Practical Synthesis of N-Bromoamides with Benzyltrimethylammonium Tribromide in the Presence of Aqueous Disodium Hydrogenphosphate¹⁾

Shoji KAJIGASHI*, Katsuya MURAKAWA** and Shizuo FUJISAKI* (Received July 12, 1989)

Abstract

The reaction of aliphatic and aromatic amides with a calculated amount of benzyltrimeth-ylammonium tribromide in aqueous disodium hydrogenphosphate at room temperature gave N-bromoamides in good yields.

Introduction

N-bromination of amides 1 with bromine and alkali has been well investigated as the first step of Hofmann degradation.²⁾ However, the isolation of N-bromoamides 2 is not so easy because the subsequent reaction of 2 to amines should proceed more readily under the alkaline conditions. A few reports for the preparation of 2 by the use of special techniques^{3–5)} have been presented. We have also shown that 1 can be converted into 2 by the use of sodium bromite (NaBrO₂) in acetic acid⁶⁾.

During the course of our investigation on the synthetic utility of benzyltrimethylammonium tribromide (BTMA Br_3) as an oxidizing agent, we recently found that BTMA Br_3 in aqueous sodium hydroxide was a useful reagent for the Hofmann degradation⁷⁾ and N-bromination of 1 ⁸⁾. In this paper, we wish to report on a more practical synthetic procedure of 2 from 1 using BTMA Br_3 in aqueous disodium hydrogenphosphate (Na_2HPO_4) in stead of aqueous NaOH.

Results and Discussion

The reaction of 1 with a stoichiometric amount of BTMA Br_3 in aqueous Na_2HPO_4 at room temperature for several hours gave 2 in good yields. The results are summarized in Table 1. Our method can be applied to 1 of various types; aliphatic, aromatic, and heterocyclic amides.

$$R-CONH_2+PhCH_2(CH_3)_3N^+Br_3^-+Na_2HPO_4 \longrightarrow$$

$$1$$

$$R-CONHBr+PhCH_2(CH_3)_3N^+Br^-+NaH_2PO_4+NaBr+H_2O$$

$$2$$

^{*}Department of Industrial Chemistry

^{**}Graduate student, Department of Industrial Chemistry

Table 1 N-Bromoamides 2 from Amides 1 with BTMA Br₃/aq Na₂HPO₄

Run	Product 2	Yield ^{a)} _	Mp(°C)		Active bromine(%)	
			Found	Reported	Found	Calcd
a	CH ₃ (CH ₂) ₆ CONHBr	66	62-63	63-65 ⁶)	34.4	36.0
р	CH3(CH2)8CONHBr	83	72-74	74-76 ⁶)	30.3	31.9
С	CH ₃ (CH ₂) ₁₀ CONHBr	75	82-84	85-87 ⁶)	26.8	28.7
đ	CH3(CH2)12CONHBr	84	85-88	89-92 ⁶)	24.4	26.1
е	CH3(CH2)14CONHBr	75	96-99	93-96 ⁶)	22.6	23.9
f	CONHBr	55	124-127	129-131 ⁴)	39.0	39.9
g	Cl-CONHBr	98	168-170	170-174 ⁴)	33.2	34.1
h	C1 CONHBr	96	108-110	102-105 ⁴)	32.1	34.1
i	BrCONHBr	81	125-127	122-126 ⁴	27.9	28.6
į	° ₂ N-∕◯∕-CONHBr	95	198-203	198-2024)	30.2	32.6
k	O ₂ NCONHBr	78	170-172	173-176 ⁴)	31.2	32.6
1	CH ₃ -CONHBr	61	130-134	131-133 ⁴)	37.0	37.3
m	CH ₂ CONHBr	64	120-124	126-129 ⁶)	36.1	37.3
n	CONHBr	45	114-117	-	37.6	39.7
0	CONHBr	95	148-150	-	37.4	39.7

a) Yield of isolated product.

In the case of using aq $Na_2HPO_4(pH=9.5)$, the N-bromination of 1 with BTMA Br_3 proceeds smoothly at room temperature. Furthermore, the treatment of Na_2HPO_4 is more easy than that of NaOH because Na_2HPO_4 is stable and not hygroscopic. Thus, we noticed that the BTMA $Br_3-Na_2HPO_4$ system gave a more excellent procedure for the oxidation of 1 to 2 than the BTMA Br_3-NaOH system. The simplicity of the operation and the availabilitry of substrates should also make it synthetically useful.

As limitation of this method, attempts for the N-bromination of lower aliphatic amides such as acetamide or propionamide were unsuccessful because the desired products were soluble in water and decompose to amides and bromine. Furthermore, N-brominations of ortho-substituted benzamides were also unsuccessful.

Experimental

N-Bromo-p-nitrobenzamide (2 j); Typical Procedure: A finely powdered BTMA Br₃ (1.95g, 5 mmol) was added to a stirred mixture of p-nitrobenzamide (1 j) (0.83 g, 5 mmol) and Na₂HPO₄ 12H₂O (2.69g, 7.5 mmol) in water (20 ml), and the mixture was stirred for 4 h at room temperature. The obtained precipitate was filtered, washed with dichloromethane (5 ml), and dried in vacuo to give 2 j as colorless crystals; yield 1.17g (95%); mp 198-203°C (dec.) (lit,⁴⁾ mp 198-202°C). Active bromine measurement: Found; Br, 30.2%. Calcd for $C_7H_5N_2O_3Br$; Br, 32.6%.

References

- 1) Oxidation using quaternary ammonium polyhalides VI.
- 2) E. S. Wallis and J. F. Lane, "Organic Reactions," ed R. Adams, John Wiley & Sons, Inc., New York, 1946, vol., 3, p. 267.
- 3) E. P. Oliveto and C. Gerold, Org. Synth., Coll. Vol. IV, 104 (1963).
- 4) C. R. Hauser and W. B. Renfrow, Jr., J. Am. Chem. Soc., 59, 121 (1937).
- 5) T. D. Waugh and R. C. Waugh, U. S. Pat. 61/2971959, Chem. Abstr., 55, 14483 (1961).
- 6) S. Kajigaeshi, T. Nakagawa, and S. Fujisaki, Chem, Lett., 1984, 2045.
- 7) S. Kajigaeshi, K. Asano, S. Fujisaki, T. Kakinami, and T. Okamoto, Chem. Lett., 1989, 463.
- 8) S. Kajigaeshi, K. Murakawa, K. Asano, S. Fujisaki, and T. Kakinami, J. Chem. Soc., Perkin Trans.1, 1989, 1702.