for the i-th
neural network.

Now let us look at the method of storing rules in associative memories. The
associative memory combines neurons at different levels according to the relationships
between nodes, that is, depending on whether or not they constitute the same rule. Let
us consider rule #(R;) in Eq. (2). As Egs. (2) and (3) indicate, rule #(R,) relates to fuzzy
variables C;-C;, and weight a; for the consequent. Therefore, neurons C;;-C;, at the
input level and the neuron for rule #(R;) at the middle level are interconnected by “+”
links. On the other hand, the neuron for rule #R;) and the other neurons at the input
and output levels are interconnected by “-” links assuming that they are reciprocal.
Within the input level, neurons corresponding to the same input variable are connected
by “-” links, while neurons corresponding to different input variables are considered to
be unrelated and are therefore not connected. The weight for each link is determined
so that given inputs exactly matching rule 7, all the neurons corresponding to rule ¢
fire, but the other neurons do not.

In this study, the strength of connection between the middle level and the output level
is defined as the degree of certainty of each rule. By so doing, the certainty factor for
each rule can be modified according to the rules of learning based on associative
memory. It is to be noted here that the learning here involves the modification of the
certainty factor depending on the frequency of reference to the rules.

2.2.3 Inference Process in Associative Memory

The associative memory represents the relationship between the elements from input
u to state vector z at the output level in the form of a discrete time system. Inferences
are drawn using the formula given below, and the inference system consists of an input
part, a middle part, an output part, and a check point, as shown in Fig. 3.

Wy Wix Wz
Wiy . Wz
Input level o |Middie level | Output level Check
u state vector “1 state vector 7] state vector point | @
> NN(u) > > —>

] o~ -

: v Wix X Wyz z ®

Input level Middle level Output level

Fig. 3. Inference Process in Associative Memory
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c(k) = NN{uk)}

vk+1) = f{Wy ck) + Wy v(k) + Wy x(k)}
2e+1) = f{Wy v+1) + Wy, x(B) + Wy, 2(R)}
2k+1) = f{W_ x(k+1) + W, 2(k)}

v(0) = v (4)
x(0) = %

2(0) = z

W, =

X vaT
W, = W,"
where, NN(+) is a neural network that represents a membership function whose
antecedent is a fuzzy variable; f(+) is a Sigmoid function. W,,, W,,, W, Wy, W\, W,
W., and W_, are matrices that represent the weights for the degrees of connection of
the links. Especially, the matrices W,, and W,, represent the certainty factors for the
rules.
The transition of state until the network reaches the state of equilibrium is a process
of choosing the most appropriate rule out of a set of rules. Therefore, inferences
corresponding to fuzzy inferences can be drawn by taking out output z(t) at time ¢
before the state of equilibrium is reached and assigning weight a to the consequent.

The higher the certainty factor for a rule, the faster the activation. This means that
higher weights can be assigned to consequents with higher certainty factors.

2.3 Method of Fuzzy Rule Modification

This section describes the method of modifying the fuzzy rules. The modification of
the rules can be classified either as the modification of the certainty factor or the
modification of the neural networks for the consequents. These are described below:
(1) Modification of Certainty of Rules[7]: As mentioned earlier, the certainty factor
for a rule is represented by the weight for linkage between the middle level
(representing the concept of rules) and the output level (representing the weight for the
consequent) in the associative memory. The certainty factor is modified by altering
this weight according to the rule of Hebbian learning[8]. Let us consider element W ,;
in matrix W, (W_,) that represents the certainty factor for a rule. W, .(W.,) is modified
after a certain number of inferences are drawn, and W,; is modified on an independent
time scale using the following formula:

W) = -Wy () +X: X R, (5)

where, W;;()€[0,0] and X;E{0,1} represent whether rule i and consequent j are
related, and R;E[0,0] represents the certainty factor consequent j in relation to
rule 1.

If X;=1 and R;=constant and if the value of R; corresponds to the case where the
consequent matches the rule perfectly, the following equation can be derived from Eq.

(5):
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Wiy () = eXP(‘t){ W;(0) - Rj} + R; (6)

Hence, the incremental modification 4 W;; of W;; at the k-th(k > 1) modification can
be given by

AW, = eXP[_T(k‘l)]{P EXD[‘é\T]}{Rj - VVU} (7)

where, T'(k-1) is the time (on an independent time scale of neuron j) when the (£-1)-th
modification is made, and 7°(0)> 0. 67 is the time from the (£-1)-th modification to
k-th modification. It is assumed that 67 is determined by a quantity that is inversely
proportional to the current weight W; and is proportional to the frequency(Za) at
which rule i(R,) is referred to:

6T = g X min{l, » X (Sa) / Wy(k)} ®)

where, 8 and # are positive constants; 8 is the maximum time elapsed during a single
modification process, and # is the influence of the frequency of reference and the
certainty factor on the time ¢7. The modification rules defined by Egs. (7) and (8)
indicate that the amount of modification corresponding to the certainty factor for a
rule is determined so that it is proportional to the cumulative weight for the
consequent of the rule in relation to the output and is inversely proportional to the
current certainty factor. This means that learning about rules that are referred to
frequently and are less certain is faster, while learning about rules that are not referred
to often and have higher certainty factors is slow. As the learning process progresses,
W;, gradually approaches R;. Learning does not take place, however, when §7 =0. The
certainty factor is automatically modified in the system.

(2)Modification of Neural Network Models for Consequents: Learning by the neural
networks for the consequents takes place when data on relevant case studies (in this
study, data on the evaluation of bridges) has been acquired or when outputs of the
system differ from the ideal responses. Since each subgoal is modeled as a subnetwork,
there is no need to modify the knowledge for all neural network models; only the
subgoals related to the input data have to be modified. In addition, since the learning
method uses a back propagation algorithm[4], all that has to be done is to add pairs
of input and output data as new teacher data or to modify existing teacher data
accordingly. Thus, the time needed to refine the knowledge base can be reduced.

3. DEVELOPMENT OF NEURO?FUZZY EXPERT SYSTEM

3.1 Acquisition of Initial Knowledge

Acquisition of initial knowledge is of vital importance to the construction of neural
networks. An expert system can best be constructed using data obtained from past
diagnoses. In the case of the expért system considered here, however, it is impossible
to collect enough data on past diagnoses encompassing all the possible input items
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needed in the diagnostic process. In this study, therefore, the knowledge base of the
previous(original) system[1,2] was used as the initial knowledge of the new system.
The acquisition procedure is described below using an example of diagnosis of the
“level of flexural cracks”.

In the present rating(diagnostic) process, the “level of flexural cracks” is diagnosed in
terms of “degree of cracking” and “degree of free lime deposition” (see Fig. 4). In
evaluating the soundness of bridges with respect to the “level of flexural cracks”, it is
general practice to use “degree of cracking” rather than “degree of free lime
deposition” as a key indicator. On the basis of the input conditions regarding “degree
of cracking”, a model can be constructed as follows:

]
l |

Degree of free lime ;
tenosition Degree of cracking
I l [ 1
P T, Fom=taa- B wpommdaeaa .
1 Spalling of cover ! : ' . 'y e
foonerete | $1ITEINT ) ) Creckpatem § Crack widmy

Fig. 4. Diagnostic Process for Level of Flexural Cracks

Ru’e ' . IF xl - A1 and xz = Bl THEN y - ﬁ(xly xZ; xﬂ; x4)
Rule 2 : IF % = A, and x, = B, THEN y = f,(n, %, %, %)
Ru'e 3 . IF X — A] al’ld X = B3 THEN y = _]g(xl) xZ, X35 x4)

Rule 7 : IF % = Az and x, = B, THEN y = fi(x1, %, %, %)

Rule 8 : IF x, = A; and x, B, THEN v = fi(x;, %, %, %)

Rule 9 : IF % = A; and x, = B, THEN v = f(x;, %, %, %)

where, x, : crack condition, x, : crack width, x; : lost concrete, x, : free lime,

Ay : many cracks, A, : some cracks, 4; : few cracks,

B, : large crack width, B, : medium crack width, B; : small crack width,

y= [dangerous, slightly dangerous, moderate, slightly safe, safe]: result of
evaluation of level of flexural cracks,

f(+) : neural network model

As shown above, a total of nine(#;-/;) consequent neural network models corresponding
to the nine rules are constructed. The previous system[1,2] used an inference method
under which membership functions defined for individual rules were interconnected
according to Dempster’s rule of combination. For the present system, therefore,
inferences are drawn, according to Dempster’s rule of combination, for all of the
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possible combinations of conditions for each rule, and the results thus obtained are
used as teacher data needed for initial knowledge acquisition. Thus, the system uses
the teacher data to acquire initial knowledge following a back propagation algorithm.
Acquiring the initial knowledge in this manner ensures the reliability of diagnosis at
least comparable to that of the previous system.

Turning now to the method of determining the fuzzy variable for the antecedent of an
IF-THEN rule, a membership function representing the fuzzy variable for the
antecedent can be easily expressed using the neural network, that is, by letting the
system learn from teacher data that represents membership functions discretely
according to the back propagation algorithm. If, for example, a fuzzy set regarding
“crack width” shown below is given, the membership function as shown in Fig. 5 can
be obtained.

Small crack width : Small = {1.0/0.0, 0.8/0.2, 0.2/0.3, 0.0/0.4}
Medium crack width : Medium = {0.0/0.1, 0.2/0.2, 0.8/0.3, 1.0/0.4, 0.9/0.5,
0.5/0.6, 0.2/0.7, 0.0/0.8} (10)
{0.0/0.4, 0.2/0.5, 0.6/0.6, 0.8/0.7, 0.95/0.8,
1.0/0.9, 1.0/1.0}

I

Large crack width : Big

Finally, let us consider the weighting of connections in the associative memory. As
discussed in Section 2.2.2, the associative memory determines the strength of
connection between neurons at each level depending on whether they constitute the
same rules. Consequently, in the case of the “level of flexural cracks”, an associative
memory network is constructed on the basis of Eq. (9), as shown in Fig. 6. Of the
combination matrices defined according to Fig. 6, W,, that represents the certainty
factors for the rules can be expressed as follows:

W,.= 1-1-1-1-1-1-1-1-1

Cz -1-1-1-11-1-1-1-+-1 . (11)

where, C,, is a matrix in the combination matrix W,, that represents the certainty for
each rule. In this study, the certainty factor for the knowledge acquired from the
previous system was assumed to be 60% and that was applied to all rules.

Thus, the initial knowledge was acquired by repeating the above procedure for all
subgoals and final goals.

3.2 Setting up Objective Criteria
As mentioned earlier, teacher data is necessary in order to refine the knowledge using
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the neural networks. Hence, results of diagnoses based on field data must be used as
teacher data (objective criteria) to refine the knowledge base in the consequent neural
networks. Results of evaluation of bridges based on field data are much more objective
and reliable than diagnoses made by the present “Concrete Bridge Rating Expert
System”. It is therefore desirable that such evaluation data be used as teacher
data(objective criteria) for knowledge base refinement. Since, however, the system
forms integrated judgments on the soundness of bridges(see Section 3.3), outputs of the
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system cannot be compared directly with individual evaluation items, such as the
safety factor, probability of failure, etc. This means that definite judgments on the
degrees of modification of the rules cannot be formed. In this study, therefore, it is
assumed that the knowledge base can be refined on the basis of field data by relating
the system and field testing via domain experts’ judgments, and the knowledge base
was refined using data obtained mainly from questionnaires [9] on the serviceability
evaluation of target bridges filled out by domain experts.

The questionnaire surveys on serviceability evaluation were conducted on more than
one expert. The respondents were asked to answer questions regarding the damage
state of the bridges after conducting visual inspection and observation. Since the
results of evaluation were expected to vary depending on the experience of domain
experts, the respondents were chosen carefully so that experts with as much
experience as possible were included. In the questionnaire, each respondent was asked
to rate the serviceability, load-carrying capacity and durability of the bridges, as well
as other items corresponding to the subgoals in the Concrete Bridge Rating Expert
System, on a scale of 100. The respondents were also asked to form subjective
judgments on the need for repair and rehabilitation, and the remaining service life of
the bridges.

The scores thus obtained were categorized into five groups, namely, 0-19, 20-39, 40-59,
60-79, 80-100, and these groups were modified with the terms “dangerous,” “slightly
dangerous,” “moderate,” “slightly safe” and “safe” respectively. By comparing these
scores directly with the results of rating by the system, the knowledge base can be
refined relatively easily and reliably.

3.3 System Configuration
Fig. 7 shows the configuration of the expert system. The knowledge base, the inference

Knowledge base
< >] Inference engine Submodel < Input/ output data
A
8
€
g Associative memory i-—) Synthesizer
2 | \
2 1<
Learning Module
4 A
I’ \\

’

A
C Field tests j ( Questionnaires ) ( Domain experts ’

Fig. 7. System Configuration(New System)
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engine, the associative memory and the submodels(neural network models) of the
system are constructed on a personal computer(NEC PCH98 U100), and the learning
module runs on a UNIX workstation (SONY NEWS). The expert system is all written
in C language.

Fig. 8 illustrates the inference process of this system. Photo 1 shows the startup menu.
As a first step, the system asks a series of basic questions for the lowest level subgoals
regarding the specifications of the bridge, environmental conditions, traffic volume,
the conditions of cracks, etc. and asserts the answers from the user as fact clauses (see
Photo 2). Then the system searches all relevant fact clauses according to the inference
rules. The system asks new questions if the message number for a found fact clause is
“q” and asserts the responses to those questions as new fact clauses. If the found clause
has a numeral, the system outputs a corresponding message (see Photo 3). When having
found all relevant facts by repeating this forward-chaining inference, the system
moves on to the stage of associative memory and neural network inference. First, the
associative memory determines the degree of match of the antecedent and calculate
the weight for the consequent in the associative memory. The system then combines
the outputs obtained here with the outputs from the consequent neural network model
to give a diagnosis. The diagnosis given here is actually a set of soundness indicators

START
| Assert input data 1

no

s there any rule?

;{ Read data

v I 2mm——

] j Degree of match of
LSearch fact clause l IJ"tg cedent Consequent

Neural network
ype of messag
number?,

L Read questions l

! !

Numeral Bsmiative memory ]

Ilﬂeight for consequentl , Output consequent I

I Input question data I [ Synthesize ]
(—l Assert data I L Output result I Back propagation
method

—-I Output message 1(—— no Modification
of teacher data j

yes
Learn about the
certainty of rule

END

Fig. 8. Inference Process in Inference Engine of the Concrete Bridge
Rating Expert System(New System)
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calculated as the probabilities of the five possible conditions, namely, safe, slightly
safe, moderate, slightly dangerous, dangerous(see Photo 4). The system can also
evaluate bridges with respect to the need for repair or strengthening and the remaining
service life of both of the floor slab and the main girder. If a diagnosis is not a proper
one, input/output data (teacher data) is modified on the basis of such information as
the results of questionnaire surveys so as to refine the knowledge base according to the
back propagation algorithm. After that, the neural networks are run again to output
a diagnosis reflecting the modification. If the diagnosis is a proper one, the certainty
for the corresponding rule is altered and the Concrete Bridge Rating Expert System
returns to the startup menu.
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4. VERIFICATION OF EFFECTIVENESS OF NEURO-FUZZY EXPERT
SYSTEM

4.1 Comparison with Previous System[1,2]

The newly developed Concrete Bridge Rating Expert System was used to evaluate the
serviceability of an actual bridge. The results of evaluation by this system were
compared with results obtained from the previous system to verify the reliability of the
acquired initial knowledge.

The bridge evaluated here was a reinforced concrete T-girder bridge[9] that had been
constructed with relatively poor execution of work. The main girder then had flexural
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cracks, shear cracks and cracks due to the corrosion of reinforcing bars. Particularly
cracks due to corrosion were rather wide, and water leakage, free lime and spalling of
cover concrete around those cracks were noticeable. Tables 1 and 2 show the results
of evaluation of the main girder of this bridge by the previous (original) system and the
new system. Except for the subgoals for the design of the main girder, the original
system and the new system gave similar results(see Tables 1 and 2). With respect to
the design of the main girder, since the original system combines membership functions
to higher level subgoals following Dempster’s rule of combination in the inference
process, the degree of uncertainty tends to increase as the inference process progresses.
This resulted in the inconsistency of showing two peaks, namely at “slightly
dangerous” and “slightly safe” (see Table 1). By contrast, the new system gave results
somewhat centering around a single peak (see Table 2). Errors contained in these
results need to be corrected through neural network-based learning. In the other
respects the results obtained from the original system and the new system showed fair
agreement (see Tables 1 and 2).

From above, it can be concluded that the new system has acquired the knowledge of
the original system very accurately. Various problems found in diagnoses given by the
system[3], however, indicate that the knowledge needs to be refined.

Table 1. Evaluation of RC T-Girder Bridge by Original System

Judgment Mean soundness Danger Slightly Moderate Slightly Safe

factor score danger safe
Design 47.0 0.151 0.273 0.161 0.371 0.044
Execution of work 17.4 0.338 0.605 0.056 0.000 0.000
Service condition 76.0 0.000 0.000 0.167 0.644 0.189

---------------------------- o e T T R N b kdd

Flexural crack 60.9 0.000 0.173 0.447 0.191 0.189
Shear crack 60.9 0.000 0.186 0.435 0.186 0.194
Corrosion crack 39.6 0.260 0.457 0.016 0.051 0.217
Whole damage of girder 50.9 0.127 0.285 0293 0.106 0.189
Load-carrying capa. of girder 56.2 0.099 0.185 0.293 0.210 0.213
Durability of girder 49.8 0.146 0.308 0.136 0.244 0.166
Serviceability of girder 517 0.161 0.245 0.201 0.221 0.173

Table 2. Evaluation of RC T-Girder Bridge by New System

Judgment Mean soundness Danger Slightly Moderate Slightly Safe

factor score danger safe
Design 64.7 0.001 0.019 0319 0.564 0.097
Execution of work 24.8 0.330 0.608 0.055 0.005 0.002
Service condition 70.0 0.014 0.026 0.144 0.575 0.241
Flexural crack 584 0.035 0.240 0.260 0.202 0.264
Shear crack 58.7 0.033 0.313 0.145 0.202 0.307
Corrosion crack 1. 25.1 0.283 0.698 0006 | ! 0 .9_06 | 0007
Whole damage of girder 52.0 0.148 0.222 0.208 0.227 0.195
Load-carrying capa. of girder 65.8 0.001 0.038 0.300 0.493 0.168
Durability of girder 52.6 0.058 0.165 0.394 0.352 0.031

......................................................... } IR PRI ISP M,

Serviceability of girder 58.9 0.019 0.109 0.343 0.464 0.065
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4.2 Refinement of Knowledge Based on Results of Questionnaive Survey

In this section, the refinement of knowledge in the consequent neural network is
performed based on teacher data (objective criteria) obtained from questionnaire
surveys on domain experts.

As mentioned in Section 3.2, the results of the questionnaire surveys were divided into
five categories, each corresponding to 20 points on a scale of 100. These categories
were related to the probability of states ranging from dangerous to safe output from
the system, and the data thus obtained was used as teacher data (objective criteria). By
use of this data, the knowledge was refined according to the back propagation
algorithm. Of the evaluation items for the reinforced concrete T-girder bridge
mentioned earlier, shown below is the process of knowledge refinement for the
subgoals related to cracks in the main girder (see Table 2). Table 3 shows the results
of the questionnaire surveys (teacher data) regarding cracks in the main girder. Table
4 shows the results of evaluation by the system after the knowledge refinement of the

Table 3. Example of Teacher Data on Cracks in Girder used for Knowledge Base Refinement

Judgment factor Danger_ Slightly danger | Moderate Slightly safe Safe__
Flexural crack in girder 0.000 0.154 0.538 0.308 0.000
Shear crack in girder 0.000 0.308 0.231 0.231 0.231
Corrosion crack in girder 0.077 0.154 0.308 0.385 0.077

Table 4. Example of Output after Refinement of Knowledge on Level of Cracks (Girder)

Judgment Mean soundness Slightly Slightly
factor score Danger danger Moderate safe Safe
Flexural crack 54.5 0.029 0.179 0.427 0.268 0.098
Shear crack 57.6 0.017 0.305 0.208 0.223 0.247
Corrosion crack 517 0.090 0.217 0.279 0.345 0.070
------ Before refinement
10 p —— - — - = Teacher data

After refinement

05 ¢

Degree of Membership

0 1 1 1 1 \l———r'--r--'r——’r-.—

0 50 100

Soundness

Fig. 9. Comparison of Outputs on Corrosion Cracks in Girder



Development of Neuro-Fuzzy Expert System for Serviceability Assessment of Concrete Bridges 351

consequent neural network based on the teacher data shown in Table 3. Figs. 9 and 10
show, in the form of membership functions, the results of evaluation regarding
corrosion cracks and flexural cracks in the main girder before the knowledge
refinement, the teacher data used in knowledge refinement, and the results of
evaluation after the knowledge refinement.

As shown in Tables 2 and 4, and Fig. 9, the corrosion cracks in the main girder were
judged “slightly dangerous” before knowledge refinement, while after the knowledge
refinement they were judged “slightly safe”. As for the flexural cracks in the main
girder, the results of evaluation before the knowledge refinement showed more or less

e . mmmm Before refinement

. === « = - = Teacher data

After refinement
2
= L
)
8 L
g
S 05} ~
p= U
z | I~
T ¢ N
50 - .
%) A Tt - 4
8 - e T “
s P ’/ s \ ~ N N
0 = i 1 L 1 2 1 Ny >
o 50 100
Soundness

Fig. 10. Comparison of Outputs on Flexural Cracks in Girder

even distribution over the soundness scale, while those after knowledge base
refinement shows a peak in the “moderate” range. This indicates that the degree of
uncertainty decreased as a result of knowledge refinement (see Tables 2 and 4, and Fig.
10).

From above, it can be concluded that the accuracy of knowledge refinement in this
system was considerably high, evidencing the effectiveness of the learning method of
the system. In cases, however, where results of questionnaire surveys are used as
teacher data (objective criteria), the reliability of the questionnaire results themselves
becomes an important consideration. Teacher data might even be inconsistent to the
extent of prohibiting knowledge refinement. It is desirable, therefore, that indicators
related with more objective data obtained from reliable sources, such as field tests, be
used as teacher data.
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5. CONCLUSIONS

In this study a Concrete Bridge Rating Expert System with Machine Learning has been
developed. Using neural networks, the developed system facilitates the modification of
the knowledge base based on data such as results of questionnaire surveys conducted
on domain experts. Independent neural networks constructed for individual rules help
prevent the inference mechanism from becoming a black box. The time required for
learning can also be reduced because the learning process involves only the networks
concerned. The results of this study can be summarized as follows;

(1) As a method of refinement of the knowledge base of the Concrete Bridge Rating
Expert System, a learning method based on the neural network has been presented.
Problems in applying the neural network to the expert system were studied, and an
independent network was constructed for each rule in order to help prevent the neural
network from becoming a black box.

(2) A new inference process similar to the conventional fuzzy inference has been
developed by combining the neutral network and associative memory. The concept of
“certainty factor” was introduced so that the certainty factor can be modified
automatically depending on the frequency of reference to rules.

(3) The Concrete Bridge Rating Expert System was applied to the girder of an actual
bridge to verify the results of evaluation. Good agreement between the results obtained
from the original system and the new system confirmed that the knowledge for the new
system was successfully acquired from the original system.

(4) The knowledge base was refined using neural networks on the basis of the results
of questionnaire surveys on domain experts. Good results achieved as a result of
knowledge base refinement evidences the effectiveness of the learning method in the
system.

In order to enhance the reliability of the expert system, it is necessary to refine the
knowledge base through application to more actual bridges. It is also necessary to
clearly define the relationships between the outputs of the system and field data(e.g.,
linking numerical analysis programs) instead of relying solely on information obtained
from visual inspection.
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