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Abstract

In order to evaluate the stress-strain behaviour of isotropically and/or anisotropically
consolidated cohesive clay, two different types of isotropic hardening critical state models and
an anisotropic hardening critical state model were developed based on the critical state
concept and the new assumptions of the internal work dissipated per unit volume of soils.
The model proposed is based on the associated flow rule, in which a set of yield function and
hardening modulus are contained. It was shown that the models had the possibility to be able
to reasonably represent the cohesive and anisotropic properties in stress-strain curves for
normally consolidated clay.

1. Introduction

Clayer soils which were naturally deposited are widely recognized to possess some
cohesive properties characterized by cementation and bonding effects in the mechani-
cal behaviour and an anisotropy induced by progressive deformation due to initial
consolidation and subsequent loading. These properties tend to complicate the stress-
strain behaviour in natural clay. There is therefore a need to develop a constitutive
model for later use in evaluating the complicated behaviour in natural clay.

The aim of this paper is to present two kinds of simplified isotropic hardening
elasto- plastic constitutive models and an anisotropic hardening one for normally
consolidated cohesive clay under static loading condition. This will be done by extend-
ing the Modified Cam-Clay model well-known as the critical state model, which are
developed by Roscoe and his colleagues?~®. The key assumption of the critical state
model presented is in the assumption of the internal work dissipated per unit volume
of the materials.

The model presented consists of a yield function and hardening modulus which are
formulated by introducing the critical state concept and some new assumptions for the
internal dissipated energy. The model contains four or five soil constants which are not
only easily determined by a few conventional triaxial tests but also have a clear
physical meaning. The predicted behaviour for undrained triaxial tests are compared
with available experimental data. It is shown that the models accurately represent the
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changes in stress-strain behaviour for an isotropically or anisotropically consolidated
clay. In this study, the compressive stresses and strains are taken as positive.

2 . General stress strain increment

2.1 Stress-strain increment parameter
To specify the variation of either a yield or plastic potential surface with the state
of stress, the following stress and strain-increment parameters are used in this study,

1 .
p=TG'ij 8i; q= %Sijsij (1)

dv=de; 0, de= /~—§~deij de;; (2)

where, p and q mean the mean principal effective stress and deviatoric stress, whose
parameters associate with the first order stress and second order deviatoric stress
invariant, respectively, dv and de mean the incremental volumetric and deviatoric
strain which are also related to the first order strain and second order deviatoric strain
invariant, oy; and s;; are stress and deviatoric stress tensor, respectively, in which s;; =
0,;-Ddy;, dey; and dey;, which are defined as de; =dej;-(dv/3) d;;, are incremental strain
and incremental deviatoric strain tensor, respectively, and ¢;; is Kronecker delta.

2.2 Stress-strain increment

Based on the linear incremental approach in plasticity, it is assumed that the total
strain increment de; due to a stress increment doj; can be divided into elastic and
plastic parts as follows:

dej;=de®;+deP; (3)

For the isotropic case, the elastic strain increment is easily
related to the stress increment as follows:

dEeU=H?VdO-1j—

v

E doiy Ji; (4)

where, E and v are constants, Young’s modulus and Poisson’s ratio, respectively, which
are also associated with the bulk modulus K and shear modulus G, such that:

E . E

K=m ’ G=m (5)

Based on the associated flow rule, the plastic strain increment de®;; can be given by
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of
P =A_9°
dE 1 A aO'U

(6)
where, A is a proportional factor and f is a yield function which is equivalent to plastic
potential in the associated flow rule. When the expressions of f and A are precisely
formulated by the function of the state of stress , the plastic strain increment is then
clearly computed by using Eq. (6).

3. Formulation of each critical state model presented

3.1 Critical state condition for cohesive clay

Roscoe, Schofield and Wroth? and Schofield and Wroth? suggested that an element
of soil during shear eventually reaches a critical state condition in which it can
continue to deform without further change of void ratio,e , and of the effective stress
q and p. Such critical state condition in q-p space is expressed by

qg=Mp (7)

and also that, based on the observed straight line of the consolidation curve in e-In p
plane, it is given by

e=I"—Alnp (8)

where, M is the slope of critical state line in q-p plane, I is the critical void ratio when
p equals to unit pressure and A is a soil constant defined as the slope of e-In p virgin
straight line.

Here, in order to prescribe the critical state condition of clay with an inherent
cohesion such as may be mobilized by any cementation effects, the critical state line
in Eq.7 is extended as follows:

q=M(p+p;) =Mp* ; p*=p+p: (9-a)
e=I"—Aln(p+p.)=T—Anp* (9-b)

where, p: is a soil constant which is defined by the value of p when q=0 as shown in
Fig. 1, and M means the value of #* in the critical state, »* is stress ratio defined by

.—_q
T = p+p: (10)

where, it should be noted that, when p,=0, Eq.9 reduces to Eq.7. The schematic view
for the critical state line assumed in g-p and e-1n p plane are shown in Fig. 1.

3.2 Work dissipation assumed and associated yield function
3.2.1 Modified Cam-Clay type
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Fig. 1 Schematic diagram of critical state line assumed

A plastic work dissipation per unit volume of the material must be assumed for the
specification of the yield surface in the critical state model. In order to introduce the
cohesion component p; to the yield function, the following internal dissipated work
dWi, is presented such that:

dWi, =p*V/ (dv?)?+(Mde?)? —p do® (11)

where p*=p-+p;, it is important to note that when p.,= 0 Eq.11 reduces to the
dissipated work equation assumed in the Modified Cam-Clay model.

This expression may be combined with the outer work done, AWy, dWou =pdv®+
qdeP, to show that

d b MZ_ *2
dZP= 2,717 (12)

Further, applying the normality rule, namely, dv?/deP?=—dq/dp, to Eq.12, the yield
function of cohesive clay characterized by Eq.11 is easily derived as

1
f=p**—p*p*+z a°= (13-a)
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a_f=*[_1[q]2]. of _ 2q . of __ . )
op P* | 1= o* ; 29 M’ op.* p (13-b)

where, p,* is defined by po* =p, +pr in which p, is the value of p at »*=0. The typical
shape of the yield function is shown in Fig. 2, from which it is obvious that the yield
function is one of the isotropic hardening type.

3.2.2 Generval Cam-Clay type

Here, let us consider the more general equation for the internal dissipated work
based on the assumption of an isotropic hardening. Considering the cohesion for p; in
the energy equation assumed, after all, the general expression for the internal dissi-
pated work may be presented as follows:

dW,, =p*\/ (dv*)?+ (2—c) »*dvPde?+ (Mde?)? —prdo® (14)

where c is a soil constant which characterizes the z* —dv®/de” relationship. Based on
this equation, the following #*—dv®/de® relationship can be derived as follows:

duP M2 — 5, *2
der = c;7*77 (15)

Further, applying the same manner mentioned above to Eq.15, the yield functions are
newly derived as

For c+1:
* 2(c—1) —
f=p*z_p*z[ F;)*o ] < 4+ (CM21) =0 (16-a)
of _ 2(c—1)p* [ _1 [ q ]2] . of _2(c—1)q ~
op c ! M2 { p* ’ 2q M2 (16-b)
q

\ 4

Fig. 2 Typical shape of yield curve in Modified Cam-Clay type model (MCC-Model)
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of _ 2(c—1)p* [ Po* ] e

op.* c p*
Forc=1:
f=q%+2M?p*2[n [ 1?* ] =0 (17-a)
0
of [ [ q ]2] . of _
Oty | M2— LY 17-b
op ‘P p* aq <9 (17-b)

Here, it is important to emphasize that when c=2, the dissipated work of Eq.14 reduces
to that of Eq.11 (Modified Cam-Clay type), thus, Eq.14 can be considered as the
expression of more general dissipated work for the critical state model of the isotropic
hardening type. The effects of constant c on the shape of yield curves are shown in Fig.
3, which can be seen that the shape is remarkably different from each other.

3.2.3 Amnisotropic Modified Cam-Clay lype
Instead of Eq.11, the expression for the internal dissipated work of cohesive clay
with triaxial anisotropy is proposed under the triaxial stress condition, such that:

dW;,=p*V/ (dv")2+2an*dvPde?+ (MdeP)? —p.dvP (18)

where, @« means the triaxial non-dimentional anisotropic parameter, using tensor
quantity ay;, in general, « is defined by

a= % a5 dij (19)

Fig. 3 Effects of constant c on the shape of yield curve in General Cam-Clay type model (GCC-
Model)
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where, a;; is a second order dimensionless deviatoric tensor. In the case of triaxial
anisotropy, @ = a; — as, since triaxial anisotropy is transverse isotropy, namely, a, = as.
Noted that when p.=0, Eq.18 reduces to the equation represented by Dafalias®.

Based on Eq.18, after all, the following #*—dv®/de® relationship can be derived as
follows:

dvp _ MZ_”*Z

de? ~ 2(n*—a) (20)

Further, applying the same manner mentioned above to Eq.20 (see section 3.2.1), an
anisotropic yield function in triaxial stress space can be expressed by

f=p*2—p,*p*+ I\}IZ (g®—2ap*q+a’p*p,*) =0 (21-a)

of _ [ _L[&]Z] . of _2(q—p*a) ._of __ [ _[L]Z] _
5o=P" 1= (oF) | " 5g v o= P 1= W (21-b)

The shape of this yield function in g-p plane is shown in Fig.4, where it should be noted
that p*, is chosen as the value of p at *=a.

When an anisotropy is considered in the elasto-plastic model, the model should
involve at least an internal anisotropic parameter represented by a tensor quantity to
show the anisotropic stress-strain behaviour in the general stress space. Thus, it seems
to be very important to generalize the expression of anisotropic yield function in
triaxial space. Then, Eq.21 can be generalized by

'“"“""""'::::_'_'_'::.'If-'-':: (pin’ qin)
A >

Po

A 4

Fig. 4 Typical shape of yield curve in Anisotropic Modified Cam-Clay type model (AMCC-Model)
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* * e K 3 * _
f=p*?—p,*p +2M2[(S“_p a;) (si;—p*ay;) + (Po* —p*)p*ayya; )= 0 (22-a)
f 1 2 . f 3 .
gp =p* [ 1= [ pq* ] ] ’ aasi_=2M2 [Z(Sij—p a’lj)] (22-b)
J

2
s )
T p M 1

When, in Eq.(22-a), q* is defined as

q*=\/%(51j_p*a’1j)(sij_p*a'ij) (23)

which is associated with the second order deviatoric invariant, then Eq.(22-a) is
rewritten as

f=p*2—py*p* 452 (q*?+ (Po* —P*)P* @y ) = 0 (24-a)
M

f _2q* f :
aaq*= e aio*zp*[[‘fn‘] —1 ] (24-b)

Using the above anisotropic yield function, the yield behaviour for cohesive clay with
initial induced anisotropy may be reasonably evaluated in the genaral stress space
when soil constant, ay;, is properly chosen.

3.3. Derivations of flow vector and hardening modulus

As mentioned in section 2.2, the plastic strain increment can be represented by Eq.
6. In Eq.6, the yield function has the following general form

(o, x°)=10 (25)

where, kP is the hardening parameter which represents a change in size of the yield
curve.
Now, applying the consistency condition to Eq.25, the yield condition gives

of of

- o0y

dkP= 0 (26)

In the critical state model, the irrecoverable change in void ratio, namely, plastic
volumetric strain is generally used as the hardening parameter. In this case, Eq.25 can
be rewritten as f=1(gy;, v?), therefore, for Eq.26, one has

_ of of

df= 0, doy; + 3P

dvP=0 27)
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Here, from Eq.6, dvP=A(2f/9p), and substituting this relationship into Eq.27, A is
expressed by

—da-1

—_— aO'ij J=L of

A=="3f 3t —H o, 9% (28)
ovP op

and therefore, the hardening modulus H is given by:

H=—

*
of of __[ of op,* oe? ) of 29)

v’ op op.,* oe® av* J ap

In addition, substituting Eq.(28) into Eq.(6), consequently, the plastic strain increment
de;® can be rewritten as follows:

1 af[ of ]
H 9o;\ a0 do; (30)

dﬁjjp=

Therefore, in order to calculate the plastic strain increment based on Eq.30, the flow
vector 8f/de;; and hardening modulus H must be expressly determined as the function
of state of stress.

Now, for simplicity, in this study, we consider the Drucker-Prager failure/yield
surface as the useful failure or yield criterion in z plane, namely, it means that both
crirical state condition and yield function are independent on the third deviatoric stress
invariant. Then, each yield function for the case of an isotropic hardening (Eqs.13, 16
and 17) and for the case of an anisotropic hardening (Eq.22 or 24) has the following
general form, respectively,

For case of isotropic hardening (Eqs.13, 16 and 17):
f(dij’ Kp)=f(p*’ q, xp)=0 (31'&)

For case of anisotropic hardening (Eq.23):
f(oy, »°)=f(p*, q* »°)=10 (31-b)

Using the above relationships, the flow vector can be represented as

For case of isotropic hardening (Eqs.13, 16 and 17):

of _ 5 op* 2q
903 =A 903 +A; o0i; (32-a)
_of . _ of
Al_ap* ’ 2™ 2q

For case of anisotropic hardening (Eq.23):
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of o oq*

50 =B af;: +B. 5 (32-b)
8=l 8=2
where, the partially derivative ap*/dsy, 9q/3d¢y; and 8q*/dcy; are defined as
’aa}%=’13‘ 9 (33)
sy 9T = (sy=pta) —p(su—praw) aus |

Here, it is important to emphasize that when a;; =0, 8q*/dc;; reduces to 8q/doy; in the
isotropic case, and also that the flow vector is remarkably dependent on the yield
function assumed, in other words, the assumption of the internal plastic work dissi-
pated.

Now, the rest work to complete the model is to represent the hardening modulus
H in Eq.29, namely, is to give the ap,*/de® and de®/av® in H, concretely. According
to the critical state concept, as shown in Eq.8 which presents the e-In p* linear
relationship during the proportional loading, the irrecoverable change in void ratio e,
deP can be expressed as follows:

dep=— (1 —x)3R0" (34)
Po

where A and x are soil constants, which are denoted as the slope of the e-In p* virgin
loading and unloading/reloading line, respectively. It is obvious that Eq.34 can be
rewritten as follows:

dpo*_apo*__ po*
de? ~ 9e? A—x (35)

In addition, since the relationship between dv® and de® is given by

___ deP
dve= T¥s (36)
the term 9e®/av® in Eq.29 becomes
oe’ _
oyr = —(1+e) (37)

Thus, substituting Eqs.35 and 37 into Eq.29, hardening modulus H in the critical state
model is precisely defined as
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(38)

H=_[ 1+e 0,,] of of

A—x P apo* ap

where, the terms 8f/9p,* and for each yield function are already shown in Eqgs.13, 16,
17 and 22, respectively.

In these discussions, the expressions of the elastic and plastic strain increment (Egs.
4 and 30) can be precisely derived as the function of the state of stress, based on the
newly assumed critical state concept and internal. dissipated work.

4, Applicability

4.1. Soil constants

Table 1 indicates the soil constants of Itsukaichi clay for each model, which is a
typical high plasticity marine clay. The index properties are shown as specific gravity,
Gs=2.532, plastic limit, w,=51.4%, liquid limit, w, =124.29 and plasticity index,I,=
72.8%%. It is well known that A, », M and e,, are often called critical state paremeters,
and constants p;, « and ¢ are the critical state paremeters newly added in this study.
Among these, A and » are defined as the slope of e-In p* proportional loading and
swelling curves, which can be easily obtained from an isotropically consolidated test
(see Fig.1), and M is given by the slope of critical state line in g-p* plane obtained from
a few undrained triaxial compression tests. Constants p, and ¢ are also determined
from a few triaxial undrained tests, in which p; is clearly assosiated with the cohesion
compornent C’ and internal friction angle ¢’, that is, p,=C’tan¢’ and a soil constant
¢ is chosen to fit the experimental shape of undrained stress path or stress-dilatancy
curve, and then a is, for simplicity, represented by the value of #* in the initial

Table 1 Soil constants for Itukaichi clay

M.C.C.| G.C.C.]A.M.C.C.

A 0. 443
K 0. 052
M 1.560
ein 2.000

a 7] in

cC | — | C %)

% Constants C and pr are arbitrarily chosen
based on the cohesion and stress-dilatancy
property of clay, respectivery.
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Fig. 5 Effects of constat pr on the undrained stress path in triaxial compression tests based on the
MCC-Model

consolidation process. Further, constant e;, is defined as the value of e at the unit
pressure in the isotropic normally consolidated curve.

4 .2. Prediction of undrained triaxial tests

Fig.5 shows the effects of constant p, on the undrained stress pathfor Itsukaichi clay
based on the Modified Cam-Clay type model (MCC), where, except for p;, the same soil
constants in Table 1 are used in the each prediction. It can be seen that the lager p: is,
more stiff undrained stress path tends to become. Then, the effect of constant ¢ on the
undrained stress path is investigated using General Cam-Clay type model (GCC). The
predicted undrained stress paths are shown in Fig.6, together with the experimental
undrained stress path after being isotropically consolidated. It is found that the
predicted stress path is strongly dependent on the constant c. The applicability of
Anisotropic Modified Cam-Clay type model (AMCC) to anisotropically consolidated
Itsukaichi clay is finally investigated by using the results of undrained triaxial tests.
Figs.7(a) and (b) show the experimental and predicted undrained stress paths, respec-
tively. These predicted results seem to reasonably describe the anisotropic property
of each experimental result.

5. Conclusion

Based on the new assumption of the extended critical state concept and internal
works dissipated per unit volume of soils, two types of isotropic hardening critical
state madels and an anisotropic hardening critical state model have been presented to
evaluate the mechanical behaviour of cohesive clay. The derived process of the model
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Fig. 6 Effects of constant ¢ on the undrained stress path in triaxial compression tests based on the
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Fig. 7 Undrained stress paths of anisotropically consolidated clay in triaxial compression tests; (a)
Experimental results, (b) Predicted results based on the AMCC-Model

is simple and clear, and all the parameters are easily determined from a few triaxial
tests. The effects of newly added parameters on the undrained stress path have been
clarified for typical high plasticity marine clay.



116

2)
3)

4)

5)

N. YASUFUKU, M. SUGIYAMA, M. HYoDO and H. MURATA

References

Roscoe, K.H., Schofield, A.N. and Thurairajah, A.(1963): ”Yielding of clays in states wetter than
critical,” Geotechnique, Vol.13, pp.211-240.

Schofield, A.N. and Wroth, P.(1968): "Critical state soil mechanics,” McGRAW-HILL, London.
Roscoe, K.H. and Burland, J.B.(1968): "On the generalized stress strain behaviour of "wet” clay,”
Engineering Plasticity, Cambridge University Press, pp.535-609.

Dafalias, Y.F.(1987): ”An anisotropic critical state clay plasticity model,” 2nd International
Conference on Constitutive Laws for Engineering Materials: Theory and Application, Vol.l,
Tucson, pp.513-521.

Hyodo, M., Sugiyvama, M., Yasufuku, N., Murata, H. and Kawata, Y. (1993): "Cyclic shear
behaviour of clay subjected to initial shear stress,” Technology Reports of the Yamaguchi
University (to be submitted).



