Bull. Yamaguchi Med. School, Vol. 9, No. 3, 1962

On Japanese Foods,

Report 4.

Ryozo Hirohata

From Laboratory of Protein Chemistry, Yamaguchi Medical School (Received July 30, 1962)

III. Cereals other than Rice and Soybean.

Some cereals taken as food by Japanese were dietetically examined and the biological value of their protein contents, determined by Yamamoto⁵⁰ according to Barnes and confirmed in part by Hayashi²⁵, is shown in Table 43. The amino acid composition of the protein isolated from each of those cereals, from potatoes and from gingko seeds was determined respectively by Kimura³⁴, Ono⁵¹ and Nagase⁴⁹ with the result shown in Table 44. Gingko seeds, though eaten very rarely by Japanese, are unique as a foodstuff in that they are eaten exclussively in East Asia, and our analytical data on their amino acid composition may be of some biological interest.

Protein from	Comparativ	e nutritive value	Biological value				
	For growth	For maintenance	Biolog. value	Parts participating in growth	Parts participating in maintenance		
Whole eggs	100	100	99	77	22		
Buck-wheat	47	84	45	46	54		
Wheat	36	70	35	35	65		
Barley	34	68	35	34	66		
Corn	33	59	29	29	71		

Table. 43. The biological value of some cereal proteins⁵⁰.

IV. Foods of marine origin

The biological value of certain Japanese foods of marine origin was estimated by Sakata⁵² and is given in the following table, Table 45:

Mackerel was examined as an example of the fish eaten abundantly by the Japanese. It was found to have a higher biological value when eaten raw than when taken broiled at 105° or 150° —a fact of no small importance from the dietetic point of view of the Japanese.

V. The Digestibility and Absorption rate Japanese Foodstuffs other than Rice.

5 or more human subjects were fed on certain Japanese foods most of them for

Ryozo Hirohata

	Buck-		3371		White	Sweet			
	wheat ³⁴	Barley ³⁴	Wheat ³⁴	Globulin	Glutelin	Water sol. globulin	Albumin	potato49	potato49
Asp	10.31	4.47	4.80	12.25	12.33	12.01	12.98	11.9	13.1
Thr	5.0	3.64	3. 52	4.97	5.05	6.76	7.61	5.4	4.6
Ser	4.37	8.01	6.35	4.71	4.81	3.94	7.59	6.0	5.5
Glu	15.67	26.19	31.49	19.43	18.09	15.77	14.16	12.2	11.8
Pro	4.66	11.49	11.60	4.77	4.08	4.19	3.10	4.5	4.3
Gly	6.34	4.82	4.12	5.58	5.64	5.41	5.48	4.8	2.6
Ala	7.21	4.07	3.74	7.00	6.58	5.08	6.60	5.1	6.1
Cys	1.53	1.79	1.67	0.35	0.35	2.62	1.72	1.3	1.6
Val	6.34	6.35	4.96	4.80	4.93	7.76	7.27	5.4	7.9
Met	2.08	1.58	2. 10	2.36	2.63	2.83	2.08	3.4	2.5
Ileu	5.35	4.74	4.83	3.79	5.07	4.61	3.69	5.4	5.3
Leu	7.41	6.83	7.59	9.57	8.94	8.60	6.71	7.5	8.7
Tyr	4.12	3.73	4.18	2.94	3.17	4.75	5.27	4.2	3.6
Phe	4.19	4.25	5.36	3.35	3. 53	3.41	5.11	7.4	6.0
His	2.97	2.66	2. 57	1.51	1.52	1.79	2.44	3.7	4.2
Lys	5.72	4.05	2.93	3.10	2.96	3.94	8.93	8.3	6.5
Arg	7.86	4.58	3.93	13.93	13.76	11.83	6.20	6.6	6.4
Try	1.25	1.25	0.78	10.3	1.32	1.39	0.98	2.0	1.8
HN_3	3. 53	3.90	5.55	3.05	2.97	2.49	2.97	3.4	3.9
Total	104.90	107.62	110. 19	108.49	107.73	108.18	110.84	108.5	106.4

Table 44. Amino acid composition of protein isolated from some vegetable foods of Japan.

	Comparat	ive nutritive value	Biological value					
	For growth	For maintenance	Biolog. value	Parts participating in growth	Parts participating in maintenance			
Whole egg 100		100	99	79	22			
Mackerel (raw)	52	96	42	52	48			
// (105°)	50	86	34	49	51			
// (150°)	50	85	31	47	53			
Herring roe	56	99	46	51	49			
Top shell	52	97	42	43	57			
Ark shell	47	62	37	28	72			
Oyster	37	42	29	32	68			
Jelly-fish	29	15	19	38	62			
Sea-slug	27	14	17	24	76			

Table 45. The biological value of the protein in some kinds of marine products⁵².

3 days and a few for 2 days, and their faeces and urine were examined respectively by Nakamura⁵³, Kimura⁵⁴, Onishi³⁴, Fujii³⁵, Ichiki⁵⁵, Sakata⁵⁶, Yamamoto⁵⁷ and Nagase⁴⁹. The real absorption rate of the food taken was computed using either

<u> </u>	Crude protein		Crude fat		Crude solub. carbohydrate		Crude fibre	
Food	Content	Abspt. rate	Content	Abspt. rate	Content	Abspt. rate	Content	Excre- tion rate
Barley (boiled as grain)	9. 77	72.80 ± 1.92	1.60	57.63 ± 1.17	71.58	98.36 ± 1.29	1.40	$\begin{array}{c} 53.37\\ \pm 4.80\end{array}$
Barley (pressed)	9.61	$ \begin{array}{c} 81.27 \\ \pm 1.35 \end{array} $	0. 99	$59.01 \\ \pm 2.60$	72.46	$\begin{array}{c} 98.77 \\ \pm 0.07 \end{array}$	1. 34	$\begin{array}{r} 38.92 \\ \pm 4.31 \end{array}$
Sweet potatoe	1. 29	$\begin{array}{c} 48.89 \\ \pm 4.64 \end{array}$	0.11	$\begin{array}{r} 36.82 \\ \pm 8.23 \end{array}$	30. 48	98.50 ± 0.23	1.31	90.34 ± 5.14
Mungbean	22.08	74.87 ± 1.03	1.68	87.66 ± 1.32	54. 29	92.63 ± 0.57	3.90	58.92 ± 3.96
Mungbean (malt)	2.61	$\begin{array}{c} 98.08 \\ \pm 0.81 \end{array}$	0. 17	98.87 ± 1.07	1.31	94.54 ± 0.85	0.60	
Hyacinth bean	23.70	91.82 ± 0.17	1.14	92.48 ± 0.62	56. 50	94. 24 ± 1. 76	3. 84	57.78 ± 3.97
Cowpea	24.13	93.38 ± 0.30	2. 18	91.78 ±20.72	50.48	95.10 ± 2.36	4. 50	55.31 ± 4.23
Peanut	26.07	98.98 ± 0.72	48.03	92.55 ± 0.59	16.65	95.49 ± 1.54	1.49	69.99 ± 4.15
Adzukibean	21.42	90.78 ± 2.07	1. 29	83.91 ± 2.56	52.01	98.30 ± 0.63	4.30	53.70 ±10.76
Green peas	7.11	$93.40 \\ \pm 4.54$	0.63	84.54 ± 2.59	18.32	97.84 ± 0.36	2. 32	38.57 ± 5.13
Broad bean (fresh)	9.60	$\begin{array}{c}90.03\\\pm\ 2.07\end{array}$	0.71	$\begin{array}{c} 87.03 \\ \pm 2.34 \end{array}$	16. 56	$\begin{array}{r} 97.97 \\ \pm 0.56 \end{array}$	2. 33	68.93 ± 7.06
Glycine hispida	32. 85	$\begin{array}{c} 88.65 \\ \pm 0.38 \end{array}$	17.65	$\begin{array}{c} 76.\ 10 \\ \pm \ 0.\ 81 \end{array}$	25.98	98.10 ± 1.05	4.47	54.11 ± 4.96
Glycine hispida (natto)	19. 31	$93.01 \\ \pm 0.85$	11.04	$\overset{83.38}{\pm 0.38}$	7.68	97.49 ± 1.08	1.21	53.26 ± 5.96
Indian lotus	3.36	93. 13 ± 1. 59	0. 88	94.42 ± 1.41	10. 70	97.58 ± 1.35	0.91	51.24 ± 6.91
Edible burdock	2.77	92.04 ± 0.36	0. 68	$\begin{array}{r} 94.01 \\ \pm 0.44 \end{array}$	23.96	99.49 ± 0.91	1.94	47.24 ± 3.78
Bamboo-shoot	3.49	89.36 ± 3.46	0. 55	86.64 ± 4.01	3. 55	94.97 ± 2.85	0. 83	82.06 ± 5.00
Squash	1.62	$\begin{array}{r} 85.43 \\ \pm 0.64 \end{array}$	1. 12	$\begin{array}{r} 84.67 \\ \pm 0.77 \end{array}$	8.86	99.04 \pm 0.44	1.00	30.37 ± 5.07
Carrot	4.40	93.01 ± 0.38	0. 88	89.09 ± 0.84	4. 57	96.09 ± 0.53	1.13	$ \begin{array}{r} 64.88 \\ \pm 4.26 \end{array} $
Taro	2.64	94.72 ± 0.94	0. 35	71.51 ± 4.93	20. 86	97.87 ± 0.58	0. 68	55.75 ± 9.87

Table 46. The Absorption rate of Japanese foodstuffs other than rice (%, M±6)

Table 46 (continued)

		1 44	010 40 (00)	intiliaea)				
Spinach	2. 31	96.81 ± 1.79	0.45	64.82 ± 4.16	2.45	91.28 ± 5.02	0. 33	64.25 ± 9.40
Gingko	5.46	95.96 ± 0.47	1.44	88.51 ± 1.17	30.71	99.56 ± 0.14	0.63	27.19 ± 7.34
Konnyaku	0. 12	95.13 ± 0.82	0.01	49.36 ± 2.39	2. 02	89.51 ± 1.97	0. 11	75.66 ± 9.06
Armilaria Matsutake	1.62	95.52 ± 0.96	1. 32	$ \begin{array}{c} 62.61 \\ \pm 3.72 \end{array} $	5.98	93. 19 ± 1. 31	2. 33	80.42 ± 3.16
Cortinellus Shiitake	14. 31	92.18 ± 1.02	1.91		61.21	94.06 ± 3.43	4.48	47.70 ± 10.68
Herring roe	22. 94	97.29 ± 0.36	2. 52	92.82 ± 1.24	0. 51	91.48 ± 1.67	0	0
Sea-slug	3. 22	99.58 ± 0.39	0. 59	95.86 ± 1.10	0. 93	95.22 ± 1.85	0	0
Jelly-fish	2.58	99.71	0.24	98.11	0	0	0	0
Top-shell	25.62	99.09 ± 0.56	0.75	95.74 ± 1.74	3. 93	97.15 ± 1.12	0	0
Ark-shell	11.44	98.63 ± 0.86	1.42	90.07 ± 2.82	1.85	90.51 \pm 2.76	0	0
Oyster	9.44	97.87 ± 0.53	1. 36	93.61 ± 1.62	3.43	$96.29 \\ \pm 0.29$	0	0
Laminaria (Konbu)	7.25	99.31 ± 0.57	1.40	93.44 ± 0.80	43.64	$\overset{82.87}{\pm 3.48}$	4. 30	$\begin{array}{r} 47.16 \\ \pm 3.74 \end{array}$
Undaria (Wakame)	12. 10	95.02 ± 0.32	2.00	87.70 ± 1.18	41.84	92.83 ± 1.88	3. 50	37.69 ± 3.33
Porphyra (Nori)	33. 10	$96.87 \\ \pm 0.82$	1. 30	99.09 ± 0.63	40. 20	$\overset{75.\ 24}{\scriptstyle\pm3.\ 02}$	0.62	25.58 ± 8.18
Bread	7.02	93.12 ± 3.02	0. 89	84.66 ± 2.04	55.48	99.60 ± 0.09	0. 27	$\begin{array}{r} 38.03 \\ \pm 8.66 \end{array}$
Buck-wheat (vermicelli)	3.42	88.30 ± 1.61	0.63	$\begin{array}{c} 88.00 \\ \pm 3.89 \end{array}$	28.73	99.01 ± 0.26	0. 41	62. 33 ±12. 82
Milk (dried)	16.89	$91.65 \\ \pm 1.62$						
Sea bream (boiled)	19.47	$\begin{array}{c} 96.43 \\ \pm 0.36 \end{array}$	2.63	96.50 ± 1.52				

the data of $Okuda^{10}$ on metabolic N and fat, and the data of real absorption rate of white rice described in the Report 1. The result reached is given in the following table, Table 46:

SUMMARY OF REPORT 4

Certain cereal foods were examined and compared as to the biological value of their protein contents, and buck-wheat, barley, wheat and corn were found to vary in declining order of biological value.

Certain marine products taken as food were also examined as to the biological value of their protein contents, and fish taken raw in the form of "sashimi", for which most Japanese have a great liking, was found to be of higher biological value than broiled or boiled fish.

The absorption rate of many Japanese foods was determined on humans.

REFERENCES 4.

- 50. Yamamoto, M., Fukuoka Acta Medica 46, 6389, 1955.
- 51. Ono, K., *ibid.* 47, 731, 1956.
- 52. Sakata, H., ibid. 45, 176, 1954.
- 53. Nakamura, M., Food and Nutrition (Japan) 5, 91, 121, 1952.
- 54. Kimura, T., *ibid.* 5, 176, 1952.
- 55. Ichiki, K., Fukuoka Acta Medica 44, 641, 644, 646, 649, 651, 1953.
- 56. Sakata, H. ibid. 44, 998, 1953.
- 57. Yamamoto, M. ibid. 46, 34, 1955.