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Conceptual Extension of Stress Intensity
to an Angled Defect |
— An Edge Notch with Arbitrary Included Angle —
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Abstract

Complex variable methods are applied to the plane elastic problems of semi-infinite sheet
with a sharp edge notch of an arbitrary included angle 28. The concept of the stress intensity
in a crack problem is extended to the externally cut V-shaped notch. The difficulty of the
problem would lie in the unavoidable introduction of a mapping function with singularities of
branch-point type and related complex potentials, which is shown to be resolved by a power
series development with expansion coefficients, which depend on the boundary-describing
parameter, being smoothly continued from the traction-free boundary region to the local zone
characterized by a stress singularity. General solutions for the stresses and the stresses local
to the notch tip are given. In the light of the foregoing arguments the implications of the
Westergaard solution for a crack are discussed.

Keywords : Stress singularity factor, Strength of singularity, Edge notch, Conformal mapping,
Schwartz-Christoffel transformation

1. INTRODUCTION

Notwithstanding an engineering importance of the elastic analysis of stress
singularities and distributions at and around a sharp edge notch, very limited
significant contributions in the analysis approach have been made to that effect up to
date. William [1] first solved the problem of elastic stresses induced around the apex
of an infinite wedge and V-shaped sharp notch with an arbitrary angle, which might
be the basis for the intended discussions. The concept of stress intensity in the realm
of fracture mechanics might be extended to an internal and an external angled defect
or notch. No attempts have been made to do this, and it seems what have been
attempted even for an infinite V-shaped sharp notch are inadequate. You may find to
date some numerical approaches toward this problem, but it may be that the
understanding of the singular behaviors of the stress fields at notch tip does require the
analytical approach as the basis.

In this work complex variable methods are applied to the analyses of general
distributions and singularities of the stresses at and around the tip of an externally cut
V-shaped notch with an arbitrary included angle. The difficulty of this problem would
lie in the unavoidable introduction of a mapping function with singularities of branch-
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point type and related complex potentials, which is shown to be resolved by a power
series expansion with expansion coefficients, which depend on a boundary- describing
parameter, being smoothly continued from the traction-free boundary region to the
local zone characterized by a stress singularity.

2. INITIAL FORMULATION

The semi-infinite sheet under tension with a V-shaped edge notch of an arbitrary
included angle 28 and depth c, Figure 1, will be considered, as lying in the top, Im(z+
ic)=0, of the complex z-plane, z=x+1y, with the tip of the notch described by z=0,
where 1= [-1]"2.

A D

Figure 1 Semi-infinite sheet with a V-notch under tension in the x-direction

Figure 2 Auxiliary complex plane, &é=&+izy
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For analyses complex potentials ¢(z) and x(z), known as Gursat’s functions of the
complex variable z, are used; both are arbitrarily chosen analytic functions but satisfy
the required boundary conditions, and compose a bi-harmonic function well known as
Airy’s stress function, F(z)=Re [Z$(z)+ [*dzx(2)].

For convenience of the boundary condition consideration, an auxiliary complex
plane, the &-plane, £=&+iz, illustrated in Figure 2, is introduced, and a function
relationship z= w(¢) is searched such that the real axis A’'B’O’C’D’ and the upper-half
plane D+ conformally map into the boundary ABOCD and the physical region occupied
by the sheet, shown in Figure 1. By application of the Schwartz-Christoffel
transformation, it was found that the mapping function, @(§), can be given as a
principal branch of

z=w(&)=C,+C [§ dé&™ (&1, 1)
where the exponent, n, is related to the included angle, 28, as 1

n=1/2-28/2x. 2)
The constants C, C, and &, are determined as

C=cB(1/2, n)/= 1, 8}

Co=w(0)=0, (3a)
and & =0, by defining

w(-1)=-ctanB-ic, @(l)=ctang-ic, 4)
and

@(0)=0, (4a)

where B(p,q) is the betha function. C can also be written as C=cI'(n)/T'(1/2)'(1/2+n)
by use of the gamma function I'(s) and remembering that rQ1/2)=="2
Thus obtained mapping function, (&), is analytic in the upper-half plane, Im £>0,
but contains singularities which describe branch points; A’B’,C and D’, on the
boundary, Im &=0, itself. Other than these corner-describing singularities, the nocth
tip is described by the root of w’(£)=0, which occurs at £=0. The prime is used to
denote differentiation by the variable shown in the parentheses, thus f'(z) =f'(§)/ @"(§).
To economize notations here we designate f(z)=flw(&)) as (). In this way the
stresses, o:, 0, and 7z, and displacements, u; and u,, in curvilinear coordinates, & and
7, can be written as
o:+0,=2¢ (&) /w’ (&) +complex conjugate, (5)
0,0+ 217 ={2/w (&) }Hw () d{¢ () /w (&) }/dE+ 1 (8) ], (6)

t Although the Schwartz-Christoffel transformation directly leads to this relation, the
following reasoning would be more understandable. From equations(l) we find along
the line segments BO and OC,

dr/dg=Cem (1] "=Cgm([1-5°) e (a)
On the other hand the slopes of the segments BO and OC are
T dy/dx=tan(z/2-8) (b)

Hence for the segments

dz=dx+idy=dxe* "> # /cos(z/2-13) (c)
Comparison of equation(c) with (a) leads to the relation(2)
I See APPENDIX I
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2p (umiw,) ={@"(§)/ | @ (&) | }xd (&)-w (£) ' (&) /' (&) -2 (&)], ()
where x4 and x are elastic constants of the material, and bars denote complex
conjugates(2]. The bar notation f(¢), to appear below, is defined by f(¢). In terms of the
functions ¢(&) and x (&) the traction-free boundary condition on ABOCD, Figure 1, can
be written as
¢ (&) tw (&) ¢'(&)/w (&) + x (&) =constant, (8)
since the x- and y-components, pxds and pyds, of the force acting on the arc ds of an
arbitrary curve drawn on the sheet is expressed in terms of (&) and x(¢) as
(Dx-ipy) ds=1d [ (&) + @ (E) ¢ (&) /' (&) + 2 (E) ], ©)
and this equation is applicable to an arbitrary arc on the boundary under consideration.
The solution of the problem requires the determination of the functions ¢(¢&) and x (&)
which are analytic in Im&>0 and satisfy the boundary conditions(8) and loading
conditions to appear in equation(13) below.
In a domain of interest around the notch-tip, | £ | <1, the mapping function @(¢),
equation(l) with constants determined as (3), can be expressed in a power series as

@ (€)= (C/v)e¥im g-éo &%, v=1+2n (10)
ao:L (103)
a,=[v/(v+2k) ] (n+k-1)--- (n+1)n/k! (k=1,2,3+-), (10b)

by term-by-term integration after expansion of the integrand in equation(l) for
| ¢ | <1, in a power series. And for large | ¢ |,| &] >1, as

©(§)=C¢ 3 bu&™ic, 11
bo=1, (11a)
by=-(n+k-1)- (n+1)n/@2k-1)k! (k=1,2,3-), (11b)

by term-by-term integration after expansion of the integrand in equation(l) for
| ¢] >1, in a power series.

3. STRESSES AROUND TIP OF A NOTCH

In terms of the above-developed formulations the essential character of the stresses,
namely the notch-tip singularity and the azimuth dependences of the stresses as
functions of 28, will be examined, which should be influenced by the presence of
traction-free boundaries. From the boundary condition consideration with respect to
equation(8), it follows that the function x(&) can be expressed as

x(8)=-¢(O-a(&) ¢’ (&)/w (&), (12)
which is analytic in the upper-half plane, Im &> 0, letting the constant, which does not
influence the stresses, zero. Thus, the problem reduces to the determination of $(&)
which satisfies the loading conditions at infinity,

0x=0, 0y= Ty =0(& —00). (13)

Examination of w(§), equation(10), will suggest that 2 (&) can be assumed to be

developed in a power series as

26 (§) =iC 3 Bi[vw (¢) /iC]™ (14)

From equations(12) x(&) is expressed as
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22 () =iC 3 B (&) [vo (§) i), (15)

E. (€)=B.e" (&) + B A& (8), (15a)
where &(¢£) is defined by
0=/, (15b)
and each B, is an arbitrary constant but real from symmetry consideration in the
present loading. A, is assumed to be real and positive, 4, >0, for the displacements to
be bounded at the notch tip. Each term with the exponent 1, is introduced for 2¢(§)
and 2x () to be capable of describing a right notch-tip singularity as well as satisfying
the required traction-free boundary, which requires that A, is the real part of the
k-th(k=1, 2, «+*) solution of
sinA 2 + Acsin2a =0, (16)
which accords with William’s condition. A, is thus a function of 2a, where 2a =27z-24.
E«(¢) in equation(15) is related to By as
E. (&) =B, (cosA2a + A.cos2a) (1&] =D, a7
and
Ey (";") =B [eimw"’lke_m], ( I & | >1), (18)
Thus, E«(&) is found to vary as a function of a single variable, ¢, for | & >1 as in
equation(18), and smoothly continued onto E.(&) for | &| =1 in equation(17). See
APPENDIX II for the implications of equations(16) to (18).
General distributions of the stresses in a domain of interest may be rendered by
substituting equations(14) and (15), with @(¢) given in equation(10) or (11), into (5) and
(6) as

ngk%::l(BklkV/zc) Re[{2-c (£) 01 (&) -(1-4) 6:(§) 6 () } (vw (§) /IO 1], (19)
O‘FEI(BMRV/ZC) Re[{2+c(£) a1 (&) +(1-1) 61 (8) 6 (8 } (v (§) /IO)* 1, (20)

agfél(mku/zo In({c(§) 6 (6) + (1-2) 61 (§) 6 (§) } (vw (§) IO, (21)

where (&), 8,(&) and ¢, (&) signify 6(&) =-w (&)/@(§), 6 (&) = (§) /@ () and
¢ (€) =E.(&)/B,, respectively. A term of the maximum impotance in 2¢(§),
equation(14), and in 2x(¢), equation(15), however, are iCB; [vew (£) /iC)* and iCE, (§)
[ve (€) /iC)*, respectively, which will be discussed below.

4. NOTCH-TIP SINGULARITIES AND AZIMUTH DEPENDENCES
OF LOCAL STRESSES

For the examination of notch tip singularities let attention be restricted to the
domain | € | <<1, where w(¢£) and w’(¢) are closely approximated by
w(&)=(C/v)eti™ &, (22)
' (&) =CeFim &2 (23)
If the z-plane is described by polar coordinates, r and 4, with pole at the notch tip and
6 being the counter-clockwise angle with the y-axis, then
z=w (&) =ire’, (24)
The stresses in the immediate vicinity of the notch tip in polar coordinates can now
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be expressed, through the conversion formulae and writing 1, as 2, as follows:
o:= (B1Av/2) [C/vr]* " *[(3-1)cos(1-1) 8+ (cos2da + Acos2a) cos(1+ 1) 6], (25)
0s=(B:Av/2) [C/vr) *[(1+ 1) cos(1-1) - (cos2Aa + Acos2a) cos(1+ 1) 6], (26)
oo = (B1Av/2) [C/vr ) *[(1-1)sin(1-1) 6-(cos2Aa + Acos2a)sin(1+ 1) 8]. (27)
The amplitude of stress singularity at a crack tip, being termed as a stress intensity
factor, is a wide-spread concept today, and a general definition of it will be given by

K, =lim Rele *27{e (&)-w (&) 124" (&) /' (0), (28)

where K; is mode I stress-intensity factor, w(&,) the location of the crack tip, and ¢
the angle which the normal of the crack plane makes against the y-axis. We will not
refer to mode II stress intensity here. The extention of the concept to a general angled
defect would define mode I stress singularity factor K, for the defect as

KI:?F; Rele™ av{w(8)-w (&) 1) 247(8) /w0’ (€), (29)

where 1-1 denotes strength of the stress singularity. It is to be noted that a factor zv,
which apperas in equation(29) in place of 2 7 for a crack, is related by definition with
the notch-tip angle 2 8 as
v =2n-2p. (30)
By applying the general definition, equation(29), to 24(&) in equation(14), the
quantity B, proves to be related with the stress singularity factor K, as
B, Av(zC])'*=K.. (31)
In a limiting case of a crack, A =1/2, the above equations(25) to (27), and (31) reduces
to the widely known conventional formulae.

5. IMPLICATIONS OF THE WESTERGAARD SOLUTION

In the' light of the foregoing formulations and derivations the implications of the
Westergaard solution in a crack problem(3] will be considered. Westergaard’s method
is characterized by an a priori representation of the solutions in the form ¥

ox=Reloc/w’ (&) ]-xIm[{oc/w (&) }d{1/w’ (€)}/dE], (32)

oy=Reloc/ o’ (&) ) +xIm[{oc/w (&) }d{1/w’ (&) }/dE], (33)

oy =-xRe[{oc/w’ (£) }d{1/w’ (&) }/d¢], ' (34)
where

w (6) =c[£2-1]-ic, (35)

In this way the Westergaard solution claims its engineering expediency by assigning
itself the restrictive requirements,

oy~0x 127, =0 on the crack prolongation (at x=0 and | y | =c¢). (36)
Note first that his method corresponds to having utilized dé/dz=1/w’(€) itself as a
stress function; the function w(&) conformally maps the &-axis in the & plane, Figure
2, into the boundary ABOCD, illustrated in Figure 3, although he probably does not
intend to utilize the nature of w(¢), equation(35). Secondly, he just imposes the
restrictive requirements(36) other than the conditions of remotely applied stresses I,
ox=0y=o0 and 7, =0 at infinity, (37)

to the solutions, without assigning any load-free boundary conditions. ,

11 Note that the crack line is on the y-axis here in conformity with the foregoing
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arguments, while Westergaard assumes the crack line on the x-axis.

1 It must be added that a uniform compressive stress, ¢, may be superposed in the
y-direction without disturbing the remaining features of the solution, as he himself
addresses(3].

A BC D

Figure 3 Semi-infinite sheet with an edge crack under tension in the x-direction

If the Westergaard’s method is reformulated using complex potentials, then
2¢ (&) =océ, (38)
2x (&) =-oc/& (39)
By substituting these functions into equations(5) and (6), you can confirm 2¢(&),
equation(38), and 2x(¢), equation(39), produce the so-called Westergaard solutions
which satisfy the restrictive requirements(36), and not the appropriate load-free
boundary conditions to be alloted on the crack surface.

We are now not interested in the right treatment of an internal crack problem, and
correcting the Westergaard approarch. But we will confine ourselves to the problem
of an edge crack, which can make an exactly right use of the mapping function,
equation(35). Getting back to equations(14) and (15), and letting A, =k/2, 2¢(¢&) and
2x (&) for a crack reduces to

26 (&) =ic 3 By[20(€) /i), (142)

2 (&) =ic 3 B, (©) [20 (&) /ic)*™ (152)

Application of the general definition of stress singularity, equation(29), to this 2¢(&),
equation(14a), relates B, with the stress singularity factor K; as
B, [ﬂC]I/ZZKI, (40)
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Thus, the significance of B, in this system is at once clear, but the above discussions
exclusively could not determine B,.

6. CONCLUSIONS

In this work the concept of the stress intensity in a crack problem is extended to an
externally cut V-shaped notch with an arbitrary included angle, 23. The difficulty in
the present comlex analyses of the mapping functions with singularities of branch-
point type and related complex potentials is shown to be resolved by a power series
development with expansion coefficients, which depend on the boundary-describing
parameter, being smoothly continued from the traction-free boundary region to the
local zone characterized by a stress singularity. General solutions for the stresses and
those in the vicinity of the notch tip are derived on the basis of the formulations
developed in this work. In the light of the foregoing formulations and derivations the
implications of the Westergaard soulution for a crack are discussed.
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APPENDIX I Detrmination of C

Since equation(l) must satisfy w (1) =ctang-ic=-ice#/cosg, equatiou (4),
-ic €#(1/cospB) =C [1d¢& & (£%-1) m=CeFim] (A1)
holds, where the integral I =/[{dé& €% (1-€%) " is known to be given by the betha function as
I=[1d¢ & (1-¢%) "= (1/2) B[ (1+2n)/2, 1-n],
which can be deformed in the manner
=(1/2)T(1/2+n)T' (1-n) /T'(3/2)
={T'(1/2+n)/T(1/2)T(n) }+T ()T (1-n)
={1/B(1/2, n) } (z/sinzn)

={z/B(1/2, n) } (1/cosp). (A2)
Thus, remembering n=1/2-8/z, C in equation(A1l) is lead to
C=cB(1/2,n)/x, i (A3)

where it is assumed without loss of generality that C is real.

APPENDIX II  Derivation of equations(16) to (18)

The traction-free boundary condition(8) can be expressed as
ds (ps-ipy) =id 121 f, (£,&) =0, (B1)

where
£ (8,6) = (&) + @ (&) /(&) /' (E) + i (€) +a constant, (B2)
with ¢ (&) and x.(€) being the k-th term of (&) and x(&), respectively. By substituting 2¢(&),



Conceptual Extension of Stress Intensity to an Angled Defect [ 285

equation(14), and 2 x (&), equation(15), into f, (£,&) in equation(B2), and letting =0, f, (£,&) is found
to be written as

£ (£,&) =[-B g% (&) -BuAe (&) +Eu (&) ] [vw (&) /iC)*+a constant, (B3)
Where & (&) =-@ (&) /w (&). In order for the condition(Bl) to be true for an arbitrary value of
w (&), the coefficient of [vw (£)/iC]* must vanish, i.e.,

E, (&) =B, g4 (&) + B A (&). (B4)
On BO and OC in Figure 1, & (&) =e*i%2« where the condition(B4) requies
E, (&) =ByetitZa B 1, etize  ( | & | <1). (B5)

Thus E,(&) must be constant, on BO and OC. Equating both the constants in relation(B5), and
remembering that B, are real, it is at once clear that

sin 424+ A sin2a =0 (1&] =D, (B6)
which should and do agree with William’s results(1], and consequently
E. (&) =B, (cosl2a+ Accos2a) (| &1 =1). (B7)

Thus, E, (&) must also be real. On AB and CD in Figure 1, on the other hand, it is found that E,(&)
varies, because & (&) there is ,

(&) =-(x+ic)/ (x-ic) = (c?-x?) / (c?-x?) -i2cx/ (c?+x?) =explitan~{-2cx/ (c*-x?) } ], (B8)
which varies with x. If the counter-clockwise angle, in polar coordinates with pole at z=0, with the
positive y-axis is denoted by 6, then x=ctan(z+4), and tan '{-2cx/(c*-x? }=tan ‘[-tan(2z+
26)]1=-2=x+26). It follows that

B (5) — e i@n+26) =26, (BY)
By substituting this into equation(B4), E.(&) is lead to
E (&) =B, [e %2042, e 29], (1&]>D. (B10)

Thus, E.(&) is found to be expressed as a function of a single variable, §, on AB and CD. Further it
is seen that the E,(¢) is smoothly continued at §=+a onto the value for | & | =1, equation(B7). In
the complex &-plane, where the mapping function, (&), is expressed as in equation(10) or (11)
depending on the & area, it is understood that

E. (&) =B, (cosA2a + Acos2a) =a real constant (| & | =1), (B11)
and

E. (&) =B,&* (&) + B, A& (§) =a complex variable (| & | >1). (B12)



