Technol Rep Yamaguchi Univ 5(5) : 259-276, 1996 259

Double Diffusive Convection by a Chebyshev
Collocation Method

by
Alexandru Mihail MOREGA and Tatsuo NISHIMURA
(Received July 5, 1996)

Abstract

Solution accuracy is an important issue in modeling complicated, nonlinear physical

phenomena such as double-diffusive processes. Recent researches in the area of internal,
natural convection heat and mass transfer suggest that spectral methods may be a sound
alternative to classical numerical schemes such as finite differences and finite element or,
sometimes, the single one currently available.
The present work is aimed at assessing the ability of the spectral approach to solving strongly
coupled double-diffusive convection processes previously analyzed by finite element methods.
The good agreement with data reported in literature for the cases we investigated shows that
Chebyshev collocation (pseudospectral) representation that was used results in a very accurate
and reliable numerical scheme, with much potential in addressing transient regimes and
nonlinear effects. When efficiently implemented, it leads to very performant, vectorized
computer codes.

1. Introduction

Free convection due to spatial variations of fluid density is of fundamental
importance in many natural and industrial problems [1]. Recently, increased interest
was noticed regarding double-diffusive natural convection in chemical vapor transport
processes and crystal-growth techniques of semiconductors and alloys, where
temperature and concentration differences are evidently required [2], [3].

In a number of related numerical studies, diverse flow regimes have been
investigated for different fluids. For example, Chang and Lin [4] examined
thermosolutal convection in a salt-water solution at high Rayleigh numbers using a
finite volume method. They found that the flow follows a quasi-periodic route to
chaos under certain conditions. Shyy and Chen [5] analyzed the steady flow structures
and stratification due to double-diffusive convection in liquids with low Prandtl
number and demonstrated that with appropriate combinations of thermal Rayleigh and
buoyancy ratio, multilayer structures appear in molten alloys. Nishimura et al. (6]
studied the features of flow and associated heat and mass transfer for binary gases.
Finite element solutions indicated that oscillatory flow occurs in a limited range of
buoyancy ratios, which belongs to thermally-dominated convection.

However, most of numerical studies have paid less attention if any to the adequacy
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of the numerical method employed to approach such problems. Recently, Ehrenstein
and Peyret [7] and Hyun and Bergman [8] questioned whether conventional numerical
methods (finite differences, finite element) are able or not to evidence the fine-scale
phenomena typical to double-diffusive problems due to numerical difficulties for some
ranges of Lewis number. On the other hand, spectral methods have been known for
their high accuracy [9], [10]. Their advantage over classical methods is due mainly
to the analytic nature of spectral approximation characterized by the fast decay in the
approximation errors as spectral resolution is increased. However, this capability has
not been proven enough yet, and motivates the present investigation.

We examined double-diffusion convection in a rectangular enclosure produced by
opposite horizontal thermal and compositional buoyancy by a Chebyshev
pseudospectral method and compared the results with previous solutions obtained by
finite element method.

2. Problem Formulation

The working fluid confined in a rectangular cavity with no-slip, impermeable walls is
assumed to be initially at rest. When temperature and concentration gradients are
imposed, body forces are produced under gravitational field and convective motion
may occur [11]. Provided that geometry and external constraints are such that all
quantities are functions of (t,x,y) only (Fig. 1) the double diffusive convection process
that occurs is completely described by a two-dimensional mathematical model
consisting of:

vorticity (Navier - Stokes) and streamfunction equations for flow,

%-FV'VQ)—PrAw:Pr [RaTgfz*RaS%} ; )
AY—w=0, @

energy equation for heat transfer,

El)

S TVve—as=0, ©)

and species equation for mass transfer,

OC vy L A
at+VVc eAc~0. (4)

L
The following scaling is adopted,

_T“Tg _ . __C—CL
0="AT , AT=Ty—T¢, c= AC

AC:CH—CL,
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where 8 is the temperature, ¢ is the species field, Ray, Ras are Rayleigh temperature
and solute numbers, Pr is Prandtl number, Le is Lewis number, a is the cell aspect ratio
(height/length), and velocity, V = ui + vj, vorticity, @, and streamfunction, v, verify
the following relations,

4o O¥. oY, _OvV_ou
V=ui+vj ayl % ©Tox oy (5b)

Streamfunction - vorticity formulation was preferred to eliminate the pressure from
momentum equation and to reduce the number of unknowns [10]. Further more, the
fluid is assumed to have constant properties and Boussinesq hypothesis is considered
valid. Boundary conditions,
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¥ (t,0,y) = ¢ (t,1,y) = ¢ (t,x,0) = ¢ (t,x,a) =0, (6a)

oy (L0.y) _ oy (tLy) oy (tx0) oy (txa) _, (6b)
on on on - on ’
_ o 90(t,x,0) . 96(tx,a) _

6 (tyoxy) - 1’ 6 (ty]-yy) _O’ an 70, an "07 (6C)
_ _ ., actx,00 . acltx,a)

C(t,O)y) _1) C(t,lyy) _0) an _0’ an _01 (6d)

and initial conditions,
u(0,x,y) :w:v(&x,y) = —@%L)ZO, (7a)
_ov(0xy) ou(0x,y)
6(0,x,y) =c(0,x,y) =0, (7c)

close the mathematical model.

3. Numerical Method

A qualitative analysis of egs. (1), (3) and (4) shows that-disregarding the r.h.s. of eq.
(1) which may be seen as a source term-all quantities, @, 8 and c obey the same type
of unsteady partial differential equation. Therefore, they may be solved by same
method, detailed next for the case of streamfunction-vorticity (flow) problem (1)-(2).
It is convenient to consider the r.h.s. of eq. (1) as a forcing term and note it, globally,
through
a6

f= Ra—ra

~Ras2S, ®)

A three-level finite difference approximation in time, in which the diffusive term is
treated implicitly and the convective term is evaluated explicitly, may be used to
discretize eq. (1) leading to a family of semi-implicit schemes,

n+1__ n__ — n-1
Ute)o™ —Zea’=(-e)&™"y (6 44, Ar+ (1-26,— 6,) A"~

Pr[6,Ae"'+ 02A@n+(1—91f¢92)Am"—1]:f"+“, 9)

and
A’Wnﬂ‘{‘&)nH:O. ‘ (10)
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Here the upper index, ()", indicates the time step sequence, At is the time step and A =
V-V is the convective term. These schemes are shown [7], [9] to be at least first
order accurate (in time), for an arbitrary choice of parameters ¢, «, 6, 6,, and second
order accurate when ’

e=2126,+6,—1) =2a. ’ (11)

We used e = 2, 6 = 2 and 6, = 0, that is Adam-Bashforth second order backward
Euler time marching scheme. In the case of Chebyshev approximation this scheme
proves to be actually unconditionally stable. Equations (9) and (10) may be put in a
compact form,
Awn+1_ an+1:F, .
(it D 12

with the boundary conditions,

{ ,er»l :gn+l

" iy OondD - (13)
on ’

9 D is the boundary of the domain D and

o= 1+e
26,PrAt

>0, (14)
is a constant coefficient in this two level constant time step method. At each time step
a linear, Stokes-type domain problem, (12), with Dirichlet and Neumann boundary
conditions, (13), has to be solved. As with all multi-level schemes, the first time step

is treated differently: we assume that @' = ” and A~' = A° so that the first solution
is produced at t = 2At/3 and the actual solution at At is obtained by linear
extrapolation.

When applying the finite difference time discretization discussed above to
approximate temperature (3) and species (4) equations, the same type of problem as for
vorticity [first eq. (12), Helmholtz type] are obtained. Therefore, the same numerical
scheme for solving the resulting, approximate, domain problems may be used. We
decided to solve Stokes problem (12)-(13) by Chebyshev collocation (pseudospectral)
method, as introduced by Ehrenstein and Peyret [7]. In the class of spectral methods,
the solution to the differential equation is seek in terms of a series of known, smooth
functions. One basic reason for choosing Chebyshev rather than another representation
(e.g. Fourier [12]) was motivated by the fact that the convergence properties of
Chebyshev series are not affected by the boundary conditions but only by the
smoothness of the unknown function (w, ¥, 8, ¢) and its derivatives throughout the
domain [9]. Consequently, Chebyshev expansion does not exhibit the Gibbs
phenomenon at the boundaries, but at interior discontinuities of the function (@, ¢, 6,
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c), provided they occur. In the double diffusive problem under investigation the
boundaries are likely to be more difficult to numerically approach rather than the
interior of the cavity, therefore our choice for Chebyshev representation.

Chebyshev collocation solver for Stokes problem

By a coordinates transformation,

£=2x—1, n:ZfT_a, (15)

the computational domain, D in fig. 1, (x,y) € [0,1] X [0,a] can be mapped on the
spectral computational domain, D, (£,¢) € [-1,1] X [-1,1], (fig. 2) usually used in the
4

2D Chebyshev collocation method. Here I'= U I, is the boundary of D. Since the case

i=1
when the cavity aspect ratio is not unity, a#1, implies only trivial modifications in the
coefficients that multiply »-derivatives, in what follows we assume that a = 1.
Dropping the time step index, Stokes problem (12)-(13) may be written as,

Aw—0cw=F, .

{A¢+w=0, inD (16)
¥=g
Y _y onT (17)
on

Continuity of g (18), compatibility of g and h (19) and compatibility of crossed

A4 A6 1f I‘1 ASAl
I‘\ N 1 51
D
-1 1 »E
Iy
I
Ly
A3zAg -1 T A7A,

Figure 2 Spectral computational domain, D
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derivatives of ¥ (20) are imposed on the boundary conditions to ensure that y and its
derivatives are defined on T, at the corners,

gl(l) :gz(l), gz(_l) :gs(l)y ga(_l) :84(*1), g4(1) :gl("l), (18)

h (1) =g’»(1), h,(1) =g, (1), —h; (1) =g, (—1), —h, (1) =g’ (—1),
h(—1)=g.Q), (-1 =g5(1), —hs(—=1) =g’,(—1), —h, (1) =g’s(—1), (19)

b, (1) =h, (1), b, (=1) = -0 (1), h;(1) =—h>(=1), hs (=1 =h", (—1). (20)

In Chebyshev representation, vorticity and streamfunction are written as products of
polynomials,

(onanr Prm) = () b (1) =, $aTa(E) D, T (1), (21)

n=0 m={

where ¢y, éu are constant coefficients (to be determined) and Ta(&), Tu(y) are
Chebyshev polynomials of order n, m respectively. Usually, Chebyshev polynomial T,
(&) is defined through,

T, (cosd) =cos nf, when &=cosé. ; (22)
In particular,

To (&) =1, T, (&) =&, T.(&) =28—1, T5(&) =45°—3&, (23)
The collocation points (&,7:), that constitute the discretization grid, defined through,

&=cos(kz/N), 0<k<N,
m=cos(lz/M), 0<1<M, (24)

are, typically, the abscissas of the Ty(&), Tu(#n) respectively, extrema. By using
recursion formulae [9], the derivatives that occur in Stokes problem may be expressed
through,

i%ﬁzz AP () d (8), (25)

where p is the order of the derivative and d  are known, grid-dependent quantities

[9]. Consequently, problem (16)-(17) assumes the following Chebyshev representation,
ACQ-)N M G'CDJN M - F’ .

’ ’ in D 26

{ A‘tb‘N,M—F&)N,M:O’ ( )
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%.M:gv .
{a@ . onI. (27)
on

When written at the collocation points (D, interior collocation points and I, boundary
collocation points), egs. (26) lead to an algebraic system of equations for the values of
the polynomials wwy and yau at the collocation points. It can be seen that the spectral
problem (26)-(27) berries the same difficulty w.r.t. the boundary conditions as the
original problem (16)-(17): two conditions for yny whereas none for wyy. Therefore, a
method to produce a boundary condition for wyy is needed. wyy and Yy are first
decomposed [7] in,

v = @y T ON M,

Ynm = 1~ﬁN,M + Y- (28)

so that problem (26)-(27) may be split into two problems,

Problem P,
Aéon — cinm=F, in D, ,
{ =0, on [ (29a)
{AJ,N,MMJN,M:(), in D, (29b)
;ﬁN,M =g, on I,
Problem P,,
Awny— oonn =0, in D,
A+ @ =0, in D,
XZN M— Oy (30)
{8@NM:h_a~@_¢M:E on Pc .
on on ’

Whereas P, is a well formulated problem for both quantities, @y and Y, the
difficulty pointed out for problem (16)-(17) is now ported to P,: there are two boundary
conditions for yYnu but none for @yy. Then P, is reformulated, by prescribing Dirichlet
boundary conditions, u, for @yy such that Neumann condition for ¥y is fulfilled,

Modified problem P,,
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Awyy — 0wy =0, in D,

{ Ny = M, on I';

{é%,M+C_¢7N,M:O, in D, 1)
Y =0, onI’.

%’M:h~m25 onT
on on ’ ¢

By boundary restrictions (19), the interpolating polynomial on the boundary, h,, that
approximates Neumann boundary condition in (31) has to satisfy,

hp (1) =0, he=hd r,, 1<i<4. (32)

Four more conditions are implied by (20). Therefore, h, is completely determined by its
values at only 2(N + M - 4) boundary collocation points IV, = I'. - {A,, A,, ..., Ag} ,
where,

A=(1Q1, A.=Q10-1D, As=(1-1D, A=(-1D,
A= (X1,1), A= (XN—Iyl); A= (le_l)a Ag= (XN—l,*l)- (33)

On the other hand, Dirichlet boundary condition, m, needs to be prescribed at only
2(N + M - 4) collocation points on the boundary (excluding the four corners and four
extra, arbitrary points) to ensure the uniqueness of @yy in D. [7]. By these two
arguments, one can match the spectral spaces of the boundary conditions, x and h,. It
should be pointed out that by this method the spectral spaces of wyy and ¥y have the
same size and that @y is uniquely defined only inside the domain. If the actual values
of @ on the boundary are needed, one has to use ¢ to compute them a posteriori, e.g.
AY = ~w.

All is needed now is a procedure to obtain m form h,. Since the modified problem
P, is linear, its solutions, @wy and Ynu, may be obtained by a superposition method:
point-wise Dirichlet boundary conditions, pi(%) = 1,1 <j < J = 2(N + M - 4),
€ T, are assumed at the boundary collocation points on I'’. and J individual Stokes
problems,

{Aco,-—dwj—_—o, in D¢
@; = P, ' on I';
4
{ij+wj:0, in DC (3 )
¥ =0, on I';

are then solved. The seek boundary condition, m, and solutions &yy, ¥y are uniquely
represented as linear combinations of these J unitary Dirichlet boundary conditions
and solutions to (34), respectively

M ] Pi
oy | = 2 A | o |- (35)
/e =t ¥
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A compatible algebraic system of ] equations is produced by applying Neumann
condition [last eq. (31)] not yet used,

MA=H, (36)
where M is the "influence matrix” and,

A= I:Al;"';A-J]Ty H= [EP (771),"',EP (m)]T,
M= [m,;], mi,j:%‘%j_(”i); 1<4,5<]. (37)

Thus, the unknown influence coefficients, 1;’s may by determined from (36) by the
direct method,

A=M"H, (38)

and further used to produce &yy and Y.

It is important to note that since all quantities in the J individual Stokes problems
(34) are time-independent, the influence matrix, M, itself is time-independent, therefore
it needs to be computed and inverted only once, at the beginning. However, the
elements of vector H are time-dependent and need to be computed at every time step.

Both problems P, and modified P, need a Helmholtz solver and, as it is used several
times at every time step, this has to be very efficient. Therefore, a direct (one step)
solver as suggested by [13], [14] and detailed next, was preferred.

Helmholtz solver
The general, non-homogeneous Helmholtz-Dirichlet problem may be written as,

{Au—o‘u:f, in D,
u=g, onT.

(39)
When a spectral method is used to solve it, the following matrix equation is obtained,
D 5(2) UN,M + UN,MD (yZ)T_ GUN,M — F, (40)
where, in the case of Chebyshev representation,
D@=[d® kD], 1<kI<N-1, (41a)

D@=[d@ kD], 1<kI<M-1, (41b)

F=[F(&,m) ], 1<k<N-1, I1<I<M-—1, (41c)
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F(&,m) =1 (&,n) —d @ (1,00 g, (&) —d @ (L,M) g5 (&) — (41d)
d I(V%)(k)o)gz (771) —d %\%)(k,M)gzt ( (771) .

The eigenvalues of D ® and D ¥ (Ax,1,...,Ax,n—1 and Ay,i,...,Ay,m-1) are real, distinct and
negative [14], therefore matrices (41a,b) are diagonalizable,

Sx_lD g(Z) sx:diag(lxvl,"'slxmfl) :Axv
Sy_lD (yZ) Sy:diag(/“.y,l,"',ly,M41) :Ay- (42)

Here S,, S, are the associated eigenvectors matrices. By pre-multiplying eq. (40) with
S ;! to perform a first diagonalization (in x-direction), and post-multiplying it by
(S7Y7, to perform a second diagonalization (in y-direction), a set of simple algebraic
equations of the form,

At Ay — o) i = F, I<k<N-—1, 1<I<M—1, (43)

that give {i., is produced. Here {i, are the entries of S ' Uym(S %)™ and F.. those of
S'F(S ;Y7 respectively. From u,, the solution uxm(&,7) is further obtained.

It should be pointed out that other approaches are also possible. For example, the
second diagonalization (in y-direction) may be replaced by directly solving the matrix
equation obtained after x-diagonalization, possibly with preconditioning [15], to
circumvent difficulties that might occur when D ? is ill-conditioned.

If Neumann rather than Dirichlet boundary condition is prescribed, representation
formulae of type (25) may be used to project it on the solution spectral space.
Another important aspect is that matrices D@ and D are time-independent.
Therefore, their eigen-spectra need to be solved only once, at the beginning.

Implementation

All elements needed to solve the unsteady double diffusive convection problem by
Chebyshev collocation method are now available and may be put in the form of the
following algorithm:

At the beginning:

construct the influence matrix, M, and invert it;

compute the eigenvalues Ay, A, and eigenvectors Sx, Sy of D and D {;
At each time step:

solve problem P, to obtain &wm and Yap;

construct H;

construct A;

use the fast Helmholtz solver to calculate (enm, Ynm) as solutions of two
(Helmholtz and Poisson) Dirichlet problems:
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Awny— ooy =F, in D,

wxm (75) = A nel’, 1<j<],

v =0, on I'.— TV,
{A%,M+wN,M=O, in D,

Wan =g, on I'..

use the fast Helmholtz solver to calculate 6y as solutions of,

{ Abyy— 09 bhn=Fs, in D,

a6NM:1,L9

on on I',

Bum = o, and/or

use the fast Helmholtz solver to calculate cyy as solutions of,

Acny — 6cCyyu =Fo, in D,
ocC
Cym =€, and/or ﬁMth on I'..

The convective terms in F, A=V-V®, F,;,, V-V and F., V-V are computed by matrix
products in physical space using formulae of type (25) for derivatives.

A Mathematica [16] implementation of this algorithm was preferred in the
development phase. Then, a double precision FORTRAN code implemented the
algorithm. Specialized IMSL mathematical library routines [17] for matrix inversion,
eigenvalues and eigenvectors (DEVCRG, DEPIRG, DLINRG) were used. We recall
that these are needed only once, at the beginning. Our coding technique proved to be
very efficient, ensuring a high vectorization level (>98%) [18] on the NEC SX-4
supercomputer of Yamaguchi University.

4. Results and Discussion

Previous numerical studies evidenced the existence of different double-diffusive
flow regimes, according to the values of parameters in the governing equations, for
instance steady or oscillatory solutions with possible hysteresis effects to initial
conditions. However, the primary purpose of our research was to asses the modeling
accuracy of Chebyshev pseudospectral method when applied to this category of flows
rather than to investigate the physics of these phenomena.

In a first set of computations we considered the case whena = 1, Pr = 1, Le = 2,
Rar = 10° and Ras = 10%, that was studied by Nishimura et al. [19] through a finite
element method. The fluid confined in a square enclosure is initially stagnant, with
neither temperature nor concentration gradients, and the vertical walls are kept at the
same uniform temperature, # = 0, and concentration, ¢ = 0. At time t = 0 the left wall
exhibits a abrupt change in temperature and concentration conditions, that are
suddenly raised at a higher level, § = 1 and ¢ = 1. We modeled the transient regime
towards the final steady state, eventually reached by the system and shown in Fig. 3
through streamfunction, temperature and concentration contours. Although the flow is
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TE[E

U

Figure 3 Steady state streamlines, temperature and concentration contours for
a=1Pr=1 Le = 2 Rar = Rag = 10°

Table 1. Comparison between the two numerical methods fora = 1, Pr = 1, Le = 2,
Ra, = Ras = 10°

Pseudospectral method Finite element method
(40 X 40 points) (26 X 26 points)
Ynin -10.68 -10.45
Yimax 0.102 0.13
Nu 3.01 3.09
Sh 3.82 3.85

dominated by thermal buoyancy forces, as indicated by the large central clockwise
rotating vortex in the core of the enclosure, the effects of compositional forces are
observed through two counter-clockwise rotating vortices at the high- and low
~concentration walls, in the upper and lower corners, respectively. Temperature and
concentration contour lines agree well with those obtained by the finite element
method, though not shown here. Table 1 compares some relevant results as produced
by the two numerical schemes: streamfunction extrema, ¥min and yYmax, which indicate
the strength of thermal and compositional vortices; average Nusselt, Nu, and
Sherwood, Sh, numbers along the hot wall. A small discrepancy may be noted for ¥max,
but the agreement is satisfactory for all other physical quantities. This may be
explained by the shift of yYm.x actual location w.r.t. the collocation mesh: while ¥in
occurs in the cavity center, where a mesh node exists, ¥max is not necessarily found at
collocation points where results are reported.

We considered next the case of an oscillatory flow when a = 2, Pr = 1, Le = 2,
Ra; = 10° and Ras = 10° studied by Nishimura et al. [6] with same initial and
boundary conditions as in the first case. Figure 4 shows the time variation of Y, and
Ymax , indicating a periodic oscillatory flow with a period 0.0494. The thermal vortex
strength is about five times larger than the compositional one and thereisa 90° phase
shift between them. Figure 5 displays streamfunction, temperature and concentration
contours at four moments during a period of oscillation, marked in Fig. 4. At time
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Figure 4 Streamfunction extrema for a period of oscillation in the case a = 2,
Pr = 1, Le = 2, Ra; = Rag = 10°
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Figure 5 Streamlines, temperature and concentration contours for

a=2Pr=1Le =2 Ra; = Rag = 10°
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a d

FEM: Finite element method
SM: Spectral method

Figure 6 Temperature and concentration contours: a comparison between FEM and SM
results for a = 2, Pr = 1, Le = 2, Ra, = Rags = 10°

Table 2. Comparison between the two numerical methods for a = 2, Pr = 1, Le = 2,
Ra: = Rag = 10°

Pseudospectral method Finite element method
(40 X 80 points) (31 X 41 points)
Period 0.0494 0.0497
Max Yimin -26.8 -26.7
Min Yinm -12.7 -12.9
Max Yimax 5.52 5.76
Min Yinax 0.333 0.351

moment (a) the thermal vortex reaches its minimum. Two regions of unstable and
stable stratification of concentration are located at the central part and in the upper
and lower regions of the enclosure, respectively. At time moment (b) the compositional
vortex attains its minimum. The unstable stratification zone in the core tends to
diminish with the growth of the thermal vortex. At time moment (c) the thermal vortex
is at its maximum and the region of stable stratification dominates the core,
contrasting with case (a). At time moment (d), when the compositional vortex reaches
its maximum, the stable stratification in the central part is seen to diminish with the
thermal vortex decrease. Thus, the global oscillatory flow evidences a periodic
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exchange between stable and unstable states in species stratification, due to
interactions between thermal and compositional vortices.

In Fig. 6 pseudospectral and finite element results are compared in terms of
concentration contours at time moments (a) and (d) (fine line for pseudospectral
solution and a notched line for finite element output). The good agreement confirms
the numerical accuracy of both methods. Some physical quantities computed by the
two methods and listed in Table 2 show that the finite element method (for 31x41
nodal points) provides accurate results.

Finally, we consider the transient double-diffusive process studied by Kamakura

2 T T T T [ T T T T I T T
1.6 |
A Finite element
solution
3 (37x37)
e o i
1 . 2 . \ 1
A i 1 1 1 | 1 I { ] | 1 1
0 1 2

Figure 7 Average Nu number time evolution in the case a = 1, Pr = 0.01, Le = 100,
Ra; = 105 Rag = 2Xx10*

HJ

Figure 8 Steady state streamlines, temperature and concentration contours for
a =1, Pr =0.01, Le = 100, Ra; = 105, Ras = 2x10*

C
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and Ozoe [20], with a = 1, Pr = 0.01, Le = 100, Ra; = 10%, Ras = 2X10* Figure 7
shows the dynamics of the process through the average Nusselt number. It is notable
that a fine meshing is needed to precisely represent the early stage and that finite
element solution (37 % 37 nodal points) is especially accurate in the late stage, towards
steady state. Figure 8 displays the steady state solutions. The flow in the cavity is
dominated by a thermal vortex and the concentration field in the core is seen more
uniform than temperature, which are typical for a high Lewis number double-diffusive
regime.

From the above results for steady and periodic, time-dependent double-diffusive
problems which were investigated, we conclude that in terms of accuracy Chebyshev
pseudospectral method is comparable with finite element method for steady states, but
superior for transient regimes and strong nonlinear effects.

5. Conclusions

This work was aimed at assessing the ability of Chebyshev pseudospectral method
to accurately represent the dynamics of complicated, strongly coupled convective
processes such as natural double-diffusive heat and mass transfer. Steady and
unsteady flow regimes previously analyzed through finite element methods were
solved by this technique and the results obtained are in good agreement with archived
ones, indicating that this method is a reliable modeling tool.

It contrasts with classical methods through its analytic origins: the solution is seek
in the spectral space, in terms of known, smooth functions, rather than low order basis
or grid functions.

In our experience, transient regimes and strong nonlinear effects are better
addressed through spectral techniques and, for same mesh sizes, they should produce
more accurate results than classical methods. Most notably, it is particularly efficient
in modeling boundary layer effects when Chebyshev polynomials representation is
used.

Their apparent limited application to simple geometries may be relieved through
mesh generation techniques commonly used with classical methods such as finite
differences. The two level, constant time step scheme we used is only one option, other
time marching schemes being possible as well.

An important feature is that the numerics involved by Chebyshev collocation
(pseudospectral) method reduces to matrix operations which, through efficient
programming techniques, may be implemented into very performant codes, especially
on vector machines.
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