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Abstract

This paper introduces a tape-bounded multihead on-line Turing machine which can be
considered as a multihead version of a tape-bounded 1-head on-line Turing machine.

We first investigate hierarchies based on the number of input heads. We then investigate
the difference between the accepting powers of tape-bounded nondeterministic multihead
on-line Turing machines and deterministic ones. Finally, closure properties of the classes
of languages accepted by tape-bounded multihead on-line Turing machines are investi-
gated.

1. Introduction

During the past ten years, many investigations about multihead one-way finite
automata (MHFAs) have been made [1-5]. On the other hand, some properties on
tape-bounded 1-head on-line Turing machines (1-HONTM:s) are investigated in [6].
Here, the 1-head on-line Turing machine is the 1-head one-way finite automaton which
has an infinite storage tape and a storage head.

This paper investigates some properties of an L(n) tape-bounded multihead on-line
Turing machine (MHONTM(L(n))), which can be considered as a multihead version of
an L(n) tape-bounded 1-head on-line Turing machine (I-HONTM(L(n))), where n is
the length of an input word.

Section 2 gives terminologies and notations necessary for this paper. In Section 3,
we give several properties of MHONTM(L(n))s for some L(n) such that hm [L(n)/n]=0.

In Section 3.1, we show that there exist hierarchies based on the number of input heads.
Section 3.2 investigates the difference between the accepting powers of nondeterministic
MHONTM(L(n))s and deterministic ones. Furthermore, in Section 3.3, we examine
some closure properties of the classes of languages accepted by MHONTM(L(n))s.

It has been shown in [2] that there are hierarchies based on the number of input
heads among MHFAs and that the class of languages accepted by deterministic MHFAs
is included in that of nondeterministic ones. Furthermore, it has been shown in [5]
that for each k>2, the classes of languages accepted by deterministic k-head one-way
finite automata are not closed under concatenation, reversal, and Kleene closure
operations. Our main results are an extension of the results of these two papers.
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2. Preliminaries

We formally define a nondeterministic k-head on-line Turing machine (Nk-
HONTM) M (k>1) to be a 7-tuple M=(k, Q, I', X, q,, F, 8), where

k is the number of input heads;

Q is a finite set of states;

I' is a finite storage tape alphabet (Be I is the blank symbol);

X is a finite input alphabet (§& 2 is the right endmarker);

qo € Q is the initial state;

Fc<Q is the set of accepting states;

o is the next move relation which maps from Q x(Z U {$})*x I" into subsets of
Q xI' x ({no move, right})* x {left, no move, right}.

The machine M consists of a finite control, a read-only input tape with the right
endmarker §, a semi-infinite storage tape fulled blank initially, k read-only input heads
which can move only right, and a read-write storage head which can move left or right.
Initially, the k input heads and the storage head are positioned in the leftmost cell on
an input tape and a storage tape, respectively.

A step of M consists of reading each symbol from each head on each tape, writing
a symbol on the storage tape, moving the input heads and the storage head in specified
directions, and entering a new state in accordance with the next move relation 5. Note
also that the machine usually cannot write the blank symbol B.

A sensing Nk-HONTM is an Nk-HONTM whose input heads are allowed to
sense the presence of other heads on the same input position. We denote a sensing
Ni-HONTM by NSNA-HONTM.

Deterministic versions of multihead on-line Turing machines are defined as usual.
In order to represent ‘deterministic’, we use ‘D’ in place of ‘N’, which is used to re-
present ‘nondeterministic’.  Thus, for example, Dk~-HONTM (resp. DSNA-HONTM)
denotes a deterministic k-head on-line Turing machine (resp. a deterministic sensing
k-head on-line Turing machine).

Let L:N—R be a function with one variable n, where N and R denote the set of
all positive integers and the set of all non-negative real numbers, respectively. We
say that M is L(n) tape-bounded if for each input word of length n (excluding the
right endmarker $), M uses at most L(n) cells on its storage tape until M enters an ac-
cepting state.

By Nk-HONTM(L(n)) (resp. NSNk~HONTM(L(n)), Dk-HONTM(L(n)), DSNk—
HONTM (L(n))) denote an L(n) tape-bounded Nk-HONTM (resp. NSNk-HONTM,
Dk-HONTM, DSNk-HONTM).

A nondeterministic multihead one-way finite automaton [3, 4] is a nondeterministic
multihead on-line Turing machine whose storage tape has no space to be used, and
various versions (e.g. deterministic or sensing versions) are defined similarly. We
use ‘FA’ in place of ‘ONTM’ to represent ‘one-way finite automaton’. For example,
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Nk-HFA (resp. DSNk-HFA) denotes a nondeterministic k-head one-way finite
automaton (resp. a deterministic sensing k-head one-way finite automaton).
For a given above automaton M, let T(M) be the set of input words accepted by M.
For the Nk-HONTM (k>1), we denote the class of sets of words accepted by
Nk-HONTMs by

Z[Nk-HONTM] = {T| T=T(M) for some Nk-HONTM M} .

For various versions of multihead on-line Turing machines and multihead one-way
finite automata, those classes are defined similarly. For example, #[Dk-HONTM
L(n))] (resp. ¢ [NSNk-HFA]) denotes the class of sets of words accepted by Dk-
HONTM(L(n))s (resp. NSN.4-HFAs).

3. Results

3.1 Hierarchies based on the number of input heads

This subsection shows that for each Xe{D, N} and each k>1, X(k+1)-
HONTM(L(n))s (resp. XSN(k+1)-HONTM(L(n))s) are more powerful than. Xk-
HONTM(L(n))s (resp. XSNk-HONTM(L(n))s), if lim [L(n)/n]=0.

Lemma 1 For each b>1, let
T (b)={w #wyr---xwy, | (w; € {0, 1}*) & Yi (1<i<b) [wi=waps1-:]}-
Then, for each k>1 and each function L: N—R such that ,,1‘}?0 [L(n)/n]=0,
(1) Ty(k(k+1)/2) e £[D(k+1)-HFA]=2[D(k+1)-HONTM(0)], and
Q) Ty(k(k+1)/2)& L[NSNk-HONTM(L(n))].
Proof. (1): The proof is given in the proof of Theorem 1 in [2].

(2): Suppose that there is an NSNk-HONTM(L(n)) M accepting T, (k(k+1)/2) for
some k>1 and some L(n) such that lim [L(n)/n]=0. Let s and r be the number of

states (of the finite control) and storage tape symbols of M, respectively.
For each n>1, let
V(n)={wyxw, %Wy 1) | Vi(1<i<k(k+1))
[(w;e{0, 1}*) & (lWi|t=n) & (W;=Wiga y+1-01} -

Note that for each word x in V(n), |x|=(n+1k(k+1)—1. Clearly, each word x in
V(n) is in Ty(k(k+1)/2), and so x is accepted by M.

A configuration of M is a (k+3)-tuple (i, iz..., its 4, & j) Where i; (1<I<k) is
the I-th input head position, g is the state (of finite control), « is the non-empty contents

3 For any word w, |w| denotes the length of w.
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of the storage tape, and j is the storage head position.

The type of a configuration C=(iy,..., i, ¢, a, j) denoted by Type(C) is a k-tuple
(Fiy/(n+1)1,..., Ti/(n+1)1)¥. Note that the ith element h; of the type specifies that
the ith head of M is on wy, * (W 1) if h;=k(k + 1)).

Let Ci(x), Cy(x),..., C; (x) be the sequence of configurations of M during an
(arbitrary selected) accepting computation of a word x in ¥(n). Here [, is the length
of this computation. Let d(x), d,(x),..., d,'(x) be the subsequence obtained by
selecting C,(x) and all subsequent C{(x)s such that Type (Cy(x)) = Type (C;, ,(x)). We
call d,(x), d,(x),..., d;2(x) the pattern of x.

Let P(n) be the number of possible patterns of M on x in V(n). Since I,<
k(k(k+1)—1)+1, we get the following inequality,

P(n) < (s(N + 1)*L(N)rLM)kkk+1)=1)+1_

- where N=(n+1)k(k+1)—1.

Then we classify the words in V(n) according to their patterns. Naturally, there
is a set S(n) (=V(n)) such as |S(n)|>2"k*+1)/2/P(n) 7 We assume that each word
x in S(n) has the pattern d,, d,,..., d;.

On the other hand, as is shown in the proof of Theorem 3 in [1], for each word in
V(n) there must be an i, such that M cannot read w;* and Wi+ 1)+ - * W3 if i=1)
simultaneously, which is decided by the pattern of the computation. Thus, let i, be
such a value of i for the pattern d,,..., d;.

We now define a binary relation E on words in S(n) as follows. Let
U=y *Upke KUy ke KUy 1) 4 -0 Uy 4 1), aNd

V=0 %0% 40y % RV pp 1)+ 1 —ip* ¥k + 1)
Then,
uEv<Vi(e {ig, k(k+1)+1—i}) [u;=v,].
Obviously the relation E is an equivalence relation, and there are at most g(n)=

2n(kk+1)-1)/2 E-equivalence classes of words in S(n).
Since lim [L(n)/n] =0, it follows for large n that |S(n)|>q(n). Therefore, there

exist two different words in S(n) which belong to the same equivalence class.
Let

X=X kX% ¥ X ¥ ¥ X4 1) 41 —io* " FXpr+ 1), aNd
Y=Y*Yoke ok Yk kY 1y+1-io* " * Vi + 1)

be such words in S(n). Since x and y are in S(n), recall that for each ie {i,,

Z=ZKZo* ¥4 1)

¥ For any real number r, [r] denotes the smallest integer greater than or equal to r.
3% For any set S, |.S| denotes the number of elements of .S.
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=Xk kX ke R Xt 1) =i ¥ Vi + 1)+ 1 =i ¥ Xk + 1)+ 2~ 0™ F Xk + 1)

By a similar argument to that in the proof of Theorem 1 in [2], it can be shown that
there is an accepting computation of M on z. Consequently, z must be accepted by M.
This contradicts the fact that z is not in T, (k(k+1)/2). ]

From Lemma 1, we can get immediately the following theorem.

Theorem 1 For each k>1, each X e{D, N}, and each function L: N>R such that
lim [L(n)/n]=0, :

(1) £[Xk-HONTM(L(n))]5 £ [X(k+1)-HONTM(L(n))], and
(2) Z[XSNk-HONTM(L(n))] € £ [XSN(k + 1)-HONTM(L(n))].

3.2 Determinism and nondeterminism

This subsection shows that for each (sensing) MHONTM(L(#n)), nondeterministic
version is more powerful than that of deterministic version, if lim [L(n)/n]=0.

Lemma 2 Let
Ty ={wyrwyk- 4wy, | 32 1[Yi (1<i<2b) [w; e {{0, 1}*¢ {0, 1}*}]1 &
3, k[(w;=x¢y) & (w,=x¢z) & (y=2)]1}.
Then for each function L: N— R such that lim [L(n)/n] =0,
(1) T,e #[N2-HFA]=2[N2-HONTM(0)], and
2 T,& U ZL[DSNk-HONTM(L(n))].
1<k <©
Proof. (1): The proof is given in the proof of Theorem 4 in [2].
(2): By using similar techniques to those in the proof of Lemma 1, we can easily
show that T, isnotin U Z[DSNk-HONTM(L(n))]. The details are omitted here.
1<k <
u
From Lemma 2, we can get the following theorem.
Theorem 2 For each k>2, and each function L: N— R such that lim [L(n)/n]=0,
(1) Z[Dk-HONTM(L(n))]S £ [Nk-HONTM(L(n))],
(2) Z[DSNk-HONTM(L(n)]1< < [NSNk—HONTM(L(n))] ,
1<r <00

3 U Z[Dr-HONTML(m)IS . w.z’[Nr—HONTM(L(n))], and
@ v _Z’[DSNr—HONTM(L(n))]EISU Z[NSNr-HONTM(L(n))] .

1<r<o

3.3 Closure properties

In this subsection, we will investigate several closure properties of classes of lan-
guages accepted by deterministic and nondeterministic (sensing) MHONTM(L(n)).
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We first examine closure properties for the deterministic case.
Lemma 3 For each b>1 and each n>1, let
Co(n)={ucwycwyc---cwyewye--ewpew | Yi(1 <i< b) [u, w; e {0, 137},
Dy(n)={v,dv,d|v, € Cy(n)},
Ey(n)={ucw cwyc-cWyewy 4 1w,y 1ew,| Vi(1 < i< 2b)
[u, w;e{0, 1}"] & (1< j<b) [w; = Wap+1—;1}, and
Fy(n)={u cwcw,c--cwyewye- "CWCW dUy W CWoCe - cwpewye - ewaew d | Yi (1<i<b)
[uy, uy, w;e {0, 13"] & (uy>xu,)}.

In addition, let C,,— U C,,(n), Db— U D,,(n) E,,— U E,,(n) and F,,-- U Fb(n)
for each b>1.

Furthermore, for each k>2, let b(k)= <2> and let A,(k) be a language satisfying
the following conditions:

(1) Al(k)g Cb(k) U Db(k)9 and
(2) A(k)n(EypyU Fyay)=¢.

Then, for each k>2 and each function L: N—R such that lim [L(n)/n]=0,
A,(k) & Z[DSNA-HONTM(L(n))] .

Proof. Suppose that there is a DSNk~-HONTM(L(n)) M accepting A,(k) for some
k>2 and some L(n) such that lim [L(n)/n]=0. We now show that if M accepts all

words in Cy) U Dy, Where b(k)=(]2€>, M must also accept some word in Epy U Fppy.

Let s and r be the number of the states and the storage tape symbols of M, respec-
tively. Similar to the proof of Lemma 1, we again define the configuration, the type,
and the pattern of M. Let y be a word in Cy,(n) U Dyy(n) and let y have an initial
subword vy in Cyyy(n). Clearly, |Cypy(n)| =200 *+11n,

We shall consider the initial computation of the word y, which begins in the initial
configuration and ends in the configuration in which one of the heads reads through the
whole word v;. Let P(n) be the number of possible patterns of initial computation.
Then we get the following inequality,

P(n) <(s(N+ 1)k L(N")rLN))2kb(k)+1

where N=(k(k—1)+1)(n+1)—1, and N'=2(N+1). Thus, for some pattern g, there
is at least 2!€»co (W1/P(p) different words with the pattern ¢ in Coay(n).

Let (t;, tp,-.., t) (Vi(1< j<k) [1<t;<b(k)+1]) be the type of the last configu-
ration of M. Then we consider the following two cases:
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1) Yj(1<j<k):t;>1; and
2 Id<gj<k):t=1
In case (1), we consider words in Dy,(n). Since 31_{2 [L(n)/n]=0, there exists two
different words y, and y, with the pattern g in D,g,(n) for large n. And let
y,=u,cxdu,cxd, and
y,=u,cxdu,cxd,

where u;cx, uycx e Cyyy(n). Since Vi(1<j<k): t;>1, M cannot read the both sub-
words u, (resp. u,) in y; (resp. y,) with the pattern g simultaneously. Then M ac-
cepts a word y’' =u cxdu,cxd which is not in Dygy(n) but in Fygy(n).

In case (2), we consider words in Cyy(n). Similar to the proof of Lemma 1, let
y, and y, be two different words with the pattern g in Cy,(n) for large n as follows,

Y1 =UCW,C+CW; €+ CWy(y CWpry €+ EW;oCo-cWy,  and
P2 =UCW C+CW} €+ CWp(yCWhyC* " CWioC o CWy.

Then, some subword w;, and wj, cannot be read simultaneously by M.
Furthermore, let

Y SUCWC - CW € CWi() CWp () € CW o€ CW .
Clearly, M accepts y’ which is not in Cp,y(n) but in E,(n).
This completes the proof of the lemma. [ ]

Lemma 4 For each k>2, let b(k)=(12€>. And let A,(k) be a language satisfying the

following conditions,
(3) Ay(k)={e}- CpuyU {e} - Dypqy, and
4 Ay(k) n ({e} - Epgy U {€} - Fp)) =,

where Cyy, Dyy» Epryy @nd Fyy are the languages given in Lemma 3. Then, for each
k>2 and each function L: N—R such that lim [L(n)/n] =0,
n—o

A,(k)& Z[DSNA-HONTM(L(n))].

Proof. It is a matter of easy technical considerations to show that if there exists a
language A,(k) satisfying the conditions of Lemma 1 such that A4,(k)e.#[DSNk-
HONTM(L(n))] for some k>2 and some L(n) such that 11m [L(n)/n] =0, then

there would exist a language A,(k) fulfilling the conditions of Lemma 3 such that
A (k) e #[DSNk-HONTM(L(n))]. This contradicts Lemma 3. |

Theorem 3 For each k>2 and each function L: N—R such that lim [L(n)/n]=0,
neither #2[DSNk-HONTM(L(n))] nor #[Dk-HONTM(L(n))] are closed under the
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following operations: (1) concatenation “- >, (2) reversal “R”, and'(3) Kleene closure

€6, 99

*°7,
Proof (1): This proof is similar to that of Theorem 2 in [5]. Let
L,={0, 1}*cu {e}¥, and
L,={udud|ue{0, 1, c}*} u {e}.
And for each b>1, let
Gy={wicw,c---cwyewye---ewyew, | Vi (1<i<b) [w;e {0, 1}*]} U {e}.
Clearly,
L, € Z[D1-HFA]=2[DI-HONTM(0)], and
L, e #[D2-HFA]=2[D2-HONTM(0)].
It is also clear for each k>2 that
G(’i) € Z[Dk-HFA]=2[Dk-HONTM(0)].
Furthermore, let

Ls(k) =L,-L,- G(lé),

then it is easily seen that Ly(k)=2Cy, U Dyy and Li(k) N (Eyy U Fyry) = @, Where Cyyy,
Dygoys Epy» and Fy are the languages given in Lemma 3.
Therefore, from Lemma 3, we can get

Ly(k)& #[DSNk-HONTM(L(n))].
(2): This proof is similar to that of Theorem 3 in [5].
For each k>2, let
Ly(k)=L, U {0, 1}*CG(k)7
2

then it is easily seen that L,(k)= Chay U Dpy and  Ly(k) N (Epsy U Fpy)) =@, where
Coy Doky Enqy» and Fyy are the languages given in Lemma 3.

Therefore, from Lemma 3, we can get

Ly(k)& Z[DSNk-HONTM(L(n))].
On the other hand, as is easily seen that L,(k)®=LXy G(k)c{O, 1}*=2[Dk-HFA] =
2

Z[Dk-HONTM(0)].
(3):  This proof is similar to that of Theorem 4 in [5].

For each k>2, let

Ls(k)={e}- Ly U {0, 1}*cG gy U {e}.

$ e denotes the empty string.
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Then clearly
Ly(k) e Z[Dk-HFA]=2[Dk-HONTM(0)].

On the other hand, it is also clear that Ls(k)*={e}- Cyu)U {€} - Dpqy and Ls(k)*n
({€} - Eyy U {€} - Fypay) =, where Cppy, Doy Eyu) and Fyg, are the languages given
in Lemma 3.

Therefore, from Lemma 4, we can get

Ly(k)*& Z[DSNk-HONTM(L(n))].
This completes the proof of the theorem. [ ]
We next examine closure properties for the nondeterministic case.

Theorem 4 For each k>2 and each function L: N—R such that hm [L(n)/n]=0,

neither #[NSNk-HONTM(L(n))] nor #£[Nk-HONTM(L(n))] are closed under the
following operations: (1) intersection, and (2) complementation.

Proof. (1): For each k>2, and each r <1 grg(k; ! >>, let

Tk, )= wyswprwwy gy Vi(1<i<2( K3 1) me 0. 1171 & O,
=Wy (k31)+1-r}-
For an arbitrary fixed k and each r< I<r< ( k—zH )), it is obvious that Ty(k, r) is ac-
cepted by D2-HFA (=D2-HONTM(0)).

From Lemma 1, however, the following language is not accepted by any NSNk-
HONTM(L(n)):

Ty(k, 1) 0 Ts(k, 2) 0 - nT3< <k+1>> T1(<k+1>>

(2): From Lemma 1, for each k>1,
T,(k(k+2)/2)& L[NSNk-HONTM(L(n))],

where T,(k(k+2)/2) is the language given in Lemma 1.
From Theorem 2 in [2], however, we can get

T, (k(k+2)/2)* € Z[N2-HFA]=2[N2-HONTM(0)].

This completes the proof of the theorem. [ ]

4. Conclusion

In addition to the above results, we have got several properties about the classes of

3 For some language L, L denotes the complementation of L.
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the languages accepted by tape-bounded simple multihead on-line Turing machines
- (SPMHONTM(L(n))s). An SPMHONTM(L(n)) is an MHONTM(L(n)) whose only
one input head is able to distinguish the symbols in the input alphabet, and whose other
input heads can only detect whether they are on the right endmarker $ or on a symbol
in the input alphabet.

We conclude this paper by stating a following open problem left in this paper.

For each k>2, each X € {N, D}, and each L: N—R such that lim [L(n)/log n]=0,

ZL[Xk-HONTM(L(n))] = £[Xk-HONTM(0)]?
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