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Abstract

An equation of virtual work for geometrical non-linear vibration of a column with thin
walled open cross-section, subjected to concentrated and distributed tangential follower loads,
is derived by introducing the concept of initial stress, and stability problems of columns with
channel section are investigated systematically and detailed by illustrating the space trajectories
of eigenvalues. The five-term approximation of the extended Galerkin method is used, and
the eigenfuctions of the flexural free vibration and the torsional one of a column are applied to
the fundamental function which satisfies only the geometrical boundary conditions.

Introduction

Nonconservative stability problems of columns with double symmetric cross
section, e.g., the stability of a clamped-free column subjected to a concentrated tan-
gential loads at the free end and simply supported-simply supported, clamped-simply
supported, and clamped-clamped columns subjected to uniformly and triangularly
distributed tangential loads, have been investigated by many authors [1, 2, 3]. These
researches have produced important results. Nonconservative problems of stability
of columns with a single symmetric cross section or an unsymmetrical one, which
involve bending and torsion coordinate coupling, are of great interest. Barsoum [4]
applies the finite element method to the stability problems of columns subjected to a
nonconservative load with thin walled open cross section and Mote and Matsumoto
[5] examine the coupled nonconservative stability of I-beam and channel by the finite
element method.

In this research, an equation of virtual work for geometrical non-linear vibration
of a column is derived by introducing the concept of initial stress [6], and stability
problems of columns with the channel section under the loading and boundary
conditions shown in Fig. 1 are investigated more systematically and detailed than the
work done by Mote and Matsumoto by obtaining the trajectories of eigenvalues.
Loads considered in this paper are concentrated and distributed tangential follower
compressive loads applied on the centroid of the cross section. The five-term ap-
proximation of the extended Galerkin method is used in the analysis, and the eigen-
functions of the flexural free vibration and the torsional one of a column are applied to
the fundamental function which satisfies only the geometric boundary conditions.
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Fig. 1. Elastic columns subjected to tangential compressive loads.

Equation of Virtual Work

Let us consider a structural member in static equilibrium state, e.g., in initially
stressed condition, in which the distributed external loads g3, 43, q,, m,, m,, m$ and
m,, act as shown in Fig. 2. The shearing forces Q%(z), Q%(z), an axial force Q2(z), the
bending moments MY(z), M9(z), a torsional moment M2(z), and a warping moment
MJ(z) are produced at an arbitrary section of the member in this state.
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Fig. 2. Structural member with thin walled open cross-section.

Next, let us consider the geometrical non-linear vibration of a member due to a
disturbance given to the static equilibrium state. It is assumed that the distributed
external loads are follower loads except for the external warping moment m,, with respect
to the centroid.

The shearing forces Q,(z), Q,(z), an axial force Q,(z), the bedning moments M (z),
M (z), a torsional moment M,(z), and a warping moments M (z) produced in a state
of vibration are added to them in the above mentioned static equilibrium state re-
spectively. The end forces Q.(0), Q,(0), Q,(0) and the moments M,(0), M,(0), M_(0),
M ,(0) at the end i and the end forces Q,(1), Q,(1), Q,(1) and the moments M (1), M(1),
M (1), M (1) at the end j of member ij in a state of vibration are also added to end forces
and moments in static equilibrium as shown in Fig. 2. Displacemehts of shear center
and cenoid at any section in a state of vibration are shown in Fig. 3.

An equation of virtual work is obtained due to the principle of virtual work and
D’Alembert’s principle as follows when the virtual displacements dug, dvg, dwg, 50,
dg> Ovg and dwg, which are kinematically admissible variations, are introduced at a
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Fig. 3. Displacements of member with thin walled open
cross-section.

certain time in a state of vibration.
(Virtual work of inertia forces)

. 1 " .
W= — So{m(iis + ysB)dug+ m(g— xsH)dvg + mivgdwe
+ pl i Sus + I, 55005 + (1l 0 + mygiis
— mxghs)00 + uls,0'60'}dz @)
with ()=0/ot, ()=0/0z, m=pA.
Ixx=S x2dA, Iyy=5 y2dA, Ii,=S wgdA,
A A A

and Iyg=1+1,,+ A(x}+ y3).

(Virtual work of internal forces) , _
Applying the nonlinear theory of elasticity, the virtual work of the internal forces
is evaluated as follow:

W= —SI19 — S;[Qg{ﬂx(9’50+ 060)+ 860}

+ 0500} + QS{ (050 +056") — 05uf — 0}

+ 02{(us + ys0") (Gugs+ ys60") + (vs — x50") (dvs

— x530")+ r3050"} + MO0 Sus + us30’ — 26,0'60")

— MO(0'80,+ 350" +28,0'60") + 2 M98, 0'50"

— M08, (0'50+050')]dz — S;(EAW'G(SW'G

+ EI 30ul+ EI o0} + EIS0"80" + GK0'60')dz )
with M30 =M%+ MIxs+Mys,

M20= —dMS%/dz, r3=(I+1,)/A,

ﬁ,,=—xs+<g xysz+S x3dA) o,
A A
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B,=—ys +<SA y3dA+ SAxZ ydA>/ 21,
Bo= <S x2wgdA + S yzcusdA)/ZIfo,
4 4

and K={ [{00sjox—(y ~ yo}2 + {00sfoy +(x— x9}?1dA.

and S8I1? is the virtual work produced by initial stresses and linear virtual strains.
The second term on the right side of Eq. (2) expresses the virtual work produced by
initial stresses and nonlinear virtual strains and the third term expresses the virtual work
produced by stresses due to the vibration and linear virtual strains.
(Virtual work of distributed external loads)

When shear center and centoid are rotated by (—vg, ug, 6) and (—uvg, ug, 6) re-
spectively with member deformation, the distributed follower loads become following
loads as shown in Fig. 4.

Fig. 4. Additional distributed loads by follow.

initial load follower load

©, 45, 0) — (=430, 4,5 —4q5vs)
(O’ 0’ qz) _ (qzu&’ qzv’G’ qz)

(mxn 03 O) - (mx’ mxg’ _mxub)
(0, my, 0) - (_mye, my, _myv,G)
(0’ 0: mg) - (mgu.'s’ mgv:ﬁ’ mg)

The virtual work of the distributed follower loads becomes
Wo=6M8, +{ [{—a50-+ a.(u5-+ 750 us + {m,0
+ mivs + xs(q3us + q5vs)}ous + {g30 + 4.(vs
— x50)}vs+{m,0 — mius + ys(q3us + q5vs)ovs
—(q3us + g505)0w6 + {ysq.(us + ys') — x5q.(vs
—x50") — m(ugs+ ys0) — m,(vs — x50)}00 + { — w,(xs,ys)
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x (qSus+ q3vs) —m,0xs+m 0ys}60'1dz 3

where 8119, is the virtual work done by the initial loads, i.e., the conservative parts of
the follower loads, and the second term on the right side of Eq. (3) is the virtual work
done by the nonconservative parts of the follower loads in which w,(xs, ys) is the value
of w, at the shear center and mS, is the external warping moment with respect to the shear
center.

mg, =mg,+mXs+m,ys.
(Virtual work of end forces and moments)
We= 06113, + {Q.(2)us+ Q,(2)0v5+ Q.(2)0wg
— M(2)00% + M (2)u§ + M.(2)80 + M5(2)56'} |} @

where 8113, is the virtual work done by end forces and moments in static equilibrium
state and M5(z) is a warping moment with respect to the shear center.

ME(z)=M,(z) + M (2)xs+ M (2)ys.
'Using Egs. (1), (2), (3) and (4), the equation for the virtual work of member ij
W+ Ws+ Wp+ We=0 5)
is obtained. Applying the equation for the virtual work in initial stress condition
—OI19 + 6113, + 6113, =0 6)

integrating by parts and carrying out simple calculation, Eq. (5) for the virtual work
is rewritten to

[\ 10— i+ y50)+ il i — BTt + (02w + v~ (M20)' = 50
+ qz(“s + ys0") — {m, 0+ m3vs + xs(qus + q5vs)} 1ous+ [ — m(ds— xs0)+ pl,,, 5%
— ELp§"™ +{Q%(vs — x50’ )}' — (MO0’ + ¢S50+ q.(vs—x50")— {m, 0 mSuj
T ys(qSus + gSuR)} 100 + { — mivg + EAWG — qSus — q50s}wg+ [ — (ul o0+ mysiis
— mxghs) + pIS" — EIS0") + GKO" — { — Q9(ysus — xsvs) — Q2rd0' — 2(M2B,
— MOB, + MS0B,)0'Y — MOuss — M2 +(Q2B+ Q%B,— M2°B,) 0+ ysq.(u§
+ y50') — X545 — x50") — m(us + ys6') — m(vs — x58") —{@(xs, ys)axuis
+qSv8) + (myys — myxs)0}160] dz + [ul i — ELu§" + Q%(us + ys0') — (M20")
—{m.0+mivs+ xs(qiu’sv+,¢1§v's)} — Q. 10uslb+(EI =M Wousle+ [ul,,s
— ELp§" + Qv — x58") — (M) — {m,0 — mJus + ys(q5us + q3vs)} — Q,16vsl6
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+(ELyvs+ M )ovg|h+(EAwg — Q,)0wg|h + IS8 — EIS0C") + GKO' + Q%(yguss
— Xgt+ 30" — MOu§ — MO0 + 2(MB, — MIB,+ MSOB)0' + (0B, +Q9B,

— M2°B,)0— {— w,(xs, ys)qSus+q50v5) +(mys — m,xs)0— M, 156/}
+(EIS0"— M5)60'|L=0 @)

with  ri=r3+x3+y}

Characteristic Equations of Columns with Channel Section, Subjected to Tan-
gential Follower Compressive Loads.

The terms ul i, pl . dig, pl, 5%, pl, b5, pIS0”, and uIS0’ in Eq. (7) are disregarded
and the effect of MS? and M%° is neglected in this research. Q0=09=M3=M%=0
hold true and Q2 only remains because only a concentrated or distributed load which
acts on to the centroid is considered.

Let us set up the characteristic equations for five cases as shown in Fig. 1. In
these problems, the initial stress Q9 is

Q%=—-P for case 0

and Q2= —qo{(I—2)*+e&(I*—z%)}/2l for the cases I, II, III, and IV. The boundary
condition are

Oug=0ug=~0vs=0v5=060=060'=0 at z=0,
Q.= — P +ys8), 0= —P(vs—x50"),
M,=M,=M,=M5=0 at z=1 for case 0,
and
o,= Qy=Mx=My=Mz=M§,=0 at the free end,
Ous=0vs=00=M,=M,=M3=0 at the simple supported end,
Oug=0ug=0v5=0v5=00=3560'=0 at the clamped end
for the cases I, II, III, and 1V.
In the analysis, ug, vg, 0, and z are replaced by
us=e*U(0), vs=eV()),
=er0(), z=(l ] ©

respectively, where 4 is a characteristic number and U({), ¥({), and ©(() are unknown
coordinated functions, and the extended Galerkin method is applied by expressing
U(©), V({), and ©({) with series :
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VD= 2 pus®, V0= £ o0a0),
. ©
o) = k§1 700 .

where p,, o} and 7, are expansion coefficients, ug (), vg () are kth eigenfunctions of
the flexural free vibration of an unloaded column, and 6,(¢) is a kth eigenfunction of
the torsional free vibration of the same column. Eigenfunction and frequency equation
are written in Tables 1 and 2. ‘

Rearranging Eq. (7) by substituting Egs. (8) and (9) into it and introducing the
notations

Npx=PP[El.;, N4=qoP|El,,,

¢,=ml2I*|EI,,, a=I,/I.., B=GKJEI,,

=I5[h1,,, Kk=Ips/AR?, Zs=xs/h,

Js=yslh, FE=r§/h?, Fi=(r3+x}+yd)/n?
and 1=1/h.

the following two system of equations are obtatined because 0py, 00, and Ot are
arbitrary:

1 N
S 0 kz=: 1{ {(Pittsi+ FsT:00) + puu§” + 1 p (Pt + Vs usd{ =0,

1 X (1) " =
go k‘gl{ ¢x(ohvs— xs‘fkek) +aoyUsy” + Np (0,05, — Xs07) }us;d =0,

L. : - - 04 " 10
So kzz:l{fx(’ﬂ'kek + Vsprttsy— X504 V) + 77,05 — BI21,0 (10)

N
— Mo VsPiligy + Xs0,05, — r310730,d( — ’1Px’_'(2)(k§17k9;c)9i| 1=0,
i=1,2,..., N, for case0,

1N
S > [ Prttse+ FsT8) + puly” + 'qu{(l —{)?

0 k=

+e(1 =2} (prugy + yti k)] ugs;d{=0,

g 2 lrgx(akvsk Xst0y) +aowsy” + é“ Ngt(1—=0)?

0 k=1

+8(1—0)2} (00— me;:)] vid( =0,
(11)

1N -
So ’Zdl l:fx(mkek + Pspistsk — Xsorv5) + y1,00" — B P06y
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+ Mg Ps(1— 0)?+e(1 — ()} prta’sy — NguXs{(1 = 0)?

+e(1 = {2)}oy vy — Ng:3{1 — (1 - e)C3 70k +% Mg ${(1—0)?

+e(1—§2)}1k0;§]9idl=0, i=1,2,..., N,

for cases I, II, III and 1V.

The determinant of these system of equations must be zero if the homogeneous systems
are to have the unique solution 1, o, and 7,. These conditions are formulated in
matrix form as follow:

|€xA +B+1p,Cl=0 (12)
and
|¢-A+B+n,D|=0 (13)

with A =mass matrix, B =stiffness matrix,
C =initial stress matrix under concentrated follower load,
and D =initial stress matrix under distributed follower load.

The structure of these marices is
[aiads [a2u), [asal
A= | [a4], [asal, [aeul (i, k=1, 2,..., N)
[a7ads [asuls [aoul

with  a;p=as3=0y a2p=0a4u=0,
!
A3 =A7;k=Ys nguSidCa

agn=asu=—5s| Ouvsl,

Aoy =k0y, and J;=Kronecker’s symbol.
[b1ads [b2ud, [bsad

B=| [byl, [bsul, [beul (i, k=1,2,..., N),
[b7ads  [bsud, [bould

biu=240y, bsyu=0r}dy,

b2ik= b3ik= b4ik= b6ik= b7ik = b8ik=0’

1 (1) 'lz 1 "
boy=y 09k 0,d{—pB OGszdC,
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Leinds [eands [eaud
C= | [equnds [esuds [cond (i, k=1, 2,..., N)
Lernds  [esuds [eoud

1
Clik=30“5ku5id€, Coik = Ca.=0,

s 1 s = 1 s
C3ik= Vs 09ku5id6, Coir= —Xgs ngUSidC,
= l n > 1 4
C7ik=ysgou5k6idC= Cgix= _xSXOUSkOidC,
=2 1 7" =20
Coi = "sgoekeidf— r§0:0:1,

( [duk]a [dZik]s [dsik] W
D= [d4ik]5 [dSik]a [dﬁik]
[d7ik:|’ [dSik]’ [dgik]

(i, k=1, 2,..., N),

din=% | 11=02+201 ~Eutus,
Ay =dan=0,

dsu=Js| {(1- 02 +e(1— ) Ofusid,

1 (! 2 ”
dsu=4 | (0= 02+ a1 - utiost,
o= s\ (1= 07 +o(1 ~ ())6fosdl,
drie= s (1= 0+ e(1 ()0,
dun= 55| {(1=02+a(1 =00l
L2 1= 041 — 00

dou="y 73| (1= 07 +2(1~(}0;0,4¢

-] 1-a-anei0,

Eqs. (12) and (13) are the characteristic equations.
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Eigenvalue Curves of Columns

Stability problems of following column with channel section, shown in Fig. 5, are
examined by obtaining trajectories of eigenvalues: (a) a column clamped at one end
and subjected to a concentrated tangential load (case 0) and (b) four typical columns
as shown in Fig. 1, subjected to uniformly, triangularly, and trapezoidally distributed
tangential loads (cases I, II, III, and IV).

(A column subjected to a concentrated tangential load...case 0)

Space eigenvalue curves of a column with f=b/h=0.75 are illustrated in Fig. 6,

where #p, is a nondimensional load and R,&, and I, are real and imaginary parts of

&.=A12/m[EI,, denoting the nondimensional eigenvalue. The curve AIE is an

t:/h=0.05
t/h=0.05
b/h=05.0.75.1.0.1.25,1.5
hl/l =0.05

Fig. 5. Channel section.

40

35

Fig. 6. Eigenvalue trajectories of a
column with channel section
(b/h =0.75), which is clamped
at one end and free at other
end and subjected to a con-
centrated load.
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eigenvalue curve for uncoupled flexural vibration with respect to the principal axis y
of the column section, of which #,,=20.061 at the top I corresponds to Beck’s solution
npx=20.05, and the other curves are the trajectories of the eigenvalue of the coupled
vibration of bending with respect to axies x and torsion about axis z.

When f, the ratio of b to h, is increased from 0.5 to 1.5, the behavior of the trajec-
tories of 1st, 2nd and 3rd eigenvalues of the coupled vibration, which corresponds to
curves BHGJ and CFD in Fig. 6, is shown in Fig. 7. Comparing the critical values
in Fig. 7 with the critical value of the uncoupled flexural vibration npy=20.05, which is
estimated under the assumption that bending and torsion are uncoupled, it is seen that
the critical value is lowered by coupling with torsion.

P
9.317__10 /
L“:m ~
1.731
71@ /
Moy Fig. 7. The change of behavior of eigenvalue
5 trajectories of a column of Case O for

change of ratio f=b/h.

2.057(£=0.75)
1.201(t=1.0)

0 5 lmg, 10

The critical value decreases as fincreases from 0.5 to 1.0 and from 1.25 to 1.5, but
it increases for f between 1.0 and 1.25, and there will be a jump in the critical value.

An unstable phenomenon of the flutter type occurs in the above region of f.
(Columns subjected to a uniformly distributed tangential load)

This problem corresponds to the case where ¢ is equal to 1.0 in the shape of loading
shown in Fig. 1. Space Eigenvalue curves of a column with f=0.75, which is clamped
at one end and free at the other, are illustrated in Fig. 8.

The curve AIE is the eigenvalue curve for uncoupled flexural vibration with respect
to the principal axis y, where the nondimensional load 7,,=40.083 at the top I cor-
responds to Leipholz’s solution #,,=40.05 [7], and the other curves are the trajectories
of eigenvalues for coupled vibration of bending and torsion. The change of behavior
of the eigenvalue curves for coupled vibration with increase of f is shown in Fig. 9.

It is seen that the behavior of the eigenvalue curves is different from that shown
in Fig. 7, but instability of the flutter type occurs for every value of the ratio f between
0.5 and 1.5 as shown in Fig. 7.

Eigenvalue curves of four typical columns with f=0.75, where case I shows a
column clamped at one end, case Il a column simply supported at both ends, case III a
column clamped at one end and simply supported at the other end, and case IV a column
clamped at both ends as show in Fig. 1, are shown in Fig. 10, where the curve groups
on left and right side respectively correspond to coupled vibration of bending with re-
spect to the axis x and torsion and uncoupled flexural vibration with respect to the axis
y. The curves and critical values for uncoupled vibration agree with the results [3, 7,
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90
T

)

50

Fig. 8. Eigenvalue trajectories of a
column with channel section (b/A
=0.75), which is subjected to
uniformly distributed tangential
load.

40 b

Y]

Fig. 9. The change of behavior of eigenvalue
trajectories of a column, subjected to
uniformly distributed tangential load,
when a ratio f=b/h varies.

Pl

5.401(f=0.75)
~3.466(f=1.0)

0 5 10 ImEy 15

8] investigated by many researchers up to date.

The eigenvalue curves for coupled vibration are similar to those for uncoupled
vibration, and instability of the divergence type occurs in the same way as for uncoupled
vibration except for case I.

(Columns subjected to triangulaly and trapezoidally distributed tangential loads)

The results of the investigation of the problems where ¢ is equal to 0.0, 0.5 and 1.5
are shown subsequently.

Space eigenvalue curves of a column with f=0.75, clamped at one end and sub-
jected to a triangularly distributed load, are illustrated in Fig. 11. The curve AIE is
an eigenvalue curve for the same uncoupled flexural vibration as the one in Fig. 8,
and the nondimensional load #,,=150.97 at the top I of the same curve corresponds to
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COUPLED VIBRATION

! I o K

I . 0.57

6.2,/ HLZE 500 E, 1000 13393/ 0 500 £,

Fig. 10. Eigenvalue curves of columns with channel section ( f=0.75),
which are subjected to uniformly distributed tangential load.

Fig. 11. Eigenvalue trajectories of a column
with channel section (b/A=0.75), which
is subjected to triangularly distributed
tangential load. .

Hauger’s soulution #,,=158.2 [3]. The other curves are eigenvalue curves for coupled
vibration of bending and torsion. Eigenvalue curves of coumns for the cases II, III,
and IV are shown in Fig. 12 together with those for case I in the same manner as in
Fig. 10.

The critical values for uncoupled vibration agree with the results [3, 8] calculated
up to date. Instability of the flutter type occurs for case I and instability of the di-
vergence type occurs for the other cases in either coupled or uncouped vibration.
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300 }

258.046 (I
™ 046 )
200} H

159.813
™~
137.695
124.2)
100.997
90.806
N.116
I
A1.427 .24
196.53
14.094 257.6

COUPLED VIBRATION

(D)

39
/ 200}
’ q

(m)

'y

150.967

12.362
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UNCOUPLED VIBRATION

0
0 \Nl102.63
61.207

500

0

Fig. 12. Eigenvalue curves of columns with channel section (b/2=0.75),
which are subjected to triangularly distributed tangential load.
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The change of behavior of the trajectories of 1st, 2nd, and 3rd eigenvalues for
coupled vibration of a column clamped at one end is shown in Figs. 13, 14, and 15 for
change of f from 0.5 to 1.5, where Fig. 13 corresponds to the shape of loading with
¢=0.0, that is triangularly distributed loading, and Figs. 14 and 15 correspond to the
shape of loading with £é=0.5 and 1.5 respectively, that is trapezoidally distributed
loading. Comparing with Figs. 13, 14, 9, and 15, it is seen that the behavior of the
eigenvalue cueves for coupled vibration is similar when & changes from 0.0 to 1.5, and

the critical values decrease as ¢ increases.
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Fig. 13. The change of behavior of eigenvalue
trajectories of a column, subjected to
triangularly distributed tangential load,

when a ratio f=b/h varies.
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Fig. 14. -The change of behavior of eigenvalue
trajectories of a column, subjected to
trapezoidally distributed tangential load
with ¢=0.5, when a ratio f=b/h varies.
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Fig. 15. The change of behavior of eigenvalue trajectories of
a column, subjected to trapezoidally distributed tangen-
tial load with ¢=1.5, when a ratio f=b/h varies.

Conclusion

The trajectories of the eigenvalues of columns with channel section, subjected to
concentrated and distributed tangential loads, have been obtained by applying the
five-term approximation of the extended Galerkin method, and their instabilities have
been investigated. The following facts have been confirmed as results; (1) coupled
vibration of column clamped at one end and subjected to a concentrated tangential
load and uniformly and trapezoidally distributed loads, where ¢ is equal to 0.5, 1.0, and
1.5 in the shape of loading, show only unstable phenomena of the flutter type as f in-
creases from 0.5 to 1.5. However, the same columns subjected to a triangulaly di-
stributed load show flutter for f between 0.75 and 1.5 and divergence for f=0.5, (2)
when a column with f=0.75 is subjected to unformly and triangularly distributed loads,
coupled and uncoupled vibrations cause flutter for case and divergence for the cases
II, III, and 1V, and (3) the critical load is lowered by coupling, as reported by Mote
and Matsumoto in their publication [5].
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