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Abstract

We investigate space complexity hierarchies of three-dimensional Turing machines whose
input tapes are restricted to cubic ones, and show that there exists an infinite hierarchy among
the classes of sets accepted by space-bounded three-dimensional deterministic or nondeter-
ministic Turing machines with cubic inputs.

1 Introduction

In general, computational complexity is a study of considering how the
computational powers of various types of automata are characterized by space
complexity, time complexity, or some other related measures. Especially, the concept
of space complexity is very useful to characterize various types of antomata from a
point of view of memory requirements. This study was motivated by Stearns, Hart-
manis, and Lewis [19]. They introduced an L(%) space-bounded one-dimensional
Turing machine to formalize the notion of space complexity, and investigated its
computing ability. Moreover, some results were refined by Hopcroft and Ullman [6-8].

After that, the problem of computational complexity was also arisen in the two
~dimensional information processing. Blum and Hewitt first proposed two- dimen-
sional antomata, and investigated their pattern recognition abilities [1]. Morita,
Umeo, and Sugata proposed an L(m,n) space-bounded two-dimensional Turing
machine and its variants to formalize memory limited computations in the two
~dimensional information processing [14,15].

Recently, due to the advances in computer vision, robotics and so forth, it has become
increasingly apparent that the study of three-dimensional pattern processing should be
very important. Thus, the research of three-dimensional automata as the
computational model of three-dimensional pattern processing hat also been meaning-
ful [2,7,16-18,21-24].

In this paper, we investigate the space complexity hierarchies of three- dimensional
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deterministic or nondeterministic Turing machines with cubic inputs. Section 2 gives
several preliminaries necessary for this paper. Section 3 presents the hierarchy theo-
rem for the space > log n. Section 4 presents the hierarchy theorem for the space <
log n.

2 Preliminaries

Definition 2.1. Let = be a finite set of symbols. A three-dimensional tape over 3 is a
three-dimensional rectangular array of elements of =. The set of all three-dimensional
tapes over X is denoted by 5®.

Given a tape x € 2@, for each 7(1<j< 3), we let /;(x) be the length of x along the
j-th axis. The set of all x € =® with [, (x) =m,, L, (x) =m, and , (x) =m, is denoted
by = tmmm When 1<7</(x) for each j(1<j<3), let x(4,%,%,) denote the symbol in
x with coordinates (4,%,%). Furthermore, we define

x[(l.x,l.z,ia), (7', i/z,i,a)];

when 1<¢;<i7/<[;(x) for each integer j(1<;j<3), as the three-dimensional tape y
satisfying the following (i) and (ii):

(Dfor each (1 < 7 < 3), L(y)=i,—4+1;

(ii) for each 7,7, (1<n <4 (¥), 1<n<L(),1<n<LH)),y (rn,nr) =x(n+iy—1,
thtih—1,n+i—1).

(We call x[(4,4,3), (i),i513) ] the [(i1,5,35), (i1, 4,i5) |-segment of x.) When a three
- dimensional tape x is given to any three-dimensional automaton, we assume that x
is surrounded by the boundary symbol #.

We now introduce a three-dimensional Turing machine.

Definition 2.2. A three-dimensional Turing machine (3- TM) M has a read-only three
-dimensional input tape with boundary symbols #’s and one semi-infinite storage tape
initially blank. Of course, M has a finite control, an input head, and a storage-tape head.
A position is assigned to each cell of the read-only input tape and to each cell of the
storage tape, as shown in Fig.1. Formally, M is defined by the six-tuple

M: (Q}QOJRE)F:é\)J

where

(1) @ is a finite set of states,

(2) ¢ € @ is the initial state,

(3) F C @Q is the set of accepting states,

(4) = is a finite input alphabet (H#& 3 is the boundary symbol),

(5) T is a finite storage-tape alphabet (B € T is the blank symbol), and

(6) s C(EX (S U {#}) XT) X (QX (I'-{B}) X {east, west, south, north, up, down, no
move} X {right, left, no move}) is the next-move relation.

The action of M is similar to that of one- or two- dimensional Turing machine [4-6],
except that the input head of M can move in six directions. That is, when an input tape
x € 2® with boundary symbols #’s is presented to M, M starts in its initial state ¢,
with the input head on x(1,1,1), with all cells of the storage tape blank, and with the
storage head on the leftmost cell of the storage tape. Then M determines the next state
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Fig.1. Three-dimensional Turing machine.

of the finite control, the move direction of the input head, the symbol written by the
storage head, and the move direction of the storage head, depending on the present
state of the finite control and the symbols read by the input and storage heads. We say
that M accepts the tape x if it eventually enters an accepting state. Note that the
machine cannot write the blank symbol. If the input head falls off the input tape or if
the storage head falls off the storage tape (by moving left), then the machine M can
make no further move. If M move deterministically (nondeterministically), we call M
a three-dimensional deterministic (mondeterministic) Turing wmachine, denoted by
3-DTM (3-NTM).

Definition 2.3. For X €{D,N}, a configuration of a 3-XTM M =(Q,q,, F,2,T',9) is
an element of

S® X (N U {0h)® X Sy,

where Sy = Q@ X (I'—{B})* X N and N denotes the set of all positive integers. The
first component x of a configuration' ¢ = (x, (4,%,%), (¢,@,7)) represents the input to
M. The second component (4,%,%) of ¢ represents the inpnt-head position. The third
component (q,a,7) of ¢ represents the state of the finite control, nonblank contents of
the storage tape, and the storage-head position. An element of Sy is called a sforage
state of M.

Next, we consider a restrited type of 3-7M, called a space bounded 3-7M, which can
be considered as a natural extension of the space-bounded one- or two-dimensional
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Turing machine [7,8,12] to three dimensions.

Definition 2.4. Let L(#n) : N — R be a function of one variable #, where N is the set
of all positive integers and R is the set of all nonnegative real numbers. A three
dimensional Turing machine M is said to be L(n) space-bounded if for no three-
dimensional input tape x € =® with 4 (x) =4 (x) = L(x) = n does M scan more than
L(n) cells® on the storage tape. We denote an L (%) space-bounded 3-DTM (3-NTM)
by 3-DTM (L(n)) (3-NTM (L(n))).

A determlinistic (nondeterministic) three-dimensional finite automaton [21], denoted
by 3-DFA (3-NFA), is a 3-DTM (0) (3-NTM (0)).

It has often been noticed that we can easily get several properties of three-dimen-
sional automata by directly applying the results of one- or two- dimensional case, if
the three-dimensional inpnt tapes are not restricted to cubic ones. So we let the three
-dimensional input tapes, throughout this paper, be restricted to cubic ones in order to
increase the theoretical interest.

For each X € {D,N}, we denote a 3-XTM [3-XTM (L(n)), 3-XFA] whose three
-dimensional input tapes are retstricted to cubic ones by 3-XTM¢ [3-XTM(L(n)),
3-XFA°].

Definition 2.5. For any three-dimensional automaton M with input alphabet 3, define
T(M) = {x € ® | M accepts x}. Furthermore, for each X €{D,N}, define
£[3-XTM¢] = {T | T = T(M) for some 3-XTM M}. £[3-XTM(L(n))] and
£ [3-XFA¢] also have analogous meanings.

Moreover, we need the following definitions.

Definition 2.6. A function L : N — R is three-dimensionally space constructible if there
is an L(n) space-bounded 3-DTM ¢ M such that for each n > 1, there exists some
input tape x with 4 (x) = L(x) = L(x) = » on which M halts after its storage tape
head has marked off exactly L (n) cells of tle storage tape. (In this case, we say that
M constructs the function L.)

Definition 2.7. Let =,, 3, be finite sets of symbols. A projection is a mapping 7: S ¢
— 3§ which is obtained by extending a mapping z: 3, — 3, as follows : 7(x) = x’
if and only if (i) Z(x) = [(x") for each i(1<i<3), and (i) z(x(i,i,4)) = x° (3,5,
i) for each (4,5,%) [1<a<h(x), 1<4<b(x), 1<4<L(X)]. If TCS® we let ¢
(T) = {z(x) | x € T}.

The following theorem shows that the acceptability is not affected by adding a
constant factor to the space function L (#).

Theorem 2.1. For any X € {D,N }, for any function L : N — R, and for any constanlt
d>0,

L£[3-XTM(L(n))]=£[3-XTM(L(n)+4d)].

The next theorem shows that the acceptability is not affected by multiplying a

'We note that 0<4 </} (x) +1, 0<<l(x)+1, 0<4a<h(x)+1, and 1<j< | @ | +1, where for any
string w, | w | denotes the length of w (with | A | =0, where 1 is the null string).

2Rigorously, ”L(n) cells” should be replaced with "L ()" cells” where 7! means the smallest
integer greater than or equal to ». Below we omit! 'if no confusion results.
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constant factor to the space function L (#).
Theorem 2.2. (Tape Reduction Theorem of 3-TM°¢) For any X € {D,N}, for any
funetion L : N — R, and for any constant d >0,

£[3-XTM(L(n))]=£[3-XTM(dL(n))].

These two theorems are easily proved in the same way as in the one- or two-
dimensional case [14,19], and so the proofs are omitted here.

3 Hierarchy Theorem for > log »

In this section, we investigate the space hierarchy among the classes of sets accepted
by 3-TM s with spaces equal to or larger than log #, and show that there exists an
infinite hierarchy among those classes.

Theorem 3.1. Let L, (»#) and L, (%) be any three-dimensionally space constructible
functions such that
(1) lim;.o, Ly (n,)/L,(n;) = 0, and
(2) L,(n;)/logn;>k(i=1,2,"+*)
for some increasing sequence of natural numbers {#;} and for some constant 2 > O.
Then there exists a language 7T such that T € £[3-DTM<(L,(n))] but T &
£[3-DTM(L,(n))].

Proof. This lemma can be proved by using the diagonalization [7,8]. We will
construct a 3-DTM¢<(L,(n)) A which accepts a language not accepted by any 3-D7TM ¢
(Ly(n)).

Let A’ be a 3-DTM ¢ which constructs the space function L, (7). If the set of input
symbols of A’ is 3, then that of A is S=3"x{0,1}. In short, the symbols, which mark
each element of 3’ with the suffix 0, 1, are used. A first simulates A’ withont paying
attention to the suffix 0, 1 until A’ halts. If A’ does not halt, A also does not. Given
some three-dimensional inlput tape x € S® with 4 (x) = L(x) = L(x) = n, A can
mark exactly L,(n) cells of the storage tape. After this action on x, if A is obliged to
use more cells than L, (%) cells, then' A will halt and reject x.

A takes notice of the suffixes of the input symbols of x, and systematically reads x
from the first plane to the n-th plane, from the first column to the n-th column in a
plane and from the first row to the #-th row in a column, as a binary number. If the
binary number is 7, A writes the code of the j-th 3-DTM*® M; on the storage tape.
Therefore, given a sufficiently large three-dimensional input tape on which the binary
number j is written, A can write the code of M, by using at most L, (#n,) cells of the
storage tape.

If A can write the code of M;, then A simulates the action of M, on the input of A
by using the code. If M, happens to be the L, (#) space- bounded 3-DTM ¢, A needs cL,
(n) cells of the storage tape to simuilate M;, where ¢ > 0 is a constant depending on
the number of storage tape symbols of M,. By the way, condition (1) holds for the
sequence {#,}, so A can simulate M; if a suitable three-dimensional input tape x with
L(x) = L(x) = L(x) = n,is given for sufficiently large i. At every step of simulation,
A checks whether or not M, accepts the three- dimensional input tape. If M; accepts,
then A halts without accepting. If M; halts without accepting the input word, then A
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accepts and halts. Moreover, A counts the number of steps of M, by using the other
track of the storage tape to check whether or not M, enters a loop. Let s and ¢ be the
numbers of states (of the finite control) and storage tape symbols of M, respectively.
Let ¢ (n;) be the number of possible configurations of M, on the tapes of sidelength #,.
Then, we get the inequality

c(n;) < snilLy(m)th",

If M; does not halt within ¢ (#,) steps, then A can conclude that 3, is looping. Here,
let » be the number of symbols on the track to use for the purpose of counting the
number of steps of M;. Then, A can count up to the number r = If  satisfies log » >
3/k, it follows from conditions (1) and (2) that

Uy sm 3 Ly () £ 20 )y 200 =

Therefore, for sufficiently large 7 A can also check whether or not M; is looping in this
case. If M; loops, then A accepts the input tape and halts. Suppose that an L, (z) space
-bounded 3-DTM* B accepts the set T accepted by A which is constructed as
mentioned above. Then, for sufficiently large 4, if a three-dimensional input tape x
with 4 (x) = L(x) = L(x) = n; whose binary number is the number of B is given as
the input of B, then a contradiction occurs. Thus, 7 is not accepted by any L, (#) space
-bounded 3-DTM¢. Q.E.D.

Recently, it was shown in [9,20] that, for each space construtible function L (») >
logn, the class of sets accepted by L (%) space-bounded one- dimensional nondeter-
ministic Turing machines is closed under complementation. This result can be
extended to the three-dimensional case. By using these facts, we can extend Theorem
3.1 to the nondeterministic case [5]. That is, we have

Theorem 3.2. Let L, (n) and L,(n) be any three-dimensionally space constructible
functions such that
(1) lim;.eLs () /Ly (n;) = 0, and
(2) Ly(n;)/logn;>k(i=1,2,+++)
for some increasing sequence of natural numbers {#,;} and for some constant 2 > 0.
Then there exists a language 7 such that 77 € £[3-NTM°(L,(n))] but T ¢&
£[3-NTM<(L,(n))].

4 Hierarchy Theorem for < log n

Next, we consider the case that the space function L (%) grows more slowly than the
order of log #.

As a preliminary to get the desired results, we need the idea of chunks. The idea of
a chunk was introduced by Blum and Hewitt to investigate the acceptabilities of two
-dimensional finite antomata [1]. In this paper, we expand this idea for 3-DTM¢’s.

Definition 4.1. Let = be a finite set of symbols, and let # € N. An element of 3%7%
is called an n-chunk over 3. Letcy, ¢, be two n-chunks, and let M be a 3-DTM¢. If the
numbers of states and storage tape symbols of M are s and ¢ respectively, then the
number of possible storage states of // when M uses at most £ cells of the storage
tape is s/t'. Thus, when M uses at most £ cells of the storage tape, the number of ways
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for M to enter an n-chunk is 6#2slt’. For each case of 6n%slt' ways for M to enter an

n-chnuk, there are at most (6#%slt'+s+1) ways for M to exit the chunk (6#*s/t* ways

of exitting the chunk, s ways of halting in the chunk and 1 way of looping). Two n

~chunks ¢, and ¢, are said to be (M,[) -equivalent, if the entrance-exit relations of M

to ¢, and ¢, when M uses at most £ cells of the storage tape are the same for all the

ways of entering the n-chunks. Then, we can easily get the following lemma.
Lemma 4.1. Let M be a 3-DTM?¢. There are at most

(uts+1)*

(M,])-equivalence classes of n-chunks, where # = 6#x*slt’, s is the number of states
of the finite control of M, and t is the number of storage tape symbols of M.
We can also get the following lemma.
Lemma 4.2. Let M be a 3-DTME¢. Let { (x,1,) } be a sequence of pairs of nonnegative
integers that satisfies
(1) lim;../;/log x;=0, and
(2) lim;.X; =00,
and let {D;} (D, C = %**) be a sequence of sets of chunks that satisfies
(3) | D;| >~
for some constant r > 1. Then, there exists some integer 7, > 0 such that there exist two
different (M,l;)-equivalent x,~chunks c¢,c; € D, for every i > i,.

Proof, Let s and ¢ be the numbers of states and storag tape symbols of M,
respectively. From Lemma 4.1, there are at most (#,+s+1)“ (M,/;)-equivalence
classes of x,-chunks in D,, where u,=6n % s/;t *. Here, we denote
fi=(u;+s+1)/r
From conditions (1) and (2), we can derive lim;—oof;=0. Then, from condition (3),
there must exist some 7o such that for every >4,

| D: | >7 > (g, +s+1)%

and thus, there are two different (M, /) -equivalent x,-chunks ¢;,c; € D;. Q.E.D.

From Lemma 4.2, we can get the following theorem.

Theorem 4.1. Let L,(n) be three-dimensionally space constrctible function of
3-DTM¢. Suppose that
(1) lim.ly (n,) /Ly (n;) =0,

(2) lim;-oL, (n;) =00, and

(3) L,(n;) < klog n;(i=1,2,+++)

for some increasing sequence of natural numbers {n;} and for some constant 2 > 0.
Then, there exists a set 7" such that 7 &€ £[3-DTM°(L,(n))] but T & £[3-DTM*
(Ly(n)) ].

Proof. We will construct a 3-DTM¢ (L,(n)) A which accepts the language 7 not
accepted by any 3-DTM<(L,(n)). Let A’ be a 3-DTM*° which constructs the space
function L, (%) . If the input alphabet of A’ is 3, then that of A is ==3"x{0,1}. Let the
mapping & : 3®— 3@ (f, : 3¥—-{0,1}®) be the projection obtained by extending the
mapping & : S -3 (b, : S — {0,1}, where &, ((a,7)) =a and &, ((a,7)) =j for any (a,
j) € =3"x{0,1}. If an input word w € =® is given to A, A first simulates the
movements of A’ on the input 7 (w) until it halts. Let / be the number of cells of the
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storage tape which A’ has used during its simulation. If each sidelength of w is n, then
[< L,(n). However, if an suitable input w is given, then /=L, (n).

Now we consider two d-chunks w, and w,, Where d=2"*/*""!, at the north-west
corner of upper planes of w as shown in Fig.2. If the sidelength » of w happens to
satisfy n=wn,” for some 7, we can take such d-chunks w,, w, on w due to condition
(3), If not (that is, » < 2d), we cannot. Then, A halts without accepting the input w.
Let »=2""#"*1 Then d can be easily written on at most / cells of the storage tape using
r-ary number. In order to check whether » < 2d or not, we have only to move the
input head along the first row on the top plane from north to south while subtracting
d written on the storage tape from n one by one.

Next, A checks whether /%, (w,) =, (w,) or not. A can easily do this by using / cells
of the storage tape. Then, if %, (w,) =/ (w,), A accepts w and halts. If not, A halts
without accepting w.

Now let T be the language accepted by A which moves like the above, and we
suppose that there exists a 3-DTM¢°(L,(n)) B which accepts 7. Let {(d; )} be a
sequence of pairs of nonnegative integers such that

diZZFLz(nz»)/kT-—l’ and
L=L(n;).

Let v; be a cubic word in 3 “ " which makes A’ use exactly L,(n;) cells of the
storage tape. Let v;, and v;, be two d;-chunks taken on »; at the same position as in
Fig.2. Let {D;} be a sequence of sets of chunks such that

Di:{C | c € Z (i di,d) and El((c) :Uia}-

Then, {(d; )} and {D;} satisfy conditions (1),(2),(3) of Lemma 4.2, and thus, there
exists some integer 7,>0 such that there are two different (B, ¢ ;)-equivalent d7
-chunks ¢;, ¢; € Di for every i>1,. Here, for every 7> 4,, we consider two cubic words
w,w; € 2P that satisfy the following conditions : Let w;q, s, W o, w ;, € S 444) he
d.~chunks taken on w; and w ; at the same position as in Fig.2. w; and w } are the same
except d,-chunks w,, and w’, and they satisfy 7 (w;) = (w) =v, h(wy) =h
(wy) =l (c), wa=c, and wil,=c.

Clearly, w; € T and w, is accepted by B. On the other hand, w,, and w }, are (B,
[;) —equivalent. Thus, w; is also accepted by B, which contradicts the fact that w; &
7. This completes the proof. Q.E.D.

We next present a nondeterministic version of Theorem 4.1.

We first give several preliminaries to get the desired result. For each m > 2 and each
1 <n < m-1,an (m,n)-chunk is a three-dimensional pattern over ¥ as shown in Fig.
3 [13,16].

Let M be a 3-NTM*(l). Note that if the numbers of states and storage tape symbolts
of M are s and t, respectively, then the number of possible storage states of M is sit.
Let = be the input alphabet of A, and let # be the boundary symbol of M. For any (m,
n)-chunk x over X, we denote by x (#) the pattern (obtained by surrounding x by #’s)
as shown in Fig.4. Below, we will assume without loss of generality that M enters or
exits the pattern x (#) only at the face designated by the bold line in Fig.4.

Thus, the number of the entrance points to x (#) [or the exit points from x (#)] for
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M is 4n+8. We suppose that these entrance points (or exit points) are numbered 1,
9,+++, 4n+8 in an appropriate way. Let P={1,2,-++, 4n+8} be the set of these
entrance points (or exit points). Let C={q;,q,,***,q.} be the set of possible storage
states of M, where u=slt'. For each i € P and q € C, let M, (x(#)) be a subset of
P X C U {L)} which is defined as follows (L is a new symbol):

1) Gp) € My, o(x(#))

& when M enters the pattern x (#) in storage state ¢ and at point ¢ it may eventually
exit x (#) in storage state p and at point .

(2) L € My, o(x(#)

# when M enters the pattern x (#) in storage state ¢ and at point 7, it may not exit
x(#) at all.

Let x, v be any two (m,n)-chunks over =, we say that x and y are M -equivalent if
for any (i,q) € P X C, My, o(x®#) = M,,o(y#)). Thus, M cannot distinguish
between two (m,#n)-chunks that are M-equivalent. Clearly, M-equivalence is an
equivalence relation on (m,n)-chunks, and we get the following lemma.

Lemma 4.3. Let M be a 3-NTM<(l). There are at most

(2(4n+8)u+1)(4n+8)u

M -equivalence classes of (m,n)-chunks over =, where u=s/t!, s is the number of
states of the finite control of M, and ¢ is the number of storage tape symbols of M.
Proof. The proof is similar to that of Lemma 4.3 in [11]. Q.E.D.
We are now ready to prove the following theorem.

up

north
the 2nd axis east

the 1st axis
vest south

down
the 3rd axis

first rov //)k//

Fig.2. Two d-chunks w, and w, on an input w.
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Theorem 4.2. Let L,(n) be a three-dimensionally space constrnctible function such
that L,(n) < logn. Suppose that lim,..L,(n)/L,(n) =0.Then there exists a set in
£[3-NTM<(L,(n))] (infact, £ [3-DTM(L,(n))]), but not in £ [3-NTM(L,(n))].

Proof. Let M be a 3-DTM ¢ which constructs the function L,, and let 7°[L,,M ] be the
following set, which depends on L, and M. T[L,,M]={x €(=x{0,1})® | 4 n>2[4
(x)=L(x)=Lx)=n & Jr(»<" L,(n)") [when the tape / (x) is presented to M, M



Space Hierarchies of Three-Dimensional Turing Machines 163

marks off 7 cells of the storage tape and then halts] & 3 i(1<i<n-1) [&(x[(;1,1),
Gr D)D) =hx[(n,1,1),(n,71)])]}, where S is the input alphabet of M, and 7 (/) is
the projection which is obtained by extending the mapping &, : =X {0,1}—> Z(h, : =X
{0,1} —{0,1}) such that for any c=(a,b) € =X{0,1},h (¢) =a(h(c)=b).

(1) : We first show that the set 7 [L,, M| is accepted by a 3-DTM<(L,(n)) M, which
acts as follows. Suppose that a three-dimensional input talpe x with 4 (x) =4L(x) =4
(x) =n(n>2) is presented to M,. First, M, directly simulates the action of M on / (x).
(If M does not halt, then M, also does not halt, and will not accept x.) If M, finds out
that M halts (in this case, note that M, has marked off at most " L, (#n) ' cells of the
storage tape, because M constructs the function L), then M, stores the segment 74, (x
[n,1,1), (n,7,1)]) on the storage tape, where » is the number of cells (of the storage
tape) marked off by M,. After that, M, simply checks that for some i(liiﬁn—l),ﬁz
(x[71,1),(7,71)]) is identical with & (x[(2,1,1), (%,7,1)]) stored on the storage tape,
and M, accepts the input x if this check is successfui. It will be obvious that7 [ M, ] =
T[L,,M].

(2) : We next show that theset 7' [L,,M ] isnotin £ [3-NTM<(L,(»)) ]. Suppose that
there is a 3-NTM (L, (n)) M, accepting T [L, M], where lim,.o[L,(n)/L,(n)] = 0
(note that L,(n) < log n(n > 1). Let s and ¢ be the numbers of states of the finite
control and storage tape symbols of M,, respectively. We assume without loss of
generality that M, starts on position (/4 (x),1,1) of x, and that when M. accepts an
input tape x in 7'[L,,M ], it halts on position (/(x),1,1) of x (these assumptions are
concerned with the shape of chunks described just before Lemma 4.3), and that M,
never falls off an input tape out of the boundary symbol #. For each » > 2, let z (%)
€ 3® bhe a fixed tape such that (i) 4(z(n)) = L(z(n)) = L(z(n)) = n and (ii) when
z(n) is presented to M, it marks off exactly " L, (») 'cells of the storage tape and halts.
(Note that for each n > 2, there exists such a tape z(n) because M constructs the
function L,.) For cach n > 2, let

Vi) ={xe@Ex{0,1N® | 4x) =Lk =5 =n& LE&[Q,1LD),n Ln",

D) €{0,1}® & (the other part of % (x) consists of 0’s) & I (x) = z(n)},

Y(n) = {y €{0,1}® | L(») =1& L) ="L(n)' & Ly) = 1},
and

R(n) = {row(x) |x € V(n},
where for each x in V(n), row(x) = {y € Y(n) |y = (x[(G1,1), " L;(n),D])
for some (1 < i < m-1)}. Since | Y (n) | =27="", it follows that

2rLz(n)'| 2‘"L2(n)1
)
1 n—1

if 2160 >p—1;

2r14(n)-' 2'—14(?1)T
[ 1 ]+”'+{2rb(”)7 ]:
22T L1 1  otherwise.

| R(n)| =

Note that B = {p | for some x in V (n), P is the pattern obtained from x by cutting
the part x[ (%,1,1), (%, L,(n) 1) off} is a set of all (n,” L, (n) ) -chunks over =X {0,1}.
Since M, can use at most L, (n) cells of the storage tape when M, reads a tape in V
(n), from Lemma 4.3, there are at most
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E(n) = (2(4FL2(n)1+8)u[n1+1) (47 Ly(n)1 +8) uln]

M,-equivalence classes of (n," L,(n)")-chunks (over =x{0,1}) in B, where u[n] =
sL,(n)t =, We denote these M,-equivalence classes by Ci, G, **+, Cgm). Since L,
(n) < log n and limy...[L,(n)/L,(n)] = 0 (by assumption), it follows that for large
n, | R(n) | > E(n). For such #, there must be some @, @' (Q = Q’) in R(n) and
some C;(1 < i < E(n)) such that the following statement holds :
”There exist two tapes x,v in V (%) such that

Q) x[(1,1,1), (n Ly(w) D] = y[(1,1,1), (0 Ly(n) ', 1)] and % (x[ (2,1,1), (0 L,
() D)) = h(y[(n1,1),(n L,(n),1)]) = p for some p in @ but not in Q’,

(i) row(x) = Q and row(y) = @’, and

(iii) both py and py are in C,, where p,(p,) is the (%, L, (%) ) -chunk over 3 x{0,1}
obtained from x (from v) by cutting the part x[ (%,1,1), (s,” L,(n),1)] (the part y[ (»,
1,1), (n" L,(%) 1) ]) off’. Asis easily seen, x isin 7' [L,,M ], and so x is accepted by
M,. 1t follows that y is also accepted by M,, which is a contradiction. (Note that y is
not in T'[L,,M]. This completes the proof of "T[L,, M] & £[3-NTM<(L,(n))].” Q.
E.D.

Let log™ % be defined in the following way :

log® n
log® n = log(log®*Yn,), for £ > 1.

n.’

It is shown in [18] that for each £ > 1, the function log® # is three-dimensionally
space constructible (in fact, three-dimensionally fully space constructible). From this
and Theorem 4.2, we have the following corollary.

Corollary 4.1. For any constant ¢ > 0, each # € N, and each X € {D,N},
£[3-XFA¢] = £[3-XTM¢(c)] C-C £ [3-XTMc<(log*+Vn) | c £ [3-XTM<(log®
n)]eee.

5 Conclusion

In this paper, we have investigated the space complexity hierarchies of L (%) space
-bounded three-dimensional deterministic or nondeterministic Turing machines whose
inputs are restricted to cubic ones, and we have shown that there exists an infinite
hicrarchy of acceptabilities among these machines.

It will be interesting to investigate whether or not there exists an infinite hierarchy
of acceptabilities for space-bounded three-dimensional alternating Turing machine
[16].
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