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Abstract
The problem of solving the optimal control problem is discussed. It is well known that the
optimal control problem can be formulated as a nonlinear two-point boundary-value problem.
This paper discusses the algorithm for solving the two-point boundary-value problem. The
approach is converting the two-point boundary-value problem into the initial single-point problem
and applying the Newton method to improving assumed initial variables. The feature of the
algorithm is that the storage is little. A computational procedure is shown in the flow chart.

Introduction

The modern formulation of optimal control is by means of calculus of varia-
tionsV, dynamic programming? or maximum principle?.

Dynamic programming provides an elegant solution in the case of linear
systems with quadratic performance criteria of these approaches. In the general
case of nonlinear systems with nonquadratic performance criteria, some numeri-
cal computational techniques are required. The determination of optimal
controls is in general a most difficult task. ~An analitical solution can be applied
only in the most restricted cases.

Therefore, determination of optimal control must often be obtained with an
iterative procedure by the aid of a computer.

Optimal control problems can be formulated as nonlinear two-point bounda-
ry-value problems. These problems are generally difficult to handle both ana-
lytically and computationally.

The approaches of numerical solutions by gradient method are discussed
by Dyer, P. and McReynalds, S. R.¥ and successive sweep algorithm, the
Newton-Raphson algorithm is derived.

Bryson, A. E. and Ho, Y. C.® and Kelly, H.J. employed the steepest
descent methods using control variables as the independent variables in the
search procedure. Furthermore, the algorithm based on the generalized reduced
gradient algorithm of Abadie for nonlinear programming is proposed to solve
the optimal control problem numerically by Mehra, R. K. and Davis, R. E.7.

The purpose of this paper is to present a successive procedure for seeking
optimal control, which is converted into the nonlinear two-point boundary-
value problem. The approach is solving the initial single value problem which
is converted from the two-point boundary-value problem applying the Newton
method. The organization of this paper is as follows:
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The first section contains a statement of the problem and the second de-
velops the solution. The computational algorithm is described in the third
section. Furthermore, the expansion in the case where the initial state is un-
specified is considered.

Statement of the problem

The discrete-time optimal control problem is considered.
Let the state transition equation be

x(k+1) =f[x(k)]+Gu(k), k=0, 1,..., N—1, x(0) given ------ (1)

and the cost function be

:Tif'|X(N>ll?m+—§—~Z§:{le(k)|1%m+ a3} e @)

where £ is the discrete-time index: x is an n-vector, the state: w is an m-vector,
the control: G is an n X m matrix: @,, and L,, are nx n positive definite matrices:
L,, is an m X m positive definite matrix. Furthermore, f is #-dimensional vector-
valued function of the indicated variable, N is a positive integer and ||Z||} is the
quadratic form z'Bz. The problem is to find the sequence wu(k), where k=
0,1,..., N—1, that minimize J.

Solution

The first step in deriving the algorithm is to form an augmented perform-
ance index J* with a sct of Lagrange multiplier vector 2.

1 N=1
HX(N)HM+~2—k§){IIX(/OH%,# lu(®)lif,.}

+1:}_j: ¥+ DUTX(R) T+ Cuk) —x(k+ 1)} - 3

'The problem becomes one of minimizing J* subject to no constraints. It
is shown that the first variation of Eq. (3) is given by

AJ* =0 x(N)AX(N)+ 2 AL X (R) 4x(R) + L u(k) du(k)
P LT IAGk + 1) Ax(k) £ G'2Ck +1) du(k) — 2k +1) dxCh+ 1)}
=0, (N) = AN YJAx(N )+ L AT L)+ LR ACk + 1) = 2K (B)

+[ L u(k)+GA(k+1)]da(k)y 4)

One of the conditions of optimality is that the terms in Eq. (4) which de-
pend on 4x and 4u must vanish identically. :



Computational Algorithm of Optimal Control 335

Hence, the coefficient of 4x and 4u must be equated to zero. This leads
to the following conditions.

0, x(N)—A(N)=0 e )
L, x(k)+ 7 x(B) Ak +1)— (k) =0, k=0, 1,..., N—1 - (6)
Lyu(k)+GA(k+1)=0, k=0, 1,..., N—1 e (T)

The control input is shown to be
w(k)=—-L;}G'A(k+1), k=0,1,.., N=1  «eeees (8)

from Eq. (7). Substituting Eq. (8) into Eq. (1), the state-transition equation
is obtained as the function of 4.

x(k+1)=f[x(k)]—GL}G'A(k+1),k=0,1,..., N—1  -oerrer 9)
Eq. (9) is expressed in the form
x(k+1)=a[x(k), 2(k+1)], k=0, 1,..., N—1.  ---ooer (10)

On the other hand, if 7 £f[x(k)] is nonsingular for all £=0, 1,..., N—1,
from Eq. (6),

Ak +1) = {7 f[x(&) ]} [AE) + L. x(B) ], k=0, 1,..., N=1 ---(11)
Eq. (11) is expressed in the form,

A(k+1)=B[x(k), A(k)], k=0, 1,..., N—1 oo (12)
Noting the requirement in Eq. (5) that
AN)=0,_x(N) e (13)

it follows that nonlinear two-point boundary-value problem is specified by Eq.
(9), (11), (13) and the state initial condition x(0) given.

Computational procedure

The nonlinear two-point boundary-value problem under consideration is
rewritten as follows:

x(k+1)=al[x(k), A(k+1)] e (10)
Ak+1)=8[x(k), 2(k)] e (12)
x(0)=x,, given e (14)
AN)=0,.x(N) (13)

where k=0, 1,..., N—1 and & and B are the n-dimensional vector-valued
functions. In order to overcome the analytical difficulties associated with solv-
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ing this two-point boundary-value problem, the Newton method is examined.
Given x(0)=x, and assumed 2(0)=2,, for each iteration i=1, 2, 3,..., let
x¢(k) and 2i(k) be the solutions of

xi(k+D)=a[xi(k), ¥(k+1)] e (15)
Mk+D=Blxik), ¥R e (16)

If incremental changes of x/(k) and 27(k) are 4x‘(k) and 44i(k) respec-
tively, the new x(k) and A(k) for the next iteration may be represented by

Xk 1) =xi(k) + dxi(k) e (17)
DL 1) =2 (k) + AAik) e (18)

respectively. Then the variational equations for Eq. (15) and Eq. (16) are
obtained as follows:

Axi (k+1) =V ;a[ xi(k), Ai(k+1)14x' (k) + V7 a[ xi(k), Zi(k+1)] 42 (k+1)

AV (k+ 1) =P BIx k), 2(k)Jaxi(k)+ 7\ BLx/(k), A (k) JdAi (k) (20)

where, V,a, V,a, VB and F,B are nXn Jacobian matrices which are evalu-
ated at the indicated arguments, c.g.,

{7 a[xi(k), Ai(k-+1)]p Z[Mﬁ(g‘@—]ﬁﬁiﬁu ......... (21)
where, j, [=1, 2,..., n and the superscripts denote the element.

The values of the variables which are needed to evaluate these Jacobian
matrices are obtained from the solution of Eq. (15) and Eq. (16) for a given x,
and an assumed 4,. It is quite obvious that in general, the solution of Eq. (15)
and Eq. (16) for an arbitrary assumed 2, will not satisfy the boundary condition
Eq. (13). However, the variational equation can be utilized to compute the
correction of 2¢(0), so that, to within the first-order term, the solution of Eq. (15)
and Eq. (16) subject to the initial condition,

/{i+1(0):/1"(0)+dl"(0) ......... (22)

will satisfy Eq. (13).
For notational convenience, let the variational equations Eq. (19) and

Eq. (20) be written
Axi(k+1)=ai(k) dxi (k) + i (k) dAi(k+1)  «ooeeeeee (23)
A3k +1)=Bi(k)Ax (k) + Bi(k)dAi(k) e (24)

where,
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ai(k)=V e[ xi(k), Z(k+1)] e (25)
ai(k)="r a[xi(k), A(k+1)7] e (26)
Bi(k)=V Bxi(k), Ai(k)] e (27)
Bi(k) =P, Bx(k), (k)] e (28)

Eq. (23) and Eq. (24) are written with the matrix form as follows:

( Axi(k+1)1 {a;}(k) o (k) H Axi(k)]
| — e (29)

L 42i(k+1) | L Bik)  BiGk) JL 42(k)
Setting,
. L ai(k)  ai(k) }
oY=, (30)
R NIOREAOR
then, Eq. (29) is written,
[ Axi(k+1) L Axi(k) J
=0i(k) L (31)
42 (k+1) 42i(k)
From Eq. (31),
{ Ax(N) 1 { 4x(0) }
—@N) (32)
A2(N) 42:(0)
where, ®i(N) is obtained by the following recursive computation,
ik +1D)=0/(k)@ (k) e (33)

where, @¢ is the 2n X 2n matrix and @7(0) is setted unit matrix.
Partitioning matrix @¢(N) into submatrices by 7nXxn matrices as follows,

{ 6L, (N) = OL(V) }
OF(N) = oo i (34)
05, (N) + 03(N)
then, from Eq. (32), 42¢(N) is obtained.
AN = 0%, (N ) 4% (0) + B4 (N ) 42i(0)
......... (35)

=05,(IV)42:(0)

where 4xi(0) is zero because xi(0) is given. Under the assumption that
i,(N) is nonsingular, from Eq. (35), 42/(0) is obtained.

AHO) =[O (NI NN e (36)

From the new iteration of (),
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DY N)=2i(N )+ A2 (N) (37)
which must satisfy Eq. (13),
AN )=+ 1(N)— 2i(N)

......... (38)
=0, x'(N)—2(N)
Substituting Eq. (38) into Eq. (36),
A20) =[Oh(N) [0 X (N)=A(N)] oo (39)

In Eq. (39), x/(N) and 2*(N) is calculated by Eq. (15) and Eq. (16) for
k=0, 1,..., N—1 respectively. At the initial stage, 2¢*1(0) for each succeeding

iteration can be determined from the relation
AHO)=2(0) + 42F(0). e (40)

The computational procedure can now be summarized as follows:
Step 1. Guess initial value of 1(0).

Step 2. With given x(0) and A(0) assumed above, solve Eq. (15) and

Eq. (16).

Step 3. Concurrently with Step 2 evaluate the matrix @i(k) and use

Eq. (33), to determine @(N).

Step 4. Retain 04,(N) at the completion of Step 2 and Step 3, and

substitute this quantity into Eq. (39) to obtain 41/(0).
Step 5. Set,

AFI0)=20)+ 4A0) e (40)

and return to the Step 2.
Step 6. Repeat until convergence is obtained.
Above procedure is shown in Fig. 1 as the flow chart.

Extension to the case of unknown initial state

In the above section the case of given initial state is treated and in this sec-
tion we consider the case of unknown initial state. The problem is stated as

follows:

State transition equation: x(k+-1)=f[x(k)]+Gu(k), x(0) unspecified (41)

Cost function: Eq. (2).

Let %(0) be representative of the assumed value of x(0) unspecified at the
initial stage. Given %(0) and 2(0), for each iteration i=1, 2,..., let %i(k)

and Ai(k) satisfy the following relations respectively.
Xi(k+ D) =alXi(k), Zi(k+1)] e (42)
Ak+1)=B[Xik), k)] e (43)
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X,: specified
Ao: initiad guess

— Ai(k+l)
4= (fl' 5 S xt(h+1)
] - .V
AHo)= A (0)+aX(0) @')= .
<>
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@ (+1)= FRID )
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Fig. 1 Flow chart in the case of given state at initial stage.

Applied the expression 4x*(k) and 42‘(k) as the incremental changes of
%i(k) and Ai(k) respectively, the itrative relation of %(k) and (k) is written,

RIUE+1) =%Ik) + A%i(E) e (44)
DA D) =R+ AU e (45)

respectively. Then the variational equation is obtained in the matrix form.
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[ Axi(k+1) J [ ai(k) ai(k) }[ 4axi(k) }
) . e N ) - ) I B (46)
A2 (k+1) Bi(k)  Bi(k) || 42i(k)
In the similar fashion in the above section, the following relation is obtained.
AN T, 4%4(0)
_ =eiNy T (47)
42H(N) 421(0)
where, §i(N) is obtained by the relation,
Gi(k+1)=0i (k)6 (k) . (48)
L [e®) @ik k
Oi(k)=| S R (49)
Bik)  BiK) .
Then, assuming that the inverse of @i (N) exists,
4xi(0) . A%I(N)
‘ =[@(N)]! . L (50)
47:(0) | AV(N)

From the new iteration of %/*1(N) and 2i*1(N), incremental changes of
%(N) and A(N) are shown by the aid of the requirement of Eq. (13).

T 4%(N) } O 12(N) Xi(N) 1)
= — eeee(51
d4¥(N) | L 0.,%V) A(V)
Then substituting Eq. (51) into Eq. (50), incremental changes of x and 2
at the initial stage are shown to be, ’

ARO0) ]
[ }=[@"(N)]”1[

D1 (N)—%xI(N)
42(0) } :

0, X (N)—2(N)

The new iterations of % and A at the initial stage are repeated by the rela-

tions,
£+10) 7 [ %(0) 4%7(0)
B R -
2i+1(0) 2i(0) 4210) |.
The computational procedure can be summarized as follows:
Step 1. Guess initial values of 2(0) and x(0).
Step 2.  With above values, solve Eq. (42) and Eq. (43).
Step 3. Concurrently with Step 2 evaluate the matrix @i (k) and use Eq.
(48), to determine @i (N).
Step 4. Retain 6 (N) at the completion of Step 2 and Step 3, and substi-
tute this quantity into Eq. (52) to obtain Eq. (52).
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Step 5. Set Eq. (53) and return to Step 2.
Step 6. Repeat until convergence is obtained.
Above procedure is shown in Fig. 2.

o : initial guess
o : initial quess

y
#=0 ~N-1 >
_ v
FETR 3 )\‘(k“'l)
) T (R+1)
~0S READIRNAD) -
. &i'ﬂ(o} = )\i( 0) + i(@) i ®(i0)=][
A —><4=0 = N-1 D

o Fw
@ h+1)= BRI )

| $x TN =NEN)

4%‘(0)1:: F A . ~4 -i;:)\"(N)-J%‘(N)
[4)\"(0). -®( )]

uth)= - Luu GAGRH)

—

Fig. 2 Flow chart in the case of unspecified initial state.
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Discussion

An important feature of the present method is that it deals with the optimal
control problem with the certain cost function without the requiring solution of
dynamic programming and/or maximum principle. Lagrange multiplier meth-
od is employed to solve the minimization of the cost function subject to the state
constraints. The optimal control is obtained by the solution of the nonlinear
two-point boundary-value problem in Eq. (10), Eq. (12), Eq. (13) and Eq. (14).
The above problem is converted into an initial value problem. The another ap-
proaches converting the two-point boundary-value problem into an initial value
problem are invariant imbedding method? or sweep method, which lead to a
sequential computational algorithm for determining the optimal control. The
gradient method is the approach that is developed by considering the gradient
of the cost function straightforward with respect to the nominal control variable
sequence. The independent variable 2 is calculated recursively by solving Eq.
(15) and Eq. (16) for satisfying the terminal condition Eq. (13). The directions
of search are determined by the Newton method algorithm which is first-order
approximation. At the conclusion of this procedure, the initial value of the ad-
joint variable 1 is corrected by the final condition of the state variable and the
adjoint variables at the final stage.

'The method presented in this paper is relatively simple to apply in practice
because this method requires low storage.

In particular, the variables which are required for storing to initiate the next
iteration are only 2/"1(0) in the former section, and 2¢*1(0) and %?*}(0) in the
latter section, which are computed at the end of one iteration. Quasilineariza-
tion techniques®-?), require in general storage of entire time histories to proceed
from one iteration to the next. The Newton-type methods as presented in this
paper have the problem of a good initial estimate. In the case where an estimate
is not available it may be necessary to utilize a gradient method to obtain
a good initial estimate. The reasonable criterion to terminate the iterations is
designed |[|42(0)||<e where ¢ is a small positive number. In the latter case
where the initial state variable is unspecified, the choice of %(0) to initialize the
procedure is very important as well as the choice of 2(0) and in general dic-
tates whether or not the procedure converges. The iterative procedure has the
danger of converging on a local minimum of the cost function. This is related
with a good initial estimate. For example, the desired control in a given region
of state space is computed in the case of the air craft landing problem which gives
the approximate form of the known desired landing trajectory.1®

The author have demonstrated an iterative procedure for computing de-
terministic optimal control. The two-point boundary-value problem which is
generally difficult to handle both analytically and computationally is effectively
reduced to an initial value problem. The initial value problem is solved as the
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iterative alhorithm. The two cases of the specified and the unspecified initial

state are considered and the computational procedure is shown.
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