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Abstract

An exact solution of a nonlinear equation which governs the internal solitary vortex pair is de-
rived. The solution seems to reveal the flow pattern of the internal solitary bulge. The Prandtl—
Batchelor theorem is generalized for a turbulent stratified fluid flow. The theorem is compared
with field data of aircraft—trailing vorticies in stratified fluids.

1. Introduction

As for the vortex pair in a stratified fluid, analytical studies of the flow seem to be
necessary, although the analytical studies have been done extensively for the vortex
pairs in a homogeneous fluid (e.g. Batchelor®) and in a rotating fluid (e.g. Stern?, and
Larichev and Reznik®).Therefore, one of two aims of this paper is a derivation of an ex-
act solution of nonlinear equations for the vortex pair in a stratified fluid flow. We will
compare the flow pattern drawn by use of the solution with that of laboratory experiment
of the internal solitary bulge.

On the other hand, the Prandtl—Batchelor theorem has been generalized to turbulent
flows which system contains the Coriolis force (Yamagata and Matsuura® ; Rhines and
Young®). They have new results about the Prandtl—Batchelor theorem as momentum mix-
ing by turbulence as well as viscosity. We will, therefore, generalize the Prandtl—Batch-
elor theorem to a turbulent stratified fluid flow. The theorem also will be compared with
field data of aircraft—trailing vortices in stratified fluids.

In Section 2 we derive an exact solution and discuss its characteristics. The
Prandtl—Batchelor theorem will be generalized to a turbulent stratified fluid flow in Sec-
tion 3. Finally, we discuss the characteristics of the closed regions in the turbulent stra-
tified fluid in Section 4.

2. Exact Solution of Internal Solitary Bulge

Basic equations of mass conservation and vorticity of the non—diffusive inviscid
fluid are
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where ¢ is a fluctuation about a density of a mean state, / the Jacobian, ¢ the stream
function, F the Froud number, and w the vorticity. Combining these equations gives
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where A= 0 + @, 8 =F? — A fand ¢ = — A Z¢. Using this type of the equation

with diffusivity and viscosity we have one form of the Prandtl—Batchelor theorem which
is omitted in the Part 1 (see Kamachi® for detail). Equation (2.3) is analogous to the vor-
ticity equation on a beta plane in a rotating fluid®. Therefore, the quantity A4, which we
call internal—vorticity, may be considered as the potential vorticity in a nonrotating stra-
tified fluid (cf. a similar form is Eq. (5.3.6) in Batchelor’s text!). Using a coordinate (X,
Y) = (x — c.t, y) moving with the vortex pair, we have

Jxvy(A— BY, ¢ —c, =0, (2.4)

where ¢ — ¢,Y is the steady stream function observed in the coordinate with the vortex
pair, ¢, = —F?/ A #, and Jxy is the Jacobian. In and around the vortex pair exact solu-
tions of Eq. (2.4) are

A— BY=K¥¢ —¢Y), r<a, (2.5)
A— BY=—L¥¢ —¢Y), r=a, (2.6)

where K% and —L? are constants, and a is the amplitude of the vortex pair. Although Eq.
(2.4) has a different form of the solution which is proportional to (¢ — ¢, )", n>1, we
dose not consider the solution. The solution shows a flow is not a dipole type but con-
tains many closed regions. This type of the flow may not be realized, although Yih” de-
rived a similar type of the solution and the stability of the solution has not been consi-
dered.

Using a cylindrical coordinate X = r cos #, Y = r sin §, and putting ¢ = R(+) sin 4,
we have
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Using a boundary condition at infinity, R — O as r tends to infinity, we have a relation

L%, + B = 0. We get also L? < A% with the above condition. We have therefore, solu-
tions of equations (2.7) and (2.8) as follows

K%, — B
R() = CiJi(k,r) + Ik r<a, _ (2.9)

R(r) = CoJ1(ler) + DoYy(Le?), r>a,

(2.10)

where J,, Y are the first and the second kind of the Bessel functions, respectively, and
the wavenumbers are

ke= (A5 + K2 1= (A5 — LH'?.

At the boundary of the vortex pair, r = a, boundary conditions are continuations of

the total pressure, an azimuthal velocity, and the vorticity. Using these boundary condi-
tions we get the coefficients :

e, 1
G =acly) k) &1
k2 — 12 l, k, .
Co= "0 lacd Yolla) — 26, 3t + acs G i Vi) . (212
K — 12 L oy Jolk
Do = —%a— (—act Jolta) +12c,~z— + ace(k—)z ;?Ekez; thae) . (2.13)

Fig. 1

An example of flow pattern.a = 1.0, F> = 1.0, A% = 0.5, k. = 2.0, and I, = 0.5.



318 Masafumi KaMmacH1

A typical flow pattern is shown in Fig. 1. In this figure, steps of the values of the
stream function are 0.01 and 0.5 in and around the vortex pair, respectively. The flow
pattern is similar to that of the internal solitary bulge®. The solution may show the inter-
nal solitary vortex pair. Because the functions of the solutions are the first and the
second kind of the Bessel functions, /; and Y, internal waves which are similar to the
lee waves are induced around the vortex pair ; although the figure does not show the lee
waves clearly. These lee waves may radiate the energy of the internal solitary vortex
pair. Radiation damping will be occure and the phenomena may not be steady by means
of these lee waves. However, the internal solitary vortex pair can be stationary, when a
time scale of the internal solitary vortex pair used the amplitude and the azimuthal veloc-
ity is smaller than the inverse of an angular frequency of the lee waves.

In the upstream region of the internal solitary vortex pair. the waves around it may
disappear, when the boundary condition at infinity in the upstream is changed. Under the
73’2y the solution around the vortex pair may be the same as the
solution of the lee waves theory.

upstream condition, O (r

If the depth of the fluid is finite, 2k, the lee waves do not appear under a condition
that the propagation speed of the vortex pair is larger than the phase speed of the long
nondispersive internal wave. In this case the boundary condition should be used as @ ¢/
dx = 0aty =rsin § = h. In our analysis, the condition is dR/dr + (sin § /h)R = 0 at
y = h . When the type of the density distribution is not a linear function of the vertical
coordinate but the hyperbolic—tangent type used in the Part 2, the above argument can
be applied. In this case, we can estimate the depth as the thickness of the transition layer
of the density. When the propagation velocity of the vortex pair is larger than the phase
speed of the long nondispersive internal waves with the thickness, the lee waves do non
appear. On the oter hand, when the propagation velocity is smaller than the maximum
phase speed of the internal wave, the lee wave is not also induced actually by means of
almost homogeneous fulid in the upper and lower outside of the vortex pair. If the densi-
ty distribution is an exponential type, the above argument also can be applied. In this
fluid flow, the finite depth may be estimated as the scale height N°/2g. For this fluid
flow we can derive the two—dimensional evolution equation which will be a generalized
form of the well known one—dimensional KdV equation, although the characteristics of
the equation and the solution have not been considered yet.

3. Analysis of Turbulent Stratified Flows

In this section we will generalized the Prandtl—Batchelor theorem to turbulent stra-
tifie‘d fluid flows.
We use Eq. (2. 3) with viscosity as a basic equation :

Dy _ 1

D R A% G

where ¢ = A — B'Y. We separate the motion into two parts, that is, the time—mean field
denoted by ( ) and the disturbance field denoted by (’). We assume two—dimensional
disturbances. Under this assumption, we omit the production of the enstrophy due to the
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stretching of the vortex. Then a part of Eq. (3. 1) governing the disturbance fild is

oq ,9¢ , ,94 ., 924  9q _ 1 |

EY, +u ax+v ay+u8x +U8y_R0Aq' (3.2)
The equation for time—mean field is

93 . 937 , 04 ,o0¢ _ 1

7 Py + 9 EY +u EY" + v 3y _ R Ag, (3.3)

where we assumed the time—mean field is statistically steady.
We consider the steady two—dimensional, high Reynolds number flows. We consider
the region without a turbulent boundary layer, and in the region we have

Dg
D 0 (3.4)
correct to O(R.”'). Now it is seen from Eq. (3.4) that in the flow ¢ associated with a
material element is constant; and in the steady flow th pants of meterial elements are
streamline. Hence ¢q has the same value at all points of a streamline, and can evidently be
written as a function of ¢ alone. The streamlines, therefore, coincide with the equi—q
line. Hereafter we call the equi—q line as equi—internal—vorticity line.
If q has a closed equi—internal—vorticity line &, then we have, utilizing Eq. (3.3),

1
fq'u'. ndé = R fVZ]. nd§, (3.5)
'3 3

where n is the unit vector which is normal to § and directed outwards. Equation (3.5)
show that flux of the ‘internal vorticity’, ¢, due to the disturbance ¢’ across the closed
contour & is balanced with the viscous torque which operates on the mean motion.

Multiplying Eq. (3.2) by ¢’ and averaging, we obtain a equation governing the enstro-
phy of the disturbance as

—97 94 , 92 14 9 15 1
uqﬁay +vq—ay +uax(2q )+v—ay(2 )= Rquq, (3.6)

where we used the statistical steadiness of the mean field. If we further assume the
homogeneous disturbance, we obtain

1
q Aq'. (3.7)

Yu.Vg= R
e

Because £ is a closed equi—internal—vorticity line, we have the relation
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n==*vg/ |lval, (3.8)

where the upper (lower) branch of the double signs is chosen when § increases (de-
creases) outwards. Substituting equations (3.7) and (3.8) into (3.5) gives

1l ——
R, A4)

if — o —dé =Wqu.nd$. | (3.9)
A |vgl R, e ,

Using the assumption of the homogeneous disturbance, we have

S |
¢f(vq_) dé =f v dé. (3.10)
¢ |val ¢

We do not assume that the disturbance is weak in Eq. (3.10). We notice that the para-
meter R, has dissapeared in the result (3.10). Viscosity is necessary in order that the re-
lation of Eq. (3.10) is hold only, and the value is not necessary. The result coincides the
result of the acoustic streaming by Lord Rayleigh. If the mean field is large contribution
to Eq. (3.10) we have

Vgl ~0 oné, | (3.11)

and the result is similar to the result in the roating fluid flow (see Yamagata and
Matsuura®, Rhines and Young®). The above asymptotic relation shows that the mean
field of the internal vorticity is homogeneous in the statistically steady closed region. We
also notice that the above asymptotic relation is due to the momentum transfer by the
Reynolds stress or the Radiation stress.

If the flow is laminar, the result. (3.10) coincides that in Part 1.

If the fluid is homogeneous (i. e. F =0 and B = 0), 7§ = @, q @’ Equation (3.10)
becomes

.
:Lf%ds =qu.nds. (3.12)
3 “ 3

and in the case of weak disturbance we have
Vel ~0 mé. (3.13)

This asymptotic relation means that the flow in the statistically steady circular closed re-
gion is the rigid—body rotation.
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4. Results and Discussions

We considered the characteristics of the stationary closed streamline in turbulent
fluid flows. The result is that the internal vorticity is statistically homogeneous in the
closed region bounded by the equi—internal—vorticity line. In our analysis the disturb-
ances, as well as the viscosity in the laminar flow, transfer the momentum in the statical-
ly steady closed region. In a special case, the vorticity is homogeneous in the region.

Burnham et al.” reported about the trailng vorticbs behind an aircraft in stratified
fluids (see also Hechet et al.'® for numerical analysis of the vortex). Using their result
about a tangentiai velocity vs the vortex radius, we assumed that the shape of the vortex
is a circle and evaluated the vorticity as the velocity divided by the radius. The relation
between the tangential velocity and the vortex radius is shown in Fig. 2. In a core region
of the vortex, where r smaller than 3m, the flow may be a rigid—body rotation. The
turbulent version of the Prandtl—Batchelor theorem for stratified fluids, therefore, may

be realized in the region, although Hechet et al.'® considered all regions of the vortex in
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Fig. 2 Measured tangential velocity vs vortex radius. The solid line is v =
6.879 r obtained from fifteen data in » < 3m by use of the least

square method. We may interpret that the flow is a rigid—body
rotation and the Prandtl—Batchelor theorem is realized in r<3m.
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In our analysis, we used two assumptionp: (1) two—dimensional disturbances, (2)

homogeneous and isotropic disturbances, although the disturbance is not weak. Under the
first assumption, the stretching of the mean and perturbed vortex does not produse the
vorticity, and enstrophy. When the fluid is confined in a narrow channel, the above effect
does not take an important role. However the effect-becomes important when the width: of
the channel is large compared with the amplitude of the vortex (e.g. phenemena in the
ocean and the atmosphere). In actual turbulent stratified fluid flows, the disturbance may

be

inhomogeneous and anisotropic. The theorem, therefore, seems to be necessary to be

generalized to the flows.
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