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Abstract

This paper investigates the learning behavior of variable-structure stochastic automata in
a three person zero-sum game. The game has three variable-structure stochastic automata and
a random environment. In the game the players do not possess prior information concerning
the payoff matrix and at the end of every play all the players update their own strategies on the
basis of the response from the random environment. Under such situations if a payoff matrix
satisfies some conditions, it can be shown that the learning behavior of the automata converges
to the optimal strategies.

1. Introduction

The learning behavior of variable-structure stochastic automata operating in a
random environment has been studied extensively by many authors (1-8). These au-
tomata have the capability of learning the desired state with updating their probabilities
of actions. Since Chandrasekan and Shen (2) studied the behavior of variable-structure
stochastic automata in two person zero-sum games, various papers of automata games
have been published.

Lakshmivarahan and Narendra (6) show that the learning behavior of variable-
structure stochastic automata converges to the optimal pure strategies when the game
matrix has a saddle point.

However, most of the work in competitive games has been limited to two person
Zero-sum games.

This paper investigates the learning behavior of variable-structure stochastic au-
tomata taking part in a three person zero-sum game as the players. In two person
zero-sum games, a gain of one player corresponds to a loss of another player, however,
in three person zero-sum game this relation is not satisfied and the payoffs of the players
affect each other.

In the game the players don’t possess prior information concerning the payoff
matrix and the available strategies, and during the course of the game all the players
update their strategies using their reinforcement on the basis of the response from the
environment. At every play the environment responds to the automaton’s action by
producing a response. Under such situations when a payoff matrix satisfies some con-
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ditions given in Section 4, the learning behavior of the automata converges to the optimal
strategies.

After a brief introduction to the variable-structure stochastic automaton, the out-
line of automata game is stated in Section 3. Further, some solutions as the set of
optimal strategies in three person zero-sum game are defined and the collective behavior
of stochastic automata in the game having the solution is studied in Section 4. Finally,
as illustrative examples, some games are simulated on a computer in Section 5.

2. Formulation of Learning Automaton

The definitions associated with a variable-structure stochastic automaton in a
random environment and a reinforcement are presented here.
The variable-structure stochastic automaton (VSSA) 4 is defined by the sixtuple

A={X, Y, W, g, P(t), T} (referring to Fig. 1) (1)

where X ={0, 1} is the set of two inputs (0: reward, 1: penalty), Y={y,, y,,..., ¥,}
(r=2) is the set of r outputs, W= {w;, w,,..., w,} is the set of r states, g is the output
function f=g(w;) (1<i<r) which is a one-to-one mapping from the state set to the out-
put set. In this paper the states of the automaton are regarded as identical with the

outputs. The vector P()=(p(t), p,(2),..., p,(1)) (erl p{t)=1) is the state probability

vector at instant ¢, where p(t) denotes the probability of the choice of the i th state w;.
T defines the reinforcement scheme which generates P(t+1) from P(f). T can be
written formally

P(t+1)=T[P(t), X(1), W(1)] 2

pa— Random Environment

0/1 vievy vy, oo vy}

Stochastic Automaton A

{wl'wz'...'wr]

{evy , g, 1)
P (t):State probability vector
g :Output function

T :Reinforcement scheme

Fig. 1 Variable structure stochastic automaton.

where X(t) and W(t) denote the input and the state of the automaton at instant ¢, respec-
tively.

A number of reinforcement schemes such as Ly _;, Ng_;, Ng_ » have been reported
(5), in this paper the linear reward-inaction scheme Lg_, which is described in the
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following is used.

Let the automaton choose the state w at instant ¢. If the environment responds
with '

1) reward (0), then set

pt+1)=pLt)+B(L —p(1)), 0<p<1

pit+)=(1-P)p®), 1=j=r,j=i 3)
2) penalty (1), then set

p(t+1)=p;(1), 1£jsr )

where B is a parameter affecting the rate of learning.

The basic idea behind Lg_; scheme is following. If A chooses the state w; at
instant ¢ and the environment outputs a reward, the state probability p,(f) is increased,
and the other components of P(t) is decreased so that P(¢) is stochastic. For a penalty,
P(t) is not changed. Thus, A updates P(t) with Lg_; scheme on the basis of the output
of A and the response from the environment as much as possible to receive the reward.

In the sense of game theory, we can see the outputs of A as its strategies, the inputs
of A as its payoffs and the environment as a referee of a game. With these meaning,
we describe the 3-automaton game in the next section.

3. Three Person Zero-sum Game of Automata

In this section a three person zero-sum game of automata is stated. Fig. 2 describes
schematically the three-automaton game. The game has 3 VSSA as its players and a
environment as its referee.

Let A(1<1Z3) a player in the game. A, has r, outputs (strategies)

Y={ll1=zi=r} &)

1If at an instant each player chooses y!, y% and yi, respectively.  {yi, y%, yi} is a play
at this time. During the game, such plays are repeated continuously.

1
Yj J 0/1
A

1
1 11 1
yie{yl,YZ,"',yrl}
Environment 9
Yy 0/1
or J Agy /
2 2 2
Refree yjé{yl,yL' yrz}
3
Yi
A

3
‘_ yi({yi’y;'...,yiJ 1 0/1

Fig. 2 Automata game.
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Next, let the output probability vector (mixed strategy) of player 4,
r
P0)=(p}(), P4(0)..... P4 (D), 3 pl(D=1 ©)

where #(¢>0) denotes the number of plays, and pl(r) denotes the probability with which
A, chooses the ith output yi*).

The environment (referee) determines the payoffs M'(i, j, k) (1<1<3) to three
players depending on the play {yi, y2, y?} and the payoff matrix M. M specifies the
payoffs to three players corresponding to r(r=r,r,r;) kinds of plays and is the r x 3
matrix. Then, the environment gives the penalty out to the player 4, in a random
manner with the probability ’

Cl = (1= M, j, k), ™
where it is also said that the environment gives the reward out with the probability
1—C! ;« Each player changes its output probability vector P'(t) to P(t+1) using the
reinforcement scheme as much as possible to receive the reward on the basis of the
response from the environment. The tth play is done in this way, and this play is made
sequentially.

In this three person zero-sum game, all the players possess no prior information
concerning the game, and each player chooses its output without knowing the other
players’ outputs. Therefore, these things mean that the players do not know the payoff
matrix and the number of players participating in the game. And the only available
information concerning the game for each player is the response from the environment.

4. Collective Behavior of Automata

In this section some solutions of three person zero-sum game and the collective
behavior of variable-structure stochastic automata in the game having the solution are
stated.

EQUILIBRIUM POINT

We define equilibrium points E;, E;; and Ej,; as the sets of optimal strategies. For
these solutions, there must exist a dominant strategy d; for at least one player. Note
that this strategy implies that, for any fixed pure strategies of other players, the payoff
of this strategy is greater than the corresponding payoff.

(Definition 1) Equilibrium point E,
¥}, is said to be the dominant strategy d; of 4, if

Vi, Yk (12 j<ry, 1Sk<rs)

M(iy, j, k)= M(, j, k), 1<isr, ixi; ®

* In eq.(1) g is one-ot-one mapping from the set of states to the set of outputs, so states and
outputs are regarded synonymous, thus we don’t describe the state of A, especially.
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This definition can be given in the same way for other players. The pure strategies
X;=(yl, 3, ¥, is said the equilibrium point E; of the game.

(Definition 2) Equilibrium point E;
When there exists a dominant strategy d; of A, yl, y? is said to be the dominant
strategy d;; of A, if

Vk(1=k=r;)
M(ilstI’ k)gM(iIsj, k)9 léjérb j#jll (9)

This definition can be given in the same way for other players. The element of the set
Xy ={(}p Yu> Vi) Ohs Y30 Y22 Wl Y3 ¥R} 8 said the equilibrium point Ey
of the game. ~
(Definition 3) Equilibrium point E;,

When there exists a dominant strategy d; of A, y}, and a dominant strategy d,; of 4,
V3> Vi i said to be the dominant strategy dy of A5 if

M(iy, jrp kD Z My, js k), 1Sk=r;y, kxkpyy (10)

This definition can be given in the same way for other players. The element of the set

XIII= {(y}I’ y}u’ ylgln)’ (ylll’ y‘%ur’ y%11)7 (y%"’ y%]’ yl?u[ s (y;'l"l’ y%l’ yl;:’u)ﬂ (y%H’ y%nx’ yl%,):
(v}, ¥2,» ¥2,)} is said the equilibrium point Ejy; of the game.
For these equilibrium points we have the following proposition.

(Proposition 1) Let M;, M;; and M, be the set of the payoff matrix having E,;, E;;
and E,,, respectively. Then

MIgMIIgMIII'
proof. It is clear from Definition 1, 2 and 3. Q.E.D.

In the game having the equilibrium point stated in Definition 1, 2 and 3, when all
the players update their own output probability vectors using Lg_; schemes on the
basis of the response from the environment, we have the following theroems.

(Theorem 1) In a game having the equilibrium point E,, if all the players update their
own output probability vectors using Lg_; schemes, the collective behavior of the
players converges to the equilibrium point E; with positive probability.
This implies that p! (t) in (6) satisfies
Ye(e>0)
lim p} ()>1—¢, 15153, (11)
t— 0

where y is a dominant strategy d; of 4.

proof. Let (3}, y3,, yi,) be an equilibrium point E;. The conditional expection of
the random variable p}, with respect to P;, P, and Pj is given by '
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E{pu(t-'_ I)IP(I)} —pzx[JZ kz pjpgcl[ Js kpl1+ (1 11 Js k){p11+ (I —ﬁ)pu

ri ra rs
+ Z ;1 k; ,p,pi{C, Js kpu+(1 “Ci,j,k)(l_ﬁ)l’%,} (12)

t=5Fu-

where for simplicity we put p!=pk(r), and B(0< < 1) is the parameter of Lz _; scheme
used by A. In (12) C} ; denotes the probability that 4, receives a penalty when each
play chooses the output y!, y? and y}, respectively, and from (7) Ci ;4 is given by

Clu= (-G, j, k). (13

Substituting (13) into (12) yields
E{pl+ DIP@) =730}, 3 3 5 plpindM (ir,J, )= MG, j, k) +pl,  (14)
Since y}, is the dominant strategy d, of 4,, (8) must be satisfied. Thus, it follows from
(8) and (14) that
Yi(t>0)
E{p(t+1)| P(9)} —p} (0} 20, 15)
where the equality sign holds only at p!(f)=0 or 1. Noticing that
Y1(t>0)
0<pL(N<1, 1<isr,
from the submartingale theorem (10), it is easily seen that
Ve(e>0)

lim pl ()>1~—¢ (16)
t— 0

For other players it can be shown in the same way. Hence the collective behavior of
the players converges to the equilibrium point E,. Q.E.D.

(Theorem 2) In a game where there exists the equilibrium point E 11> if all the players
update their own output probability vectors using Ly _, schemes, the collective behavior
of the players converges to the equilibrium point E;; with positive probability.

proof. Let (y},, y%,, y3,) be an equilibrium point E,;. Since there exists the domi-
nant strategy d for 4, p(f) converges to unity with positive probability proved in ( 16).

And in this time the conditional expection of the random variable PZ  is given by

E{p3,(t+ DIP() =" P}, 2 3 P3R(Miy, jus k)= M2(i, j, K))+p%, (17)
&

Note that y is the dominant strategy d;; of A,. From (9) and (17)
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Yi(t>0)
E{p? (t+ )| P(D)}—p7, (020 (18)

Hence, from Theorem 1 it can be seen that

Ye(e>0)
lim p% (H)>1—¢
t— o0
~ For A; it can be shown in the same way. Q.E.D.

In this case the convergence of 4, and A; is conditioned on the behavior of A4;.
This means that 4, and A; behave the conditioned convergence.

(Theorem 3) In a game where there exists the equilibrium point E,,,, if all the players
update their own output probability vectors using Lg _; schemes, the collective behavior
of the players converges to the equilibrium point E;;, with positive probability.

proof. The proof is similar to Theorem 2. Q.E.D.

The solutions in Definition 1, 2 and 3 have the dominant strategy d; and the every
payoff of this strategy is greater than the corresponding payoff of all the other strategies.
There rarely exists such a strategy in the game situation, so the equilibrium points E,
E;; and E,;; are the particular solutions.

SADDLE POINT

Adding to the solutions stated in Definition 1, 2 and 3, we define the saddle point
in three person zero-sum game as a solution.

(Definition 4) Saddle point
Let

M(iI’ jlﬂ k1)=mz_1x. ml]fl {M(l, j’ k)}
i Js
M(i,, j,, k;)=max. min. {M(, j, k)}
J ik
JsJ

Then, if the relations i, =i, =13, j; =j,=Jj3 and k, =k, =k, are satisfied, we define the
pure strategies S=(y},, ¥?,, ¥3,) as the saddle point of three person zero-sum game.
The saddle point S is more practical than the equilibrium points E;, E;; and Ejj; in
the meaning that all the players behave so as to minimize the payoffs of other two
players and maximize the own payoff.
In a game having the saddle point S, when all the players update their own output
probability vectors using Lg_; schemes, we then have the following theorem.

(Theorem 4) In a game having the saddle point S, if all the players update their own
output probability vectors using Lg_; schemes with a proper parameter, the collective
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behavior of the players converges to the saddle point S with positive probability.

proof. Let S=(y!, ¥4, y?) be a saddle point. When all the players update their own
output probability vectors using Ly _; schemes with the same parameter, the conditional
expection of the random variable plp?p3 is given by

E{pi(t+Dpj(t+ DpX(t+1)|P()} =Bplpip3(H, + BH, + B>H,) + pipip:, (20)

Fi F3 ra 3

1k+2 szpj bk+z Zplpzc?jc 2’ (21)

i=1 j=

where H, = Zz

nMJ

and for simplicity we put C} ; ,C2C3=C]} ; ,C?;.C3,, so on.
The derivation of (21) is given in the Appendix.
In (21),

1 -
Clia=1=Cl =71+ MG, j, k)), (22)
where C! ;. } ix denotes the probability that A4, receives a reward from the environment

when 4,, A, and A; choose ith output y}, jth output y3 and kth output y3, respectively.
- Substituting (22) into (21),

=%{>_: 23 piM'(a, j, k)+2 Z pipiM2(i, b, k)+2 Zp. IM3(, j, )}

(23)
From the assumption that (y!, y2, y3) is the saddle point, it can be seen that
M?1(a, b, c)=min. {M(a, j, k)}
gk
M?(a, b, ¢c)=min. {M2(i, b, k)}
ik
M¥(a, b, c)=min. {M(i, j, 9} (24)
i, J

From (23) and (24)

ra rs3 r rs ri r
Hiz5 (M@ b, 5 8 pipd+Ma,b,0 5 5 pint+Ma, b, 0 3, plp3)
Jj= = i= = i=1 j=

=LiM(a, b, )+ M(a, b, )+ M(a, b, ¢)) (25)

N

Recall that

Vi, Y, Yk(1Zi<ry, 1Sj<r,, 1Zk<r,)
3
zzi M'(i, j, k)=0 (26)

It follows from (25) and (26) that
H, 20, 27)
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where the equality sign holds only at pl=pZ=p2=1. And itis clearly that H, and H,
are bounded. Thus, being independent of signs of H, and H,, there exists f(0<f<1)
such that

H,+BH,+p*H;>0 (28)

From (20) and (28), for a proper parameter it is clearly that

E{pi(t+ D)p3(t+ Dpd(t+ DIP(D} — pa(DP3(pX(1) 20, (29)
where the equality sign holds only at pl=p7=p3=0 or 1. This completes the proof
of the theorem. Q.E.D.

As the well known there is a Nash play defined as a solution of N person zero-sum
game. The solutions defined in Definition 1, 2, 3 and 4 are all the Nash plays. Let
My, M, M,;, M;;; and M, be the sets of the payoff matrices having the Nash play, the
equilibrium points E;, E;;, E;;; and the saddle point, respectively. Then the relation
given in Fig. 3 is satisfied. And it is clearly that the solutions stated in Definition 1,
2, 3 and 4 are the optimal plays.

Mg
My
My

Fig. 3 Relation between solutions.

5. Simulation

To illustrate the collective behavior of the automata in the last section, computer
simulations are carried out. In all examples reported below, it is assumed that each
player has the set of two outputs {1, 2} and they use Ly _; schemes with same parameter
B. Each game is played 10 times and the averaged probabilities with which each player
chooses the optimal strategy are shown in Fig. 4—Fig. 8.

The payoff matrices used in the simulation are given in Table 1.—Table 4. And
it is assumed that each player’s payoffisin [—1, 1]. The payoff matrix given in Table.
1. has the equilibrium point E,(1, 1, 1). The behavior of the automata in this game is
shown in Fig. 4. The probabilities p}(¢) (1 £1<3) with which each automaton chooses
the output 1 converge to unity in all 10 experiments.

The payoff matrix Table 2. has the equilibrium point E; (1, 1, 1), and A, A, and
A5 have the dominant strategy d;, d;; and dy;, respectively. The payoff matrix given
in Table 3. has the equilibrium point E;; (1, 1, 1), and 4, 4, and A; have the dominant



178 Kenshiro OKAMURA, Taiho KANAOKA, Toshihiko OkADA and Shingo ToMiTA

strategy d;, d;; and d;;, respectively. The behavior of the automata in the games
having the payoff matrices Table 2. and Table 3. are shown in Fig. 5 and Fig. 6, respec-
tively. In both two games given in Fig. 5 and Fig. 6, the probability p} with which 4,
chooses the dominant strategy d; converges to unity fastest and smoothly. And in Fig. 6
the probability p3 with which 4, chooses the dominant strategy d;; converges faster than
p3 with which A4; chooses the dominant strategy d;;;. As mentioned before dominant
strategy d; always makes the maximum payoff for every fixed outputs of other players,
and the existence of the dominant strategy d;, needs d; and the existence of d;;; needs
d; and d;;. From these relations it might be said that the less the influence of other
players’ behavior is, the faster the convergence is.

The payoff matrix given in Table 4. has the saddle point S (1, 1 1). The behaviors
of the automata using Lg_; schemes with the parameter f=0.04 and 0.08 in the game
having Table 4. are shown in Fig. 7 and Fig. 8, respectively. In the case f=0.04 the
behavior of the automata converges to the saddle point S in all 10 experiments. In the
case f=0.08 the automata fail to learn in some experiments. For example, p! con-
verges to 0.7 in Fig. 8 and this shows that A4, fails to learn three times. These behaviors
coincide with the results described in the last section.

Table 1. Payoff matrix with equilibrium Table 2. Payoff matrix with equilibrium
point E;. point E\,.
yoyi M, M, M, iy M, M, M,
1 1 1 0.5 —0.1 —04 1 1 1 04 —-03 —-0.1
1 1 2 0.9 00 —-09 1 1 2 0.4 00 —04
1 2 1 02 —-05 0.3 1 2 1 03 —05 0.2
1 2 2 08 —0.6 —0.2 1 2 2 04 —-04 0.0
2 1 1 0.0 0.1 —0.1 2 1 1 —-03 —0.2 0.5
2 1 2 0.1 02 —03 2 1 2 —-0.5 —-0.2 0.7
2 2 1 —0.1 —0.8 0.9 2 2 1 —03 —02 0.5
2 2 2 00 —-04 04 2 2 2 —0.1 —0.5 0.6
Table 3. Payoff matrix with equilibrium Table 4. Payoff matrix with saddle point
point Eyy;. S.
vy i M, M, M, i ¥i W M, M, M,
1 1 1 02 —0.1 —0.1 1 1 1 0.0 0.0 0.0
1 1 2 0.2 02 —04 1 1 2 0.2 0.1 —0.3
1 2 1 05 —05 0.0 1 2 1 0.1 —0.2 0.1
1 2 2 04 —0.6 0.2 1 2 2 0.1 —0.2 0.1
2 1 1 —02 —02 04 2 1 1 —0.2 0.1 0.1
2 1 2 -05 —0.1 0.6 2 1 2 —0.5 0.2 0.3
2 2 1 —0.3 0.0 0.3 2 2 1 0.3 —0.6 0.3
2 2 2 —0.8 0.0 0.8 2 2 2 —0.9 0.4 0.5
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6. Conclusions

In this paper, we defined some solutions in three person zero-sum game. And it
has been shown that the players having no prior information about the game learn
the solution when they update their own output probability vectors using Ly _; schemes
on the basis of the response from the environment. These results will be easily extended
to N person zero-sum game.

The problems stated below are left to study further.

1) The study of cooperative games of automata.
2) What about the scheme that an optimal strategy is a mixed one?

Appendix

Derivation of (21) :

Let S=(yl, y2, y3) be a saddle point. When all the players update their own
output probability vectors using Lg_; schemes with the same parameter 8, the condi-
tional expection of the random variable plp?p3 is given by

E{pl(t+Dp3+1)pi(t+1)|P3(t+1)| P()}
=pipip3(L,5,.C2C3plpipd+CL ., CC3pLpipd+Cl 4, . C2C3pl pipd
+Ca b, ccz(_:aptlzpzllp%pz a b, cC2C3p P pc+Ca b, CC2C3pap pc+Ca b, CC263p;ﬁ%pg

+CL,, cClC3papbp2)+papb 2 PH{C, 5. C2C3pLpip2+CL , (C>C3pLpip?
kAFc

+C¢£,b,kCZC3px§ ﬁ%Pc‘f‘Ci b, kCzCspap pc+Cl b, kC2C3papbpc+C;,b kCzCspapc

+CL, C2C3pl p 3+ CL, «C*C3pLp3p3} + pip? Z PiHCL,;, .C*C3plpip?

J‘\‘b
+C} ; .C2C3pLpip3+CL ; C2C3pLptpd+CL ; C2C3plpip2+CL ; C*C3pLpip?

+CL ; .C2C3plpipi+Cl ; C*C3plpipi+Cl ; C*C3plp2p3}

+pip2 Y, pH{Cl, C2C3plpipi+Cl, C2C3pipipd+Cl,, C2C3plpip?
1=\Fa

+Cl ,b,c CZC pappr+Cl b, chCspapbpc'*_Cl b, cC2C3.pap pc+Cz b, cC2€3p}1ﬁ%pg

+C},,.C2C3pLpipe} + pl )2 2 P pi{CL; «C2C3pl pEp3+CL ; C>C3plpip3
J;b k#c
+C, ;4 C2C3pL PP+ C!

a,j,k

CzCsPaP pc+Ca s kCzcspapbpg_l_Ca Js kCZCS‘ﬁ;plZ)ﬁg
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+C;,j,kézc3pap p3+cz§,1 kCZCSPanPc}“'P% Z Z pt {Cl b, kczcspipil’z
a k#c

+Cly £C2C3pLphp3+Cl 5 kC>C3pip3pE+CLy i C2C3plp3p2+ Cly kC*CPPaPi

+ Cil kczcspapbpa + C 6263p3ﬁ%ﬁ3 + Cil, b,kézésﬁ}zf’%pg}

+ p? Z 2 pLp{C} ; LC2C3pipip3+Cl; C2C3plipipi+Cl ;, .C*Cpipipd
:Sea J%b
+C}; C2P3PLPAP3+CT; C>C3pLpipi+Cl,;, C2Cpipipi+Cl,;,.C*CPpabipd
rz ra
+C} ; C*C3pLptp3}y + 2 Z Z plp2p3{C} ; ,C2C3plpip3+Cl ; xC2C3plLpip}
téﬁa Jan k#c

1 Js kCzCspaP pc+Cl,j,kczéspzp%pg+C11,],kC2C3ﬁ¢11ﬁ%Pc+Cl,] kCzcspapbpc
+C, ;. C2C3plpEp3+Cl ; «C2C3piCEPY}, (A1)

where for simplicity we put p!=pl(¢)and C} ; ,C*C3=C} ; C? ; « 5O ON
and

=pi(t)+p(1—pi(®)), (A2)
pi=01-B)pi(®) (A3)
Substituting (A2) and (A3) into (Al), let H; be the term with B.

Then,
H = papbpc{Z Zp, P2pi(CL;,C2C3 =T}, C2C* T}, C2C3 — C} ;L2 C3

—2C}; ,C2C¥ + z z p!p3(CT,..C2C3+Ct,,; 23+ L L3+ C,;,.C2C?)
i=1 j=1

r r

-
w

+ Z (C1 5, kC2C3+C1 b, kC2C3+C1 C2C3+C1 CZCS)
i=1 k=1
+ _221 kﬁ pApA(CE 203+ T, ,C2C? +CL,,C2C3+ CT,, ,C2C?) — 1}
j=1 k=1
(Ad)
r2 r2 ryr ri 3
=Pép%p3(]§1 kgl p] Cl,],k""z Zpl Ctzbk+2 zpl 1,J.c —2—)
(AS5)

"Deleting the term plp?p3 of (AS), We have (21).
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