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Abstract

The Prandtl—Batchelor theorem for high Reynolds number flow of a homogeneous fluid is gener-
alized to laminar flows of vorticies moving in stratified fluids. Density is homogenized in the vor-
tices as well as the vorticity is. We pay attention to the mass flux by means of the basic equa-
tions governing the density distribution with/without diffusions. The theorem is also applicable
to a flow with a passive scalar contaminant.

1. Introduction

Integral constraints are derived for steady flows with closed streamlines, arising
from the action of a small amount of viscosity. In the two dimensional case it is shown
that the vorticity is homogeneous in the closed nested streamlines in a homogeneous fluid.
This result is well known as Prandtl—Batchelor theorem®?
Stuart™).

Some extensions and generalizations of the theorem have been made. Blennerhassett®
obtained an exact integral condition relating the constant axial pressure gradient and the

(see also Batchelor®, and

viscous terms for a class of flows with herical streamlines. And the axial velocity is
proportional to the stream function for the motion in the plane normal to the axial
velocity.

Grimshaw® derived integral constraints for steady recirculating flows with the ac-
tion of a small amount of viscosity and heat conduction. In two dimensional flows con-
taining closed streamlines, the flows are isothermal and the vorticity is homogeneous.
The constant values of temperature and vorticity are determined from boundary condi-
tions by means of an approximate integration of the boundary layer equations. The result
may be realized in the cat’s eye flow patterns in the nonlinear critical layer of a slightly
stratified shear flow”.

Recently, Prandtl—Batchelor theorem has been generalized for quasi—geostrophic

flows in planetary fluids®®

. Owing to the Ekman friction, laminar quasi—geostrophic
flows are stagnant in a closed streamline. The result is confirmed with a numerical ex-
periment of steady two dimensional flows around a circular cylinder on an f plane. In a
turbulent flow, Yamagata and Matsuura® obtained two different mean states. One state

corresponds to the laminar flow in a limit and the other is a flow which has a uniform
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potential vorticity in closed geostrophic contours. The latter may be consistent with a re-
sult of Rhines and Young?, though they used an assumption of gradient transport closure
hypothesis. k

Although the results derived from the theorem have been confirmed, they have been
confined flows of closed streamlines in homogeneous rotating/nonrotating fluids or a
thermally stratified fluid. Generalization of the theorem to the flow of stratified fluid or
the flow with passive scalar contaminant, therefore, seem to be necessary in order to con-
firm the Prandtl—Batchelor’s closed streamline theorem. We report the characteristics of
stationary closed streamlines of stratified laminar or turbulent fluids. In Part 1 we de-
rive the theorem for laminar stratified fluids. In Parts 2 and 3 we attempt to develop a
deeper understanding of results of Part 1. In Part 2 we compare the theory of Part 1
with laboratory experimental data of the internal solitary vortex pair. Further, we gener-
alize the theorem for a turbulent stratified fluid flow and compare the theorem with field
data of aircraft—trailing vortices in stratified fluids in Part 3.

Firstly, in Part 1, we review the Prandtl—Batchelor theorem briefly in Section 2. In
Section 3, the theorem is generalized with four types of equations of mass—conservation
equations. Finally, in Section 4, we discuss the results.

2. Review of Prandtl—Batchelor Theorem

In this section we introduce the Prandtl—Batchelor theorem for steady flows with
closed streamlines in a homogeneous fluid.

The vorticity equation governing the two dimensional laminar flows of a
homogeneous incompressible fluid is, in a nondimensional form,

9w 1
‘€T+“M¢F?EA& (2.1)

where w = (A XU). k is the vorticity of the two dimensional flow, k is the fundamental
vector pointed out upward and is parallel to the gravity, ¥ = A X B the velocity vector,
B = (0, 0, ¢) the vector potential, ¢ the stream function, R. the Reynolds number, A
the Laplacian, and

da 9Ob _ oa 9b
ox 9y oy OJ«x

J(a, b) =

the Jacobion.

The viscous force is measured by an inverse Reynolds number, R,”! = /UL,
where L is a typical length scale, U is a typical velocity scale, and y is the kinematic
viscosity. If the viscous force is small, an approximate solution is

w=woX)+tR 1w (x)+0R (2.3)
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where X is the position vector.
Now we introduce orthogonal curvilinear coordinates (¢, &) as shown in Fig. 1. In
a region of a closed streamline, there are no source and sink of the vorticity. The vortic-

y
’ £ :streamline

X (¥ :constant )

Fig. 1 Coordinate system.

ity is independent of & (if w is the function of & (ie.d w/d & F 0), the vorticity dif-
fuses along the streamline and the flow can not be steady). The vorticity, therefore, is the
function of the stream function only :

w = wo (¢) (2.4)

This argument is analogous to a flow along a curved boundary ( e.g. recirculating flow
along a circular cylinder): in the flow, the vorticity distribution is constant along the
boundary and a streamline, and is a function of distance normal to the boundary. If the
vorticity is not the function of the streamline only in the high Reynolds number flow, the
error of the above argument may be estimated to be O (Re™ '). We can interpret the argu-
ment in the other way. Because the flow has high Reynolds number, we can divide the
flow region into two parts : a boundary layer ( e.g. Burggraf et al.'®, Belcher et al.'") and
an inviscid flow region. Outside the boundary layer, Eq. (2.1) is

J(wo, ¢)=0. (2.5)

We have, therefore, wo = wo (¢).
Integration of Eq. (2.1) about the area S within a closed steamline gives

o w 1
'[/‘;arde/-](w,d;)dS:E//‘AwdS. (2.6)
s

S N
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The left hand side vanishes by use of the steadiness, the mass continuity and the diver-
gence theorem. Then Eq. (2.6) reduces

1 1
ReffA wdS = jo(vw.nde =0, (2.7)

s &

where n is the unite vector normal to § and points outwards. Substitution of Eq. (2.3),
or

Vo = %ﬂ V¢ +R 'V, + 0 R, (2.8)

into Eq. (2.7) gives

dw() _ -
R dy jﬁv(p.ndé =0 (.. (2.9)

We have, then,

d(l)()

d—,/, ' =0(®R, Y, (2.10)

where

szvsb.ndf =j[u.d§ (2.11)
vé 3

is the circulation. Therefore, if I' dose not vanish in the closed streamline, we obtain

dw()
q o =0, (2.12)
with the error of O (Re™!): the vorticity is uniform in the closed region. This Prandtl—
Batchelor theorem is a torque balance in a steady closed laminar flow with high Reynolds
number.

3. Prandti—Batchelor Theorem for Stratified Fluids

We derive the Prandtl—Batchelor theorem for stratified fluid flows using some types
of mass—conservation equations which have been used in the studies of geophysical fluid
dynamics.

At first we consider a case of a nearly incompressible fluid with a constant coef-
ficient of thermal expansion 7, so that the equation of state is
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P = pooll = (T = Too)l (3.1)

where p oo and Ty, are constants, T the temperature and the density'?. The equation of
heat transfer is

DLk aT+ @ 3.2
DtM 1 ' (')

where &, is the coefficient of thermal conductivity and ® the viscous dissipation
function®®. In view of Eq. (3.1), (3.2) is equivalent to

——DT: ’ClAp (3.3)

where we assume the Prandtl number, P, is small ; afterwards P will be assumed smaller
than O(Re ') compared with the error in the Prandtl—Batchelor theorem.

The introduction of the term x, A p in Eq. (3.3) has a problem'®'?. The equation
would mean at least a change in the definition of the basic quantities ; in particular, the
velocity would no longer be the momentum of unit mass of fluid. We must, therefore, bear
in mind that the mass flux, j, must always be the momentum of unit volume of fluid. The
mass flux j should be defined by the mass—conservation equation

or .
45;“‘*‘ div j = 0. (3.4)

In our case, we must regard the mass flux as
puU— K, Vp. (3.5)

Next, consider a closed surface whose position is fixed relative to the coordinate
axes and which encloses a volume (we can interpret it as the control volume) entirely
occupied by a stratified fluid. We can derive a balance equation among the time deriva-
tive of the mass of fluid enclosed by the surface at any instant, the net rate at which
mass is flowing outwards across the surface, and the net rate of diffusion of mass across
the surface :

2°

This is a typical form of Eq. (3.4). Subtracting the equation of heat transfer, Eq. (3.3),
from Eq. (3.6) gives the continuity equation

v.u=0. | (3.7)
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Therefore, the continuity equation is not changed.
We rewrite Eq. (3.3) in a form

oPr
YR +I(p, ¢)= k18 p. _ (3.8)

In a steady state, we have ] (p, ¢) = 0 so that # is a function of ¢
P (P) (3.9)

outside a boundary layer (e.g. thermal boundary layer). Using a similar manner in Section
2, we have a constraint

de ,
“1 40 ud§ =0 (k.9 (3.10)
¢
'3
and we get a result that

= costant (3.11)

with the error of O ( « ;). This result means that the density is homogeneous in a closed
streamline in a stratified fluid. The homogenization is due to the mixing of mass by the
diffusivity. The result is consistent with a result about the temperature®.

When the flow is stationary, e.g. a moving vortex in a stratified fluid'®, the above
result is not changed with

J, & and ¢ replacing Jxy, Axy and ¥, (3.12)

where Jyy (a,b) = (da/ dX)(db/ dY) — (da/ dY)(db/ dX), Axy = 9%/ 3X* +
02/ 9Y?and ¥ = ¢ + cy the steady streamline in a coordinate (X, Y) = (x + ct, y)
moving with a travelling speed, ¢, of the vortex.

Next we assume the hydrostatic condition, and consider a fluctuation, ¢ , about a
mean state o ¢ (y). From the equation (3.3), we have, in a nondimensional form,

oo , 0¢
EY, +](o,¢)+FZ—57= k1l o, (3.13)
where F is the Froude number N«L/ U, Nx? = —(g/ px)d po/dy and px is the ref-

erence density. In a stationary state, Eq. (3. 13) is

Jxy (6 —F%Y,¥)= k£, Ay, (g — F?Y). (3.14)
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In this case, on the other hand, the vorticity equation is

o0 1
ox ZR_chyw. (3.15)

Jxv (@, ¥) +

Using the similar manner of the derivation of the results (3.10) and (3.11), we get

d(e — F?Y)

av ' =0(k1) (3.16)

and
o — F?Y = constant, (3.17)

with the error of O ( k). Using the result (3.17), we have

= F?, (3.18)

This result (3.18) means that the absolute value of the vertical gradient of the fluctuating
density distribution is the same as that of the gradient of the mean state and the sign is
opposite. Therefore, the fluid in the vortex is homogeneous. It is consistent with the re-
sult (3.11). Using Eq. (3.17), the vorticity equation (3.15) is the same as the equation of
homogeneous fluid.

When we also assume a linear damping term, — x » ¢, which is used as a Newtonian
cooling in dynamic meteorology (e. g. Plumb 16)) Eq. (3.14) becomes

Jxv (o —FY,¥)=—ks0 Tt Kilxy (o — F?Y). (3.19)

We get an integral constraint

d(e —F?Y) &k, %
dw kT

. (3.20)

where

2 :,/]6 dS (3.21)

S

is a total density anomaly from the mean state in a closed region. If the fluid has no diffu-
sivity, x; = 0, the total density anomaly must be zero. It means that the mixing of the
density occurs inside the closed region and is independent of a region with open stream-
lines. We have the other limit : when the fluid has no Newtonian cooling, x ; = 0, the re-
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sult is (3.18) and no motion, I' = 0, may be able to occur. Therefore, above two results
are different drastically. This effect of the Newtonian cooling is analogous to that in the
17 although the oceanic current system has open streamlines and the earth’s rota-
tion. Their discussion'” about the breakdown of the no motion theorem may be applied
to the stratified fluid flows.

At last, the arguments in this section can be generalized to a fluid flow with a pas-
sive scalar contaminant. In this fluid flow a diffusion equation

ocean

DC

D—tZKAC (3.22)

may be used. If C is a pollutant, the discussion about the theorem will be able to be ap-
plied to an environmental problem ; e. g., the pollutant will be mixed up in a closed region
and be independent of a region with open streamlines by means of the discussion about
the result (3.20).

4. Results

We derived the Prandtl—Batchelor theorem for laminar stratified fluid flows, using
four types of mass—conservation equations with/without two types of diffusivity. In the
fluid flows, the density is homogenized as well as the vorticity is. The homogenization is
due to the mixing of mass by the diffusivity. It is analogous to the homogenization of the
vorticity by the momentum transfer, which is due to the viscosity (i.e. momentum dif-
fusion).

We also considered the difference of two types of the mass diffusivity. An analogy to
the breakdown of the no motion theorem in the ocean was inferred.

An application of the theorem to the environmental problem are suggested.

In this Part 1, we have considered the theorem analytically. In order to confirm the
theorem, efforts to devise suitable laboratory experiments and to consider the turbulent
stratified fluid flows seem to be necessary.
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