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Numerical Analysis of Natural Convection Heat
Transfer in a Square Enclosure Horizontally or
Vertically Divided into Fluid and Porous Regions
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(Received July 3, 1991)

Abstract

This paper describes an analytical study of laminar natural convection heat transfer in a
square enclosure horizontally or vertically divided into fluid and porous regions. The
Navier-Stokes equation governs the fluid motion in the fluid region, while Brinkman'’s
extension of Darcy’s law is assumed to hold within the porous region. These equations are
solved using the Galerkin finite element method in the range 10° <Ra; <10° and 1073 <Da

<10-5. The flow patterns are similar for horizontal and vertical divisions. There are two
flow modes in the enclosure: circulation over the enclosure and circulation in the fluid region
only. Although the flow penetration into the porous region is influenced substantially by the
Rayleigh number and the Darcy number, the effect of the Darcy number is more significant.
The magnitude of the flow penetration is found to be larger for the vertical division than for
the horizontal division.

1. Introduction

The present study is motivated by natural convection during solidification of a
binary system. For binary systems, dendritic crystal exists because it is the most
efficient morphology for the diffusion of solute and the dissipation of heat in order to
reduce the supercooling in the melt.) The crystal formation region is referred to as
a mushy zone. Figure 1 shows a representative photograph of a mushy zone during
solidification of an ammonium chloride-water solution with lateral cooling. Closer
examination of the mushy zone reveals a tightly packed array of dendrites of ammo-
nium chloride. Thus fluid flow in the mushy zone has been modelled as natural
convection in a porous medium, but penetration of bulk melt into the mushy zone has
not been well understood. Penetration of fluid into the mushy zone can significantly
alter the local temperatures and concentrations in the mushy zone, eventually leading
to macrosegregation.

Hence, as a necessary initial step, the objective of the present study is to investigate
the natural convection flow and heat transfer in such a system idealized as a cavity
partially filled with a porous medium. Although a similar study has been performed
by Beckermann et al.*®, there was no available information on the degree of penetra-
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tion of bulk liquid into the porous medium. In the present study, we employed a
mathematical model different from that developed by Beckermann et al., and solved
it using a finite element method.

Although not directly related to the present work, various studies on natural

Insuldted wall

Cold
wall

LONTRIRRNRRR

Fig. 1 A mushy zone of ammonium chloride crystal formed by cooling an aqueous
solution of ammonium chloride from the side. The photograph is taken by T.
Nishimura.
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convection in either multiple fluid layers or porous layers have been developed to
determine the effect of inhomogeneity on the heat transfer-".

2 . Mathematical Model

We consider a two-dimensional square enclosure of length W horizontally or verti-
clally divided into the fluid and porous regions as shown in Fig. 2. The fluid is
assumed to have constant properties, excluding density in a bouyant term, i.e., the
Boussinesq approximation is utilized. The porous portion of the enclosure is expres-
sed as W//W and the interface between fluid and porous regions is straight. The
upper and lower walls of the enclosure are insulated, while the vertical walls of the
enclosure are isothermal: the right-hand side wall at temperature T, and the left-hand
side at T, where T,> T..

The Navier-Stokes equation and Darcy’s law have been utilized for the fluid motion
of the fully-fluid enclosure and for that of the fully-porous enclosure, respectively.
However, the combination of the Navier-Stokes equation and Darcy’s law leads to
discontinuity of velocity, shear stress and pressure at the interface. In order to march
the flow conditions at the interface, the Brinkman-extended Darcy equation® or the
Brinkman-Forchheimer-extended Darcy equation® can be used in the porous region.
In the two equations, the treatment of inertia term is different. Although Becker-
mann et al.® used the Brinkman-Forchheimer-extended Darcy equation for this sys-
tem, we used the Brinkman-extended Darcy equation because empritical parameters
are not included in this equation.
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Fig. 2 Schmatic diagram of a square enclosure partially filled with a porous medium.
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With the assumptions stated above, the governing equations for this problem are
expressed in the following non-dimensional form in terms of stream function, vorticity
and termperature;

Fluid region
vorticity transport equation

o o0,
Ufi+Vf5%:Prfv2Cf RafPrfan (1)
relation between stream function and vorticity
é-f —_ — Vz’\yf (2)
energy transtport equation
26; 96 _
Porous region
vorticity transport equation
o
Uy 2%+V,2%=Pr,v?g,~ (Pr/Da) &—RaPr 2% (4)
relation between stream function and vorticity
e )
energy transport equation
26,
UpﬁE—FVpﬁ’—: (Ae/ Ae) V28, (6)

The non-dimensional boundary conditions at four walls of the enclosure and the
interface are given as follows:

Hovizontal division

at X=0.0 ¥,=0.0, §=—V*¥,, 2£=0.0 (7)
at X=1.0 ¥,=0.0, &=—-v2w, 2%—( ®)
oX
at Y=0.0 ¥,=0.0, §&=—V>¥,, 4,=0.0 for X <0.5 (9)
V:=0.0, &=—V2¥,, 6=0.0 for X 0.5
at Y=1.0 ¥,=0.0, &=—V*¥,, 6,=1.0 for X <0.5 (10)

I‘I’f:().O, é'f:—vz'\lff, 6{21.0 fOl‘ X >05
at the interface (X=0.5)

_ oV, _o¥, ._,. 02& 094 V,
Y=y, S aX’ $i=% 35X~ 32X Da 1
=6, A2 2%=12

oX aX
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Vertical division

at X=0.0  _g0, &=—vrw, g—g(*—:o.o for Y<0.5 1
¥,=0.0, &=— V2, g—g’g:o.o for Y>0.5

at X=10 g 0.0, g=—vw, 25%=0.0 for Y<0.5 &

_ oy 96

¥,=0.0, &=— V¥, 2£=0.0 for Y>0.5

at Y=0.0 ¥:=0.0, Cf:_VZ\I’f, ﬁf:()() (14)

at Y:1.0 \I}‘p:0.0, Cp:—vz\lfp’ gpzl-o (15)

at the interface (Y=0.5)
. ov,_ oY, ._. 8&_236.1U,
Vi=¥e Y =5y %75 3Y oY Da 1
36 _, 96,

=6 Ay~ ooy

Derivation of the equations at the interface is described in the literature®. Equations
(1) to (6) together with the boundary conditions (Equations (7) to (1)) for the horizontal
division and (Equations (12 to (6) for the vertical division complete the problem
definition. These mqdel equations have advantage of being fully predictive; i.e., there
is no need for an experimental fit of any parameter.

3 . Numerical Calculation

The solution of this problem is dependent on the following parameters: W /W, 1./
A;, Da, Ra; and Pr;. The thermal conductivity ratio, the porous portion of the
enclosure and the Parandtl number were held constant (1e/A;=1.0, W/W=0.5 and
Pr.=10), since the purpose of this study makes clear the difference between the
horizontal and vertical divisions in the flow and heat transfer characteristics.

Numerical solutions of Equations (1) to (16) were obtained through use of the Galerkin
finite element method. The Solution technique is well described in the literature"”
and has been widely used for natural convection problems involving either pure fluid
or porous medium*!?,

Figure 3 shows a comparison of the present numerical results for a fully fluid
enclosure and those previously reported to test the solution technique. The finite
element solutions of Nusselt number converge monotonically with increasing the
number of mesh. This trend is similar to the result of Ozoe et al."®. The Nusselt
numbers for a 40 X 40 mesh agree well with those of other investigations®*'®.

However, for the enclosure divided into fluid and porous regions, the use of this mesh
size probably causes a remarkable error in the flow pattern as shown in the previous
study®. In order to reduce this error, a smaller mesh size in the direction perpendicu-
lar to the interface has to be emloyed, in particular near the interface, where a sharp
shear stress occurs. For instance, it is necessary to satisfy that the dimensionless
mesh size next to the interface, Ah; is smaller than \VDa. The reason for this was
described in the previous study®. Thus we used 0.0005 in Ah;, which is sufficiently
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Fig. 3 Comparison of the present calculated Nusselt numbers and those previously
reported for a fully-fluid enclosure.

smaller than \/Da in the Darcy number range considered here. Figure 4 shows finite
element mesh (72x40) for the horizontal division.

4 . Computated Results

4.1 Flow and temperature fields

Since the flow pattern is the same for Darcy numbers considered here, the stream-
lines for Da=10""° are presented. Figure 5 shows the result for the horizontal division.
The streamline pattern is no longer centrosymmetric as in homogeneous systems:
instead, the streamfunction maximum is located in the fluid region. For all Rayleigh
numbers, most of the fluid moving downard adjacent to the cold wall in the fluid region
goes away from the wall near the interface and then moves along the interface toward
the hot wall. While a part of the fluid penetrates into the porous medium. The fluid
flowing in the porous region merge with the fluid in the fluid region near the interface
at the hot wall. The results are similar to those of a tall enclosure previously
reported®. For the vertical division, the streamlines have the same pattern as shown
in Fig. 6. Thus there are two flow modes for the system consisting of both a fluid
region and a fluid-staturated porous region: one is a circulation rotating counter-
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Fig. 4 Finite element mesh for calculation (Horizontal division).
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Fig. 5 Variation of streamline patterns with Rayleigh number for Da=10"°% (Horizontal

division).
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Fig. 6 Variation of streamline patterns with Rayleigh number for Da=10-% (Vertical
division).

clockwise in the fluid region only and the other is a circulation with the same rotation
over the entire region within the enclosure.

It is interesting to know how the flow penetration from the fluid region into the
porous region is varied for the flow parameters of the Darcy number and Rayleigh
number. Figure 7 shows the circulation ratio ¥ /¥, indicating the degree of flow
penetratioin, where ¥, is the circulation rate over the entire region and ¥; is the
circulation rate in the fluid region only, and these are determined by the values of
stream function. The solid line and dotted line denote the results of the horizontal and
vertical divisions, respectively. In both cases, the circulation ratio gradually increase
with the Rayleigh number, and decreases remarkably at a rate which corresponds to
a decrease in the Darcy number. The vertical division, however has a larger circula-
tion ratio than the horizontal division, in particular at high Rayleigh numbers. The
reason for this is considered that unlike the horizontal division, the fluid does not
directly circulates between the hot and cold walls for the vertical division because of
the existence of the porous medium covering the hot wall, which leads to an increase
of the flow penetration into the porous medium.

Figure 8 shows the variation of isotherms with the Darcy number at Ra=10° for the
horizontal division. The isotherms are similar for any Darcy number in the fluid
region, but are quite different in the porous region. This difference is attributed to the
flow penetration rate. At Da=10"%, the isotherms in the porous region are similar to
those for heat conduction only in a solid with no flow, because the flow rate in the
porous region is much smaller than that in the fluid region as seen from the value of
¥, /¥; shown in Fig. 7. Therefore the isotherms in the fluid region exhibit the same
behavior as that for a shallow enclosure (aspect ratio of 0.5) as expected by the
streamline pattern shown in Fig. 5. The isotherms for the vertical division are shown
in Fig. 9. Since the heat is transferred both fluid and porous regions in series, in
contrast to the horizontal division, the isotherms near the hot wall in the porous region
become almost straight with decreasing the Darcy number. While the isotherms near
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Fig. 7 Variation of flow penetration with Rayleigh number for three different Darcy

numbers.
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Fig. 8 Variation of isotherms with Darcy number for Ra=10° (Horizontal division).
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Fig. 9 Variation of isotherms with Darcy number for Ra=10° (Vertical division).

the cold wall in the fluid region shows a boundary layer structure.

4.2 Heat transfer rate
The average Nusselt number is defined as

Nu;= actual heat transfer rate
heat transfer rate by conduction when the entire enclosure is filled with the
fluid alone

and is given in terms of variables of this study as follows an

for the horizontal division (at Y=0)

W’ /W

1
Nu, = (Ae/kf)f 0 (aep/aY)dX+J W,/W(aef/aY)dX 18)

for the vertical division (at Y=0)
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Fig. 10 Variation of Nusselt numbers with Rayleigh number for three different Darcy
numbers (Horizontal division).
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Fig. 11 Variation of Nusselt numbers with Rayleigh number for three different Darcy
numbers (Vertical division).

1
Nu, = j REE T 19

where the temperature gradient is evaluated at the cold wall Y=0.

Figure 10 shows the relationship between the Nusselt number and the Rayleigh
number for the horizontal division. The Nusselt number for any Darcy number is
smaller than that for the fully-fluid enclosure, and decreases with the Darcy number at
large Rayleigh numbers, but makes little difference for Da=10"*and 10~°. This result
deduces that the flow in the porous region hardly affect the heat transfer rate.
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The vertical division is shown in Fig. 11. The present results agree well with those
of Beckermann et al.?, even for a large Darcy number, i.e.,, Da=10"% although the
mathematical models are different in the inertia term of the governing equation in the
porous region as mentioned in section 2. The Nusselt number for the vertical division
has a smaller value than that for the horizontal division. This is because the heat is
transferred in series and parallel through the fluid and porous regions for the vertical
and horizontal divisions, respectively. In particular the trend becomes more signifi-
cant with decreasing the Darcy number. This is also expected from the behavior of
isotherms near the hot wall in Figs. 8 and 9.

5 . Conclusions

Natural convection heat transfer in a square enclosure horizontally or vertically
divided into fluid and porous regions was analyzed numerically. The Navier-Stokes
equation and Brinkman’s equation were used for the fluid ' motion in the fluid region
and for that in the porous region, respectively. These equations were solved by the
Galerkin finite element method.

The flow patterns are similar for the horizontal and vertical divisions. There are
two flow modes in the enclosure; circulation over the enclosure and circulation in the
fluid region only. However, the intensity of circulation is always much stronger in the
fluid region than in the porous region. The magnitude of penetration of flow from the
fluid region into the porous region is influenced substantially by the Rayleigh number
and the Darcy number. The vertical division has a larger penetration than the
horizontal *division as the Rayleigh number increases.

Although the present analysis is limited to heat transfer, heat and mass transfer
which is important for solidification of a binary system will be analyzed by extension
of the numerical procedure in the- future.

Nomenclature

Da Darcy number, x/W?

g gravitational acceleration

Nu; Nusselt number

Pr; Prandt] number of the fluid

Ra; Rayleigh number, g8 (T, —T)W?/ a:vs
T temperature

T, temperature at the cold wall

T, temperature at the hot wall

U dimensionless vertical velocity, uW/a;
u vertical velocity

\Y% dimensionless horizontal velocity, vW/ a
v horizontal velocity

W width of the enclosure

X dimensionless vertical coordinate, x/W
X vertical coordinate
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Y dimensionless horizontal coordinate, y/W

y horizontal coordinate

e thermal diffusivity of the porous medium

a; thermal diffusivity of the fluid

B volumetric expansion coefficient

] dimensionless temperature, (T—T.)/(T,—T.)

x permeability

e effective thermal conductivity of the porous medium

A thermal conductivity of the fluid

vt kinematic viscosity of the fluid

2 dimensionless stream function, ¥/ a:

v, circulation in the fluid region only

v, circulation over the entire region

¥ streamfunction

Q dimensionless vorticity, o W?/a;

@ vorticity

Ah; dimensionless mesh size in the porous region next to the interface

Subscripts

f fluid region

p porous region
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