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Shock Wave Propagation Analysis in Coordinated Signal
Systems by Kinematic Wave Theory
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Abstract

This paper describes a model which, by applying the kinematic wave theory, draws the
trajectories of shock waves propagating from link to link of coordinated traffic signal
systems. A BASIC program is developed to draw the trajectories on the time-space diagrams
on the personal computer display in turn under arbitrary street, traffic and signal conditions.
Using this model, the delay in each link and inflow traffic from main and cross streets at each
intersection can easily be calculated. This paper expands the model by Michalopoulos et al.,
which target is confined to a single signalized link, so as to be able to apply to arterial streets
made up of a given number of links.

1. Introduction

In coordinated traffic signal systems under the oversaturated or near-saturated
traffic conditions, it is important that the control is optimized, considering the exis-
tence of queues at intersections and how they change dynamically. This requires
building a highly operable traffic flow model that expresses the dynamic behavior of
queues and the propagation of shock waves. One such model is the model based on the
kinematic wave theory. In this research we have formulated, according to wave theory,
a model that can express the trajectories of traffic waves in a unified way that
propagate through links of coordinated signal systems.

Much research has been done in wave theory since Lighthill and Whithman? for the
streets, Stephanopoulos et al as well as Michalopoulos et al have proposed analytical
models that focus on single link,?*® and Ikenoue has attempted to develop a model that
can be applied to oversaturated multiple links.¥® But the model of Michalopoulos et al
covers only single link and unless modified cannot be applied to multiple links. And the
Ikenoue model, although it can be applied to multiple links, handles only the oversatur-
ated case and unless modified cannot be applied to the undersaturated case. Fukuyama
et al do an approximative analysis of unsteady states for multiple links.®” ‘And for
expressways, Okutani and Inoue do an analysis concerning congestion due to traffic
accidents.®?

Hisai and Tamura, following mainly the research of Michalopoulos et al and of
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Ikenoue, have arranged wave propagation models, have rebuilt an analytical model
that can express the phenomenon of shock wave propagation through links of coor-
dinated signal systems consisting of an arbitrary number of links, and have applied this
model to undersaturated and oversaturated steady-state coordinated signal systems.!?
In this research, we have further developed the research by Hisai and Tamura and
have made it possible to

(1) handle both the case when there is left- and right-turn inflow from cross streets and
the case when there is no such turning traffic, and

(2) handle both the case when the most-upstream intersection of study section is
oversaturated and the case when it is undersaturated.

Specifically, using a personal computer the behavior of queues at intersections and the
propagation of shock waves from links to links are computed for each link and
displayed graphically on a time-space diagram in an easy-to-understand visual way.

2, Study section and the assumptions made in building the model

The streets considered in this research are the coordinated control streets consisting
of an arbitrary number of links, with the streets as a whole either oversaturated or
undersaturated; we do not consider streets in which both oversaturated and undersatur-
ated links coexist.

The traffic flow is assumed to be a compressible fluid, and the relationship between
traffic density and speed is assumed to be given by the Greenshields formula, which is
linear. Because of this, the traffic volume-density curve is quadratic

The inflow traffic from upstream to downstream at an intersection consists of
inflow due to through traffic from upstream of the main street, and inflow due to left
and right turns into the main street from the cross streets. However, the inflow from
cross streets is assumed to be a uniform flow of density K,(K,=0) and is assumed to
be the same for all intersections. If there is no inflow, K,=0.

Michalopoulos et al and Ikenoue make the assumption that the inflow from an
upstream intersection of the main street during green time is a uniform flow of density
K,(K;>K,),¥ but here, because our purpose is to handle traffic flow between multiple
links, we assume that the rate of through traffic of the main street is 1009, and that
when the signal changes from red to green, the traffic density instantaneously changes
from K;(jam density) to Kn(critical density) upstream of the intersection and from K,
to Ky, downstream of the intersection, as shown in Fig.1(a).!® Thus at the beginning of
green signal, instantaneously there is an arbitrary density in the range K;— K
upstream of the stop line and in the range K,— K, downstream of it. Thus iso-density
lines that represent density in the range K,— K; can be drawn on the time-space
diagram from the beginning of green time, as shown in Fig.1(b). In the diagram, LINE1
is the starting wave, and LINE4 is the iso-density line for K, that radiates from the
point when green starts. As shown in Fig.1(c), the density at points A — B — C before
and after the stop line changes linealy K,— K,— K;.

The density Ks at the stop line is equal to Ky, and this can be confirmed as follows:

_ h(K,)t
K= hon—n KKK o
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Fig.1 Density on the main street near stop line at the beginning of green time

Here h(K) is the slope of the tangent to the volume-density curve, that is, h(K) is the
propagation speed of the density K.

hK)=ud(1 - %5) ©
and therefore
_ u(1-2K, " K;) B
Ks= 09K,/ K)—u(l—2K /K, KKtk
_ 1k
=3 K;=Kun. 3)

Therefore the density at the stop line is K.

The calculation can be done under the conditions given arbitrarily as follows:
1) street conditions such as number of links, link lengths, etc.
2) traffic conditions such as the critical density, jam density, free speed, arrival
density at the most-upstream intersection, inflow density from cross streets, etc.
3) signal conditions such as cycle lengths, green times, offsets, etc. Thus it is possible
to study how the control parameters affect the traffic flow under various street and
traffic conditions.

3. Theory of shock wave propagation

A shock wave is the point where the traffic density changes discontinuously on a
street. The propagation speed uy of a shock wave is given by the following equation:
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_ Kaug—Kyuy
T KK, @
where K, : traffic density on the upstream side
u, : speed of the traffic flow on the upstream side
Ky : traffic density on the downstream side
Uy : speed of the traffic flow on the downstream side.
If it is assumed that the relationship between the speed u and the density K is given by

u=u(l ) 6)
where u; is the free speed, the propagation speed is given by the following equation:
— _ Kd Ku
Uw—uf {1 ( Kj + Kj )} . (6)
Equation (6) can be written as
A _ U (g, -K,-K,) @

dt K
where x is the distance measured in the direction of traffic flow and t is time.
Next, we present the basic approach of Stephanopoulos et al for a solution for the
shock wave propagation trajectories.? First we consider the continuity equation
oK

L 99
at+ax 0 ®)

where the traffic volume q is given by q=Ku. If we assume that u=£(K), equation (8)
becomes

oK df ; oK _
5t HE+K -] 5 =0. ©)

Because K is a function of t and x, the change of the total differential of K becomes
dx _ 9K | dx oK
dt ot + dt ox’ (10)
Comparing equation (9) with equation (10) shows!? that the change dK  dt of K is 0
at points that move at speed

dx _ df _
G =fK)+K Ge = hK). | (11)

That is, on the curve represented by equation (11) the density is constant, and therefore
equation (11) is for an iso-density line. Equation (11) is a curve that expresses the
propagation speed of a turbulence wave which is equal to the slope dq ~ dK of the
tangent of the g—K curve , and this is called a characteristic curve (in this case, a
straight line)in wave differential equations. When two characteristic lines intersect in
the t—x plane, then at the intersecting point there are two different densities. In other
words, at that intersecting point the density changes discontinuously. Therefore, this
intersecting point expresses a shock wave.

In the time-space diagram there are only five kinds of density regions: the K, region,
the K, region, the K; region, the K;— K, transition region, and the K,— K,, transition
region. These density regions are determined by the arrival conditions at the most
-upstream intersection and the boundary conditions at the intersections. If different
density regions overlap, which leads to the generation of shock waves.
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4 . Solution for shock wave propagation trajectories

Michalopoulos et al determine analytically the propagation trajectories of shock
waves assuming single link.® Here we determine general equations corresponding to
multiple links. First, if the density is constant both upstream and downstream of the
shock wave, it can be determined by simply integrating equation (7). The integration
constant is determined by the starting-point coordinates (t,,x,) of the shock wave. If
either the upstream, downstream, or both side of the shock wave is in the density
transition region, the trajectory is determined by solving simultaneous differential
equations. This solution is illustrated by WAVEGO0.

With shock wave WAVEG60, the density K, on the upstream side is K,, a constant,
and the density on the downstream side is in the K,— K, transition region. The density
K, is determined as follows. That is, taking K4 as the density of the characteristic line,
since its slope is h(K,), the equation for the characteristic line is as follows:

x =h(Kq}(t—ts)+D, (12)
where (t;,D,) are the coordinates of the beginning of green time (radiation point of the
characteristic line) of a certain intersection.

Substituting h(Kq)=u;(1 —2K,4. K;), we get
2K 4

X:Uf( 1— K ) (t-—tfl)+D1 (13)

Solving for K,, we get
_ Kj _ Kix=D))

Kd - 2 2uf(t_tf]). (14)
Substituting the above equation and K, =K, into equation (7) and rearranging, we get

dx _ x=D, , 1

at ~ 2=ty + 5 h(K,). (15)
Setting

w=(x—D;)/(t—ts) (16)

and solving this homogeneous differential equation, we get the equation for WAVEG6(.

The derivation for the other shock waves is similar. The results are listed in Table 1.
There are 12 types of shock waves and characteristic lines, and when they are

classified by content, we get the following.

. queue building waves®esreesecsee QBW2, QBW3

. queue dissipation wavegeesec+-* QDW2, QDW3

. shock waves toward upstream--++++-*WAVE20, WAVE10

. shock waves toward downstream--++WAVE5, WAVE60, WAVE70, WAVES

. characteristic lines=++-- LINE]1, LINE4

oo oOor e

QBW2, QBW3, QDW2, and QDW3 are shock waves representing the tail of a queue
of vehicles. The C-group shock waves are found only on oversaturated streets, and the
D-group shock waves are found only on undersaturated streets.

WAVEIQ is the same as what Ikenoue proposed, WAVES is newly proposed in this
research, and the other shock waves correspond to single-link shock waves proposed
by Michalopoulos et al.



122 M. Hisal and S. SASAKI

Table 1 Equations of shock waves and characteristic lines

Name Generalized equation
LINE1 X=Xn"Uf(t—‘to)

X:Zs(t_'tfa)l/z_'Uf(t—'tfs)+D3

zo=[uet 2D J(to—t0s) 72

WAVE20

WAVE1LO0 x=23(t—te1)'72(t—tes) 72
+ Da(t—tey) + Di(t—1tes)

tea—te ter—tes

o — Da(to—te1) _ _Di(to—tes)
_ ° tfs"t-n tfi"'tfa
237 T(to—te1) 72(to—tes) 2

if to=tes, Xo=D1 or to=tes, Xo=Ds,
- Da(t—tey) + Di{t—t¢s)
tea— Ley tei—tes

if tflztf&
x=z4(t—tes)+ 3 (Ds#D)

74=[Xo— —é— (Ds+D1)1/(to—tea)

LINE4 x=Xo+h(K2) (t—to)

WAVES x=Xoth (K, K2) (t —to)

x=Ze (t—te1) ' 72+h(K2) (t —te1)+D,

WAVEO | o tn(ka)— X2=Di J(to—t,,)!72
to—tes

WAVETO the same as WAVE1O0

x=z27(t—te1)'72+h(K,) (t —ts 1) 4D,

WAVES Ko-D
z7= — [h(K) =721 (to—te)'7?
to-te:
o _ueKa(t—to)
QB¥W2 X=Xo—=
x=21(t—te1)'"2—us(t—te1)+Dy
QBW3

z1=[u+t —xlj__—t_[f)i J(to—te,) 172

to

x=22(t— tf3)1/2+h(l(2) (t—tes)+Da

W¥2 | o [h(Ke) — 222D J(go—tes) 172
to—1t+s

QDW3 the same as WAVELOQ

5. Shock wave matrix

When a shock wave intersects with another shock wave or with a characteristic line
on the time-space diagram, the original shock waves vanish and a new shock wave
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originates from the intersecting point. This has been summarized by Michalopoulos et
al as a single-link shock wave matrix.* In our research we similarly created multiple
-link shock wave matrix; they are listed in Table 2.

6 . Examples of computation

Using the above-determined equations for shock waves and characteristic lines and
shock wave matrix, we determine a wave structural diagram for coordinated signal
streets. In this case, the inflow traffic of the most-upstream intersection of the study
section is arranged so as to be able to handle both the undersaturated case and the
oversaturated case.

In the undersaturated case, traffic density K, arrives at the most-upstream intersec-
tion, and the wave structural diagram is as shown in Fig.2. That is, a queue building
wave QBW2, a starting wave LINE], and a queue dissipation wave QDW?2 are
produced upstream of the stop line, and a characteristic line LINE4 and shock wave
WAVES5 are produced downstream. After QDW2 moves downstream of the intersec-

Table 2 Shock wave matrix

Downstream
LINEL | WAVE20 | WAVE10 | LINE4 | WAVES | WAVE6O | WAVE7O0 | WAVES QBW2 QBY3 QDW2 QDW3

LINEL
WAVE20 | WAVE10
¥AVELO WAVE20 | WAVELO
LINE4 WAVET0 QBW¥3 QD¥3
WAVES YAVESO | QBW2 QDW2
WAVEGO ‘ VAVEGO QBWZ |. QDW2
WAVE70 YAVET0 QB¥3 QD¥3
WAVES ' WAVES | QBY2 QDW2
QBW2 | QDW2
QBW3 | QDW3
QW2 QBKZ | QDW2.
QDW3 QB¥3 | QDW3

Upstream

Fig. 2 Shock waves near the most-upstream intersection under the condition of undersaturation
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tion, its name is changed to shock wave WAVES. Here we determine the point B at
which the saturated flow terminates. To do this, we first determine the point A where
QBW2 and LINE] intersect. For this, we substitute x,=0, t,=—(C—G,) into QBW2 in
Table 1, substitute x,=0, t,=0 into LINE1, and solve the simultaneous equations to get

ty= Kféjc__—lgl)’ Xy = — Uf%j(gﬁl(;l)' (17)
Then we substitute (ta,x,) into (ty,X,) of QDW2 in Table 1, set x=0, and solve to
determine the time tg at point B as

te= [ Zy = Ch(C_Gl).
h(K,) (dm—q1)

In the oversaturated case, the wave structural diagram of the most-upstream
intersection is as shown in Fig.3. That is, shock wave WAVE20 and characteristic line
LINE] are generated upstream of the stop line, while characteristic line LINE4 and
shock wave WAVEG( are generated downstream. In this case the inflow traffic of the
main street for the green time is a saturated flow.

A wave structural diagram is drawn graphically as follows: time is plotted along the
horizontal axis, distance is plotted along the vertical axis, and the direction of traffic
flow is taken upward. On an undersaturated street the computations are made toward
downstream from the most-upstream link, and on an oversaturated street the compu-
tations are made toward upstream from the most-downstream link. For the wave
structure, a computation is made at each link. When doing so, the shock wave that
propagates to the next link and shock wave that hewly originates at the next link are
pre-determined.

On a wave structual diagram, first the coordinate axes of a time-space diagram are
drawn, then the trajectories of the shock waves are drawn. The distance coordinates
of the shock waves are computed, and plotted on the time-space diagram, for every
small time interval A t according to the equations previously determined analytically
as a function of the time t as in Table 1. The wave structural diagram is drawn by
repeating this over the cycle length.

Fig.4 and Fig.5 are examples of computation for undersaturated streets. Fig.4 is for
the case when there is left- and right-turn inflow(K, >0), and Fig.5 is for the case when

(18)
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Fig. 3 Shock waves near the most-upstream intersection under the condition of oversaturation
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Fig. 4 Wave structure of undersaturated street in case of K2>0
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Fig.5 Wave structure of undersaturated street in case of K2=0

there is no left- or right-turn inflow(K,=0). Fig.6 is an example for an oversaturated

street. These diagrams were made by copying graphically displayed wave structural
diagrams and joining them together.

The computation conditions used here were: free speed u; = 12.5(m/ sec), jam density
K;=0.16(veh/m), saturation flow rate gm =0.5(veh/sec).

7. Summary

In this research we have formulated, based on wave theory, a model that can
express the behavior of queues in coordinated signal systems as well as the traffic
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Fig. 6 Wave structure of oversaturated street

wave motion that propagates through links, and we have portrayed in a time-space
diagram on a personal computer screen the phenomenon in which each shock wave is
propagated successively from link to link. This has made it possible to visually grasp
the phenomenon of shock wave propagation under various street, traffic, and signal
conditions, including both the undersaturated and oversaturated cases. Using this
model, it will also be possible to study optimization of signal control. In the future we
would like to make it possible to also handle cases in which there is left- and right-turn
outflow and cases of other density-speed relationships.
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6)
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