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Abstract

The simultaneous parameter identification and state estimation algorithm in the linear
discrete-time system described by the canonical form is developed in computational purpose.

The problem is formulated under the assumption that the system parameters are unknown
constants and the noise statistics are given a priori as well as the known order of the system.

The procedure requires the Kalman filter which is applied for state estimation and parame-
ter identification at each stage, and the smoother which is for state-smoothing. The smoothing
calculation is utilized to get the observation matrix with respect to parameter vector. Two
approaches where the parameter has fictitious noise inputs and nothing are shown.

The effective choice of fictitious noise has led the estimation better in the numerical example.

Introduction

In the past years a lot of different identification and parameter estimation methods
for dynamic systems have been described in the literatures!)-2),

For instance, the least squares, the maximum-likelihood method, the maximum a
posteriori probability method and stochastic approximation method are well known.

The most important algorithms among all the identification algorithms are the ones
that perform on-line by sequentially the parameter and state estimates from noisy
measurement.

This paper considers the simultaneous estimation of the parameter and state in
the linear discrete-time system described by the canonical form with single input-output
observation system. For the on-line estimation of the parameter and the state, the
augmented vector method using filtering technique is available in general, but the
problem of observability has to be considered strictly and the divergence has often
occurred.

The purpose of this paper is to represent the algorithm of identification of the
canonical form system by the use of the Kalman filter and smoother.

It is assumed that the order of the system and the additional measurement noise
statistics are known. The identification procedure is separated into two parts. The
first one is the state estimation where the estimate of the unknown parameter is utilized
instead of the true one. One the other hand, in the second part where the parameter
estimation is required, we use the estimated state of the first part as the state necessary
for calculation.
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Statement of the Problem

Consider the following system with canonical form,

Xi+1=FX,+GW, (D
Z,=hX;+V, 2)
where,
X nx1 state vector
Z scalar measurement
W scalar input signal
F nxn matrix
G nx1 matrix
h 1 xn matrix
V  scalar measurement noise.
Parameter matrices F, G and h are represented as follows,
s I
F= | 0! (€))
- Tay—day s —ay
~b,
G=| b | @)
L b,
h= [1 0 0] Q)

where, I indicates unit matrix.

The reason why we consider the Eq. (3) and Eq. (4) is that the total number of
unknown parameters reduces more markedly than in the case of the general dynamic
equation. In the case of canonical form expression, the number of the parameters that
we should estimate is 2n, while we have to estimate n? unknown parameters in the gener-
al system whose order is n.

It is assumed that the measurement noise is the gaussian noise whose mean is zero
and covariance is R.

The purpose of this paper is to obtain the estimates of unknown constant parame-
ters ay, ds,..., a, by, b,,..., b, on condition that the order of the system, n is known.

Computational Algorithm for Identification

The concatenated unknown parameter vector is defined as,
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P.=[—a,, —a,,..., —a,, by, b,,...., b,] (6)
Eq. (2) may be written as Eq. (7) substituting Eq. (1) into Eq. (2).
Z,=H,P,+V, @)
H, in Eq. (7) is a 1 X 2n matrix and described as,
H,=[X{-., U] )]
where,
Ue=[Wi-1, Wi—250e0s Wil )]

Eq. (7) may be considered to be the observation equation with respect to unknown
parameter vector P,. On the assumption that unknown parameters are time-invariant,
the transition equation associated with P, is able to be denoted as,

Pk+1=Pk (10)

If H, is known exactly, then the estimate of P, is obtained by the Kalman filter.
However, H, included unknown actual state X;, so we cannot apply the Kalman filter
for Eq. (7) directly. We employ H,, which is described as Eq. (11) instead of H,.

Hk/k= [Xk—n/ka Uk] (1 1)

In Eq. (11), )Zk_n/k is the smoothed value of X, _, at time k.
Then the observation equation is represented approximately as,
Zk=Hk/ka+ Vi , (12)

Since )A(k_,,,k and U, in ﬁk,k are all known at time k, the Kalman filter is able to

be applied in Eq. (10) and Eq. (12).
The identification algorithm is represented by the following recursive equations,

Py, 1/k+1=Pk/k+Kz+1(Zk+1_Hk+1/k+ 1Pk/k) (13)
Kiyi= S’i/kHL 1/k+1 (Hyt 4 /k+IS£/kHI{+ 1/k+1F R)™! (14)
S£+1/k+1= (I—K£+ lHk+1/k+ 1)S£/k (15)

where )A(kﬂ i+ 15 Sh+1/x+1 and K., represent respectively the filtered estimate,
the error covariance of the filtered estimate and the filter gain at time k+ 1 concerning
P. On the other hand, H; .+ is obtained from the following smoothing recursive

equation?),

Xine1 =X, +K3X 1 1541 = X4 175) (16)
K5=83,F;S%1,;7! (17)
S3/k=5%; +K3(SF+1/k+1 = S5+1,)K5T (18)

Xk+1/k+1=Xk+1/k+KJl€+1(Zk+1_hxk+1/k) (19)
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K%+ 1=Skr1xh"(WSF, h T+ R)7! (20)
Sit1/k+1=T—Kie h)SEL )k (21)
ik+1/k=Fik/k+GVVk (22)
Si+1k=FS{,FT (23)

The filtered estimate is utilized to obtain the smoothed values of the state in Eq.
(16)-Eq. (18).

When ﬁkﬂ k+1 s calculated, the values of parameters F and G are necessary.
However, their values have not known precisely, so we employ P, , which is the parame-
ter estimate at time before one sampling time.

The overall flow chart for identification is shown in Fig. (1).

l Estimating state X, from Katman filter ]

K=k+1 l sk | k=k+1 l
No
/k>ﬂ

Yes

l Smoothing state Xgp from smoother I

Ak/k=L%k-n/ksUk]

I Estimating parameter P from Kalman filtgf‘J

Pysx

No

Convergence

Fig. 1 The overall flow chart for identification.
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Fictitious Noise Input to Parameter

It is known in Ref. 5) that the parameter estimates described in the previous section
do not converge into the true values because the filter gain becomes increasingly small
as the time increases. This is as same as the estimation problem with modeling error®).
It is seen that in such a case, fictitious noise input, which is essentially cover model error,
can be effective. We take this approach for error compensation.

It is assumed that the unknown parameter is described as,

P =P+ (24)

where, &, is gaussian noise which is N(O, Q).
In this case, the parameter estimation algorithm is represented as follows instead
of Eq. (13)-Eq. (15).

i)k+1/k+1=i,k+1/k+K§c’+1(Zk+1_f{k+1/k+1§k+1/k) ; (25)
Ki o =Sh i s 1 s 14Sk+ 1 i 1 H R)7! (26)
S£+1/k+1=(I“K{+1Hk+1/k+1)si+1/k (27)
Prs1=Pup (28)

St+1x=SEx tQ (29)

The selection of the value of Q is rather difficult, but its effective value can be
determined by trial and error.

Numerical Example

The 3rd order system is considered as a numerical example.
The system is described as follows.

0 1 0 1
Xk+1= 0 0 1 Xk+ 0.2 Uk
-0.5 —0.8 —0.3 0.7

Z,=[1 0 0X.+V
We employ the following data.
Initial true state: X=[1 1 1]T
A priori state: X=[0.8 1.2 0.8]7
Error covariance of initial state: diag. [0.05 0.05 0.05]

True parameter: P=[-0.5 -08 -03 1.0 0.2 0.7]7
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A priori parameter: P=[-04 —0.6 —02 0.8 03 0.6]7
Error covariance of parameter: diag. [0.01 0.05 0.01 0.05 0.01 0.01]
Measurement noise: N(0, 1079)

Results and Discussion

The performance index for the comparison of results of estimation is defined as
normalized average error concerning all unknown parameters.

6 . .
Performance index = % > | PL/| Py
i=1

Pi is the error of the i-th element of P, at time k and Pi is the one of the initial
estimate P,.

The comparison of the performance index is shown according to different fictitious
noise inputs in Table 1.

The diagonal elements of the covariance Q in Table 1 have been selected from
0.0 to 1073 with step 10~ 1.

We may select 1074 as the proper value in this example from Table I. Of course,

this value should not be the optimal value for fictitious noise inputs, but it is near to the
optimal one in this simulation.

In Fig. 2-Fig. 7, the normalized errors of estimates of parameters which are de-
fined as,

& =|P|/|Py|

are shown.

The estimates of a;, a,, a; and b, are near to their true values respectively, but
the ones of b, and b3 do not approach their true values. The effects of fictitious noise
inputs are denoted by the dotted lines, but they are not very distinguished.

However, after all, if the value of Q is selected properly, the estimation is rather
better. Therefore the fictitious noise inputs are available for the correction of the esti-
mates of parameters. It is rather difficult to select the proper value of the covariance
of fictitious noise. The convenient method to select the covariance is to take the square
of 1 per cent value of unknown parameter.
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Table 1. Performance index versus covariance of fictitious noise Q.
N 10-1 10-2 103 10-* 10-3 0.0
4 0.558E+0 | 0.558E+0 | 0.5S8E+40 | 0.558E+0 | 0.558E-+0 | 0.558E-+0
6 0.122E+1 0.374E+0 0.374E+0 0.374E4-0 0.374E+0 0.374E+-0
8 0.354E+0 | 0.411E+0 | 0.288E+0 | 0.285E+0 | 0.285E--0 | 0.285E-+0
10 0.326E+0 | 0.294E4+0 | 0.246E-+0 | 0.222E-+0 | 0.225E4+0 | 0.226E--0
12 0.270E+0 | 0.143E+2 | 0.256E+0 | 0.201E4+0 | 0.199E-+0 | 0.199E-+0
14 0.285E+0 | 0.264E-+-0 | 0.254E+0 { 0.200E+0 | 0.203E--0 | 0.204E-+0
16 0.283E+0 0.219E+0 0.255E40 0.198E+0 0.202E+0 0.203E+0
18 0.243E-+0 | 0.223E+0 | 0.255E+0 | 0.196E+0 | 0.200E+0 | 0.201E-+0
20 0.424E+0 | 0.231E+0 | 0.255E+0 | 0.196E+0 | 0.200E+0 | 0.201E+0
25 0.387E+0 | 0.237E+0 | 0.255E+0 | 0.196E+0 | 0.200E+0 | 0.201E+40
30 0.111E+1 0.238E+0 0.255E+0 0.196E-+-0 0.200E+-0 0.201E+0
50 0.561E4+0 | 0.238E+0 | 0.255E+0 | 0.196E+0 | 0.200E+0 | 0.201E-+0
100 0.514E+0 | 0.238E+0 | 0.255E+0 | 0.196E+0 | 0.200E+0 | 0.201E-+0
500 0.513E-+0 | 0.238E--0 | 0.255E+40 | 0.196E--0 | 0.200E+0 | 0.201E-+0
1000 0.513E4+0 | 0.238E+0 | 0.255E+0 | 0.196E+0 | 0.200E+0 | 0.201E+-0
T 1.0 T 1.0
& 0.9 & 0.9
0.8 0.8 p
0.7 b Q=0 0.7 ¢+ Q=0
0.6 0.6 mmmm—ee Q=1074
0.5 | 0.5
0.4 } 0.4 b
0.3 0.3
0.2 b 0.2
0.1 F 0.1 F
0 { 0 . {
4 10 15 20 25 / 1000 4 10 15 2 /om0
STAGE ~——> STAGE =3

Fig. 2 Normalized error of a,.

Fig. 3 Normalized error of a,.
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Conclusion

A method of identification and state estimation in the linear discrete-time system
which has single input has been represented in the canonical form. The procedure
requires the Kalman filter which is applied to state estimation and parameter estimation
at each stage and the smoother for state.

The smoother is utilized to decide the observation matrix in the Kalman filter for
parameter identification.

If an a priori information is given, the estimates of the state and the parameter is
obtained alternatively. However, the assumption requires the knowledge of the order
of the system and the noise statistics.

We have shown two approaches with parameter additive noise and without it.
The concept of fictitious noise inputs has been originally employed in the area of state
estimation of the system which has model errors and has been able to be effective, in
especial, in preventing divergence. It is shown that it is useful for the identification
problem considered in this paper. The effective choice of fictitious noise inputs has
led rather better estimation in the numerical example.

References

1) Sage, A.P. and Melsa, J. L., “System Identification” (Academic Press, N. Y.) p. 38 (1971)

2) Saridis, G. N., Automatica, 10, 69 (1974)

3) Meditch, J. S., “Stochastic Optimal Linear Estimation and Control” (McGraw-Hill, N.
Y.) p. 226 (1969)

4) Jazwinski, A. H., “Stochastic Process and Filtering Theory”” (Academic Press, N. Y.)
p. 305 (1970)

5) Kawazoe, Y., “Identification of the System Described by Canonical Form by Use of
Kalman Filter” (The Meeting of IEEJ, in Japanese) No. 52223 (1974)



