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Abstract

In this paper, the concepts of Luenberger observer, which estimate the state of a continuous
linear plant on the basis of measurements of the outputs, were generalized for discrete linear
time-varying systems. The results obtained indicate that the minimal-order observer-estimator
is a special kind of the observer-estimator introduced in this paper.

1. Introduction

The problem of estimating the entire state vector of the system to be controlled,
is of fundamental importance, when designing feedback control systems. Thus, for
continuous linear time-invariant systems governed by

X=A4X+BU (1)

where, X is an (n, 1) state vector, U is an (r, 1) input vector, 4 is an (n, n) system
matrix, and B is an (n, r) distribution matrix. One might design a feedback law of the
form U(#) = U(X(?), t) which could be implemented if X(f) were available. If the en-
tire state vector cannot be measured, the control law deduced in the form U(X(?), f)
cannot be implemented. An approach which implements the control law in this situation
is the design of system that produces an approximation to the state vector. This
system is called an observer or Luenberger observer!). This observer reconstructes
the entire state vector through input measurement, output measurement and system
matrices A, H. In this paper, the concepts of observer are applied to the discrete linear
time varying systems. The results obtained unify the these extended by several re-
searchers?),

The structure of the paper is as follows. In section 2, we define some basic notions.
In section 3, we discuss the basic elements of observers for the discrete linear time-
varying systems. In section 4, we indicate that the minimal-order observer-estimator
is a special kind of the observer-estimator introduced in this paper. In section 5, we
indicate that this observer-estimator can predict the estimate of next stage.

2. Definitions

We shall consider the discrete linear time-varying systems described by the follow-
ing state and output equations, respectively,
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X(k+ 1) = A(k)X(k) + B(k)U(k) @)
Y(k) =H(k)X(k) (3

where, k=0, 1, 2, 3,..., X(k)e R", U(k)e R", Y(k) € R™, and H(k) is of rank M. The
notion of observer-estimator introduced earlier is now given a precise meaning in the
following definition.

definition; A g-dimensional discrete linear time-varying system

Z(k+1)=F(k)Z(k)+ C(k)Y(k)+ E(k)U(k) 4)

is called as an (p, q) state observer-estimator for the system of (2) and (3) if and only
if there exist an (n, (p+ m)) matrix W(k+1) and an (p, q) matrix T(k+1) satisfying

. T+ DZk+1)T]_
lim [X(k+1)—W(k+1)[ T ﬂ_o,, (5)

where, rank F(k)=gq, C(k) is an (g, m) matrix and E(k)=an(q, r) matrix. (p=n—m)

3. Observer-estimator for deterministic systems.

Initially, consider the problem of observing the linear function of X(k+1), S(k
+ DX(k+1).
lemma 1; The linear function of the state Z(k+1) of (4), T(k+1)Z(k+1) is an esti-
mate of S(k+ 1)X(k+1) if the following conditions hold (where rank S(k+1)=p)

condition a [[G(k)]]1<1 where [[G]]: norm of matrix G (6)
condition b S(k+ 1)A(k)—G(k)S(k)= T(k+ 1)C(k)H(k) @)
condition ¢ G(k)T(k)y=T(k+1)F(k) (8)
conditiond  S(k+1)B(k)=T(k+1)E(k) 9)

proof. Sufficiency is proved by noting that the error vector
e(k+1)=T(k+1)Z(k+1)— S(k+ 1)X(k+1) is governed by

T(k+ 1)Z(k+1)— S(k+ DX(k +1)

= T(k+ 1)F(k)Z(k)+ T(k+ 1)C(k)X (k) + T(k -+ 1)E(k)U(k)
— S(k+1)A(k)X(k) — S(k + 1)B(k)U(k)

= (T(k+1)C(k)H(k)— S(k+ 1) A(K)X(K) + T(k + 1) F(k)Z(k)
+(T(k+1)E(k)— S(k+ 1)B(k))U(k)

= G(k)T(k)Z(k) — G(k)S(k)X (k)

= G(k)T(k)Z(k)— S(k)X(k)) (10)
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from (10), finally
lim T(k+1)Z(k+1)=S(k+DX(k+1 if [[G(k)]1<1

k—w

Q.E.D.
We note that the result of lemma 1 can be easily extended to observing the state X(k+1)

of (2).
lemma 2; W(k+1) [T(k;(lk)i({c)-i_ 1')] is an estimate of the state X(k+1), if there

exist P(k+1) and V(k+1) such that T(k+1)Z(k+1) estimates S(k+1)X(k+1) and

W(k+1)[§{g§iB]:P(k+1)5(k+l)+V(k+1)H(k+])=I,, an

where, W(k+1) is the (n, (p+m))matrix [P(k+1), V(k+1)].
proof.

R Rt M R

Applying W(k+1) to both sides, we obtain

Wik+1) 3t 1) XCer =W+ 1)[T(k§(1,2f(lk)+ 1)]
— W(k+ 1,)[“‘32(")} (13)
X(k+1)=W(k+ 1)[T (k;{*(lk)f(lkf ”J— W(k+ 1)[6(’3:(")] (14)
X(k+1)— P(k + 1) T(k+ DZ(k+ 1) = V(k+1)Y(k+1)
= —W(k+ 1)[G(’8‘;(")] (15)

fim (X(k + 1) = P(k+ DT (k+ DZ(k+1) =V (k+ DY (k+ 1)

— —Tim W(k+ 1)[6 (’3‘*(")]

k-0
=0,(lim e(k)=0y) (16)

Q.E.D.

4. Minimal-order observer-estimator

An minimal-order observer-estimator is one in which the transformation T
relating the state of the (p, q) observer introduced in this paper to the state of the original
system is the identify transformation.

From the result of lemma 1,
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condition a S(k+1)A(k)— G(k)S(k)= C(k)H(k) a7)
condition b F(k)= G(k) (18)
condition ¢ S(k+1)B(k)=E(k) (19)

from equation (17) and (18), we obtain:
S(k+1)A(k)— F(k)S(k)=C(k)H(k) (20)
and
E(k)=S(k+1)B(k) (21)
Where, if we choose F(k)=S(k+ 1)A(k)P(k),
C(k)=S(k+1)A(k)V(k), we obtain:
S(k+1)A(k)— S(k+1)A(k)P(k)S(k)= S(k+ 1) A(k)V(k)H(k) (22)
S(k+DAKYP(k)S(k)+ V(K)H(k)~1,)=0, ., (23)
Here, from the equation (23), we obtain
P(k)S(k)+ V(k)H(k)=1, (24)
The equation (24) is fundamental for an minimal-order observer-estimator considered
by Tea and Athans. Then, from definition and lemma 1, we obtain (k=0, 1, 2...)
Z(k+1)—S(k+1)X(k+1)=F(k)Z(k)— S(k)X(k))
=S(k+1)A(k)P(k)(Z(k)— S(k)X(k)) (25)
and
X(k)=P(k)Z(K)+ V (k)Y (k) (26)

Where, P(k) and V(k) are determined partly by the equation (24) and the condition
[[S(k+1)A(k)P(k)]]<1. We can reconstruct X(k), by the equation (26).

S. Prediction of the estimate of next stage by an observer-estimator

An observer-estimator, which predict the estimate of next stage, is one in which
the transformation S(k+ 1) relating the state of (p, q) observer to the state of original
system is the identity transformation, (S(k+1)=1,).

condition a G(k)=A(k)— T(k+ 1)C(k)H (k) 27
condition b G(k)T(k)=T(k+1)F(k) (28)
condition ¢ B(k)=T(k+1)E(k) (29)

Where, if we choose F(k)=P(k+1)G(k)T(k),
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from the equation (28), we obtain:
T(k+1)P(k+1)=1I, (30)
and from lemma 1
X(k+1)—T(k+1)Z(k+ 1)= G(k)(X(k)— T(k)Z(k))
=(A(k) = T(k+ 1)C(YH(k))X (k)
— T(k)Z(k)) €29
and
X(k+1)=T(k+1)Z(k+1) (32)

Where, P(k+1), T(k+1) and C(k) are determined partly by the equation (30) and the
condition [[A(k)— T(k+1)C(k)H(k)]]<1. We can predict the estimate of next stage.

6. Conclusion

An observer-estimator is constructed to estimate the state of a linear discrete-time
plant on the basis of deterministic measurements. It is shown that the minimal-order
observer-estimator is a special kind of the observer-estimator in this paper.
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