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Abstract

Basic equations and boundary conditions in which the effect of initial torsional moment
M? is included for analysis of dynamic elastic stability of thin walled structural members are
derived by applying the linearized finite displacement theory in continuum mechanics and using
the principle of virtual work and D’Alembert principle.

1. Introduction

Many studies on stability problems of the structural members subjected to follower
forces, i.e., nonconservative forces have been carried out since H. Ziegler [1] first
presented and discussed his issue generally. The stability problems of thin walled
members have also been studied by several researchers including R. S. Barsoum [2]
among them.

Basic equations and boundary conditions for elastic stability of thin walled members
subjected to unidirectional forces have been reported [3] to data by applying the line-
arized finite displacement theory and the finite displacement theory in which the
infinitesimal terms of high order were considered. Basic equations and boundary
conditions of thin walled members subjected to follower forces is also necessary for
solving the nonconservative probelms of elastic stability. It is well known that the
elastic stability analysis of nonconservative systems should be kinematically examined.
In this paper, basic equations and boundary conditions for dynamic elastic stability of
thin walled member subjected to general follower loads are presented by using the princi-
ple of virtual work, D’Alembert’s principle and linearized finite displacement theory.
It is assumed in deriving the equations that: the thickness of the plate composing the
member is small compared with any characteristic dimensions of the cross section;
the cross sectional dimensions are small compared with the length of the member; the
shearing deformations of the middle surface, i.e., the surface which is lying midway
through the plate composing the member vanish; and the cross section of the thin walled
member is underformalble.

2. Stable Vibrating State with Infinitesmal Amplitude

Let’s suppose a member which is vibrating with infinitesimal amplitude is sub-
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Jected to distributed follower forces q,, q, and q,, follower moments m,_, m, and m,,
warping moment m,,, end forces of member Q2;, 09;, 0%;, Q2 7» Q% and QY;, and end
moments of member MY, M9;, M2;, MS;, MY;, MY, M?; and MY;.

In the cross section of thin walled member, let the shear center and the geometrical
center be denoted by S and G respectively, let the origin of the right-handed rectangular
coordinates (x, y, z) be at the geometrical center G of the end of member i as shown in
Figure 1. The rectangular co-ordinates x and y coincided with the principal axes of

cross section and z is the longitudinal axis through the geometrical center G.

Figure 1 ~Structural member with thin walled open cross section in initial
loading condition.

If displacements of the shear center in the direction of axes x, y and z are denoted
by ug, v and w§ respectively; displacements of the geometrical center by u2, v and
wg respectively; and rotation about the axis z by 6°, as shown in Figure 2, then dis-
placements of arbitrary point P(x, y, z) in the cross section become

Figure 2 Displacements of member with thin walled open cross section in initial loading condition.
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Uo(xs Y, 2, t) = ug(zs t) —(y - yS)GO(Z’ t)
Ve(x, y, z, )=vz, )+ (x—x5)0°(z, t)
Weo(x, v, z, )=w2(z, ) —xud — yvd + ©,s0%, 2.1

in which @,s=w,—xys+ xsy and (')=0/0z. Here, w,s and w, are the normalized warp-
ing functions with respect to the shear center and the geometrical center, respectively.
In this state, the strains of point P are

82 — WOG, _xugn _ yvg// + wnseon,
o/ aa)nS

75: =0 {77“‘1‘ (x—xs)} )

0 _ Ao/ aa)nS
Yzx= 0 T— (y _yS) ’ (2'2)

x
and the stresses are

09=09=19,=0, o?=Eg),

19:=G1., 19 =G72x @23)

3. Equation of Virtual Work in Unstable Vibrating Stable with Finite Amplitude

Let a unstable vibrating state with finite amplitude occur when the parameter with
respect to the external forces change infinitesimally in the stable vibrating state with
infinitesimal amplitude. In this state displacements of the sum of infinitesimal dis-

Figure 3 Structural member with thin walled open cross section in vibrating
state with finite amplitude.
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placements in stable vibration and finite displacements in unstable vibration are
produced and the loading condition become as shown in Figure 3, in which the forces
Oui» Qyis Cui Oxj» Qy; and @, and the moments M, M, M, M, M, ;, M,;, M,; and

M,,; are the end forces and moments of the member caused by finite disyrjjlacement,
respectively.

If the additional finite displacements of the shear center are denoted by ug, vg and
ws and rotation by 6, diaplacements of arbitrary point P(x, y, z) in the cross section
become

U(x’ Y, Z, t)=uS(Z’ t)_(y_ys)e(za t)
V (%, ¥, 2, D=5z, )+(x—x5)0(z, 1)
W(x’ Y, Z, t)=wG(Z’ t)"x“fs“yv.'s’*‘wnsg’- (3'1)

Strains due to additional displacements (3.1) can be written as
_0U [ 1 {foUN* [ [V N?> , [OW\?
8x“5;+7{ %) +<6;) + a—x> }
oV | 1 {fOUN? |, [OV\? , [OW\?
o =%+ 1iay) +(& ) (&)}

_OW 1 ([fOUN , [0V \E , [OW\?
& =5, 7{<79?) +(E) + W) }

_ﬂ+il£>+<ﬂ£ﬂ oV oV  OW oW

T =\Gx T 3y ox Oy " ox 0y " ox day )
_<51+£K>+<?E5l oV oV oW oW

Vyz= oy = 0z oy 0z Oy 0z Oy 0z )’
(U [ 0W\,[(0U 8U , 0V oV oW oW

V(G ) ot et o). (.2)

where ¢&,=¢,=7,,=0 because cross section of the member is rigid. When linear
strains are expressed by £, 7,, and ¥,, and non-linear terms with respect to dW/oz in
equation (3.2) are neglected, the starins ¢,, y,, and y,, are:

& =&+ {us—(y—ys)0'}? + {vs + (x — x5)0'}21,

N |

v_vz=')_)yz_0{u.,5'_(y_yS)01} 5
Vzx =')—)zx + G{Ug‘ +(x - xS)HI} ’ (33)

and the stresses are

0,= Esz’ 17yz = G?yz, Tox™= Gyzx' (34)
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When virtual displacements dug, dvs, dwg, dug, dvg, dwg and 60, which are kinematically
admissible variations, are introduced at a certain time in a state of vibration with finite
amplitude, an equation of virtual work is obtained by using the principle of virtual
work and D’Alembert’s principle as

S (ST, + 811, — 51, — SITE)d1 =0, (3.5)
T

in which 811,,, 81, 6I1, and SITE are the virtual works done by inertia forces, internal
forces, external distributed loads and external end forces and moments, respectively,
in unit time at a certain time t. These virtual works are evaluated as following.

(Virtual work of inertia forces)
Virtual work of inertia forces, 811;,, becomes

T,y = 3113, | {mis+ y5D)dus +m(3s—x0)

X Ovg+ mwgowg + il diséug + pul 5005
+(qu59'+mysiis—mxsi)'s)50+u1(so(§'50’}dz, (3.6)

in which 8179, denotes the virtual work of inertia forces in the state of vibration with
infinitesimal amplitude and can be written as

SII9, = — S (M + ys0°)5us + m(#3— x0°)3vs

+ Qg + pl i1 Suls + 5y v + (ul ,56°

+ mygiid— mxsi2)00 + uIS6°'50' }dz, (3.7)
m =”SS dxdy=pA, Ixx:gg x%dxdy, IW:SS y*dxdy,
A A
15=({ ondxdy, Is=Iatl,+AG3+39). (339)
A

Here p is the mass per unit volume and (*)=0/0t.

(Virtual work of internal forces)
Virtual work of internal forces, o11;,, becomes

1 )
57, =, {| (0%, +13.00,.+0.0p.)dxdydz

+{ 1) @80, 45,80,. + e, 8n.0dxdydz, (39)
0

where

8e,= 8%, + Lol {us — (= y)0' 2+ o+ (x—x9)0'}21,
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Yy, =07,, —0[0{us —(y — y5)0'}1,
072x= 0725+ 0[0{vs +(x — x5)0'}]. ‘ (3.10)

The first term on the right hand side of the equation (3.9) is rearranged as

SSS (0%0e,+19,0y,, + 12,0y, )dxdydz =SI1?,

+. [ 5 0.2 03(us + 95802+ 05— 802 +730'2)

— Mz, H)o(ugh’ — p,0'2)— M(z, 1)6(vs0’ + B,.0'%)

+2MSY(z, t)ﬁwB’éﬂ’] dz+ S; [[Qg(z, 1)5(v6 + B,06")

+0%z, N3(—us0+ B,00) — M2z, t)ﬁwa(eo')]dz, G.11)

in which SITY; denotes the virtual work of internal forces in the state of vibration with
infinitesimal amplitude and can be written as

SII9, = S' SS (0268, + 79,67, + 12,07, )dxdydz. (3.12)
0)J)4 ‘
Here
0%z 0={{ <%.axdy, 03z, 0={{ 5.dxdy,
A A
0%z, 1) =Eawg = || o%dxdy,
A
MYz, )= —EI v} = SSA a%ydxdy,

MY(z, )=EI, ud" = — SS o%xdxdy,
A

S0
ME(z, t)=EI£,0°"=SS o%w,dxdy, Moz, f)= '—ajgz“’ ,
4
, 1 L Ly20+ 300
ro _A(Ixx+1yy): Bx_ xS+ ZIxx s
Iyzo+ 110 Iozq + Ioy
= +— ’ 17 -
By § 21, P 215
I’"‘"=SS xtymwrsdxdy. (3.13)
A

The second term on the right hand side of the equation (3.9) is virtual work produced
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by nonlinear internal forces and virtual strains. In this paper, however, it is linearized
and approximated as

SSS (6,58, +7,,67,+ T, 00 )dxdydz = g: (EAWLow,

+ EI, usdus+ EI, vsévs + EI 56"60" + GK0'60')dz, (3.14)
where

2

K ={ %98+ mxg +{ T (-0} (3.15)

The virtual work produced by initial torsional moment M? being not included in the
above virtual work 81T, the following virtual work [4] is added,

S' MO(z, 1)(Sulivs —usdv)dz. (3.16)
0

Thus, substituting equations (3.11) and (3.14) into equation (3.9) and adding equation
(3.16) to equation (3.9) yield the total virtual work of internal forces

1
51T, =6m10s-+ [ 0%z, D{(us+ 50 (Gus-+y5560")
+ (v — x50") (dvs — x560") +r30'60'} — Mz, 1) (dusb’
U0 —2B,0'50") — Mz, 1) (550’ + 0556’ +25,0'60"
+2M3%(z, 1)fwd'80 +Q%z, 1) (B30 -0 + 050’ +6v50

+0500)+ Q%(z, £)(B,50 - 0" + B,0 - 60’ — Su'sh — us56)

— M29(z, £)B (300 +050") + M(z, 1) (Sujvs

1
— ugovg ]dz + So (EAwgzowg + EI  usduy

+EI w3605+ EIS0"50" + GK0'80')dz. (3.17)

(Virtual work of distributed external loads)

Consider now the external forces q,, ¢, and ¢,, and moments m,, m, and m,, which
act on the point P(e,, e,, z) as shown in figure 1, and warping moment m,,. It is
assumed that the direction of vector of the external forces and moments except a warping
moment m, change with rotational angle of the acting point, i.e., the external forces
and moments are follower loads.

Displacements u,, v, and w,, and rotational angles 0., 0,, and 0,, at the point P,
are written as
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U, =us—(e,—ys)b, v,=vs+(e;—xs)0,

We =Wg—eis—es+ 0,5, @,s.=w,—e,ys+eXs,
Ore=—ve=—{v5+(e,—x5)0'},

Oye=u;,={us—(e,—y5)0'}, 0,.=0. (3.18)

When the point P, is rotated at the angle 0,,, ,, and 0,,, initial external forces change
as follows,

(4 0, 0) — (45, 9.0, —q,ul),

©, 4,, 0) — (—q,9, q,, —q,vL),

©, 0, 9.) — (q.u. q.v. q.),

(my, 0, 0) — (m,, m,0, —m,u;),

©, my, 0) — (=m0 m, —my,),

©, 0, m,) — (m,u, m,v, m,). (3.19)

Thus, virtual work of the distributed loads, 61T, becomes

8T, =M+ | {~a,0+a.(us — 7)) 6u,+ [e {4, (us — 70)
+q,(vs+X0')} + {m, 0+ m (vs+ x0")} 1ous
{40+ .05+ 700} 60,7+ [e, (a5 — 50+ 4,05+ 56}
+{my0— m (a5~ 50} 1605~ {q.(us — 70)+ 4,005 + 50)}owg
10,0~ 4.045 = FO)T+ {0+ .05 + 0N T~ {m, (s~ 30
1,05+ 70100+ [~ 045,45 — 76+ 4,005 + 50}

+{m,0—m_(us— 76')}% — {m.0+m_ (v, +X0')} y]cse']dz, (3.20)

with X=e,—x5 and y=e,—ys, in which 6119 denotes virtual work done by the dis-
tributed loads in the state of vibration with infinitesimal amplitude and can be written as

SI9= S’ (4Bt + 4,00, + 4,0m, +m,00,,+m 30, +m,00,,+m 00, )dz.  (3.21)
(0]

(Virtual work of end forces and moments of member)

Virtual work produced by the end forces and moments shown in Figure 3, SIIE,
becomes

OI1% = — (0% + 0Q,:)ous(0, )+(Q3; + Q. ;)dus(l, 1)
—(09: +0,)0v5(0, O)+(Q3; +0Q,)dvs(l, 1) +(MS,
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+ M ,)ov5(0, 1) —(MS; + M, )ovg(l, ) —(M3;+M,,;)

x 8ug(0, )+ (MS; + M, )oug(l, 1)—(Q2;+Q.:)ows(0, 1)

+(Q2; +0,)0we(l, 1) —(M2; +M,)36(0, 1) +(M2;+ M. ;)

x 86(1, 1) —(M2; + M ,)d6'(0, )+ (MY ; + M, )é0'(l, 1) (3.22)

with dug(z, £)="0dus(z, )+ ys60(z, t) and dv4(z, t)=0vs(z, ) —x560(z, t). The end forces
and moments being expressed as

0.=0,0,0, 0,;=0.01, 0,=0,0,0, 0,;=0,1 1,
0..=0.0,0, 0,;=0.( 1, Mu=MJ0,0, M,;=MJ,1),
M,=M)0, 1), M,;=M/, 1), M,;=M)0,1), M, ;=M(,1),
M,;=M,0,1), M,;=Myl 1), (3.23)
SITE =GITE® 4 {Q (2, D)us(z, 1)+ Q,(z, )dvs(z, t)— M, (z, 1)dvy(z, 1)
+M(z, ous(z, 1) +Q.(z, )ows(z, 1)+ M. (z, )50(z, 1)
+MS3(z, )00'(z, )}, 3.24)

in which SITE° denotes virtual work done by end forces and moments in initial vibrating
state and can be written as

SITEC = {Q%z, t)dug(z, 1) +QY(z, H)dvs(z, 1) —M3(z, 1)ovs(z, )+ M3(z, 1)
x dul(z, )+ 0%z, Ndwe(z, )+ MUz, 1)66(z, 1)+ M3z, 1)60'(z, )}b.  (3.25)
Here M30= M9+ xsM%+ ysMS, M5, =M, +xsM,+ysM, (3.26)
and |} denotes the boundary value.

Since equation (3.5) must hold identically for any interval of time T, substitution of
equations (3.6), (3.17), (3.20) and (3.24) in equation (3.5) and rearrangement of these
equations in accordance with equation of virtual work in initial vibrating state

S (SIT9, + ST1%,— 510 — SITE®)dt =0, (3.27)
T
results in
1 " .
SO {mliig+ ys0)ous+ m(is— x50)0vs+ mwgowg
+ uldisOu's + ul,, 55605 + (Ul ,s0 + mysiis
. l
— mxgP5)50 + ;ug,éfae'}derg (EAW, 5w
0

+ EI uouls+ EIv}0v + EIS0"80" + GK0'60')dz
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+. [ {osus+y50) - 20 - 030k ou
+ M2ou-+ {0005 — x50 — M30" + 026} vt
— M3udvs +{QUvs + B.0) — QY (us—B,0")

—M2°B,0'100 + [Q2{(us + ys0')ys— (vs—xs0)xs+r30'}
—MZ(us—2B,0") — M (vs+2B.0')+ 2M5°B,0 + Q36,0

03,0 M2B,0100" |dz— | | {~ 4,0+ .05~ 706,
+[ex{q.(us—30") + q,(vs+X0')} + {m, 0+ m (v + %6")} Jou}
+{4:0+q.(vs+ X0)}ovs + [e,{q,(us— 70') + g,(us + X6')}

+{m,0 —m(us— y6")}16vs — {q.(us— 76"

+q,(vs+X0)}ows +[{q,0 — q.(us—79')} y

+{4:0+ g.(vs5+X0")} X — {m (us— y0') + m (vs + X6')}160

+ [~ 0ps5e{q(us — 30') + q,(vs + X6')}

+{m,0— m(uf— O)} K — {m, 0+ m(vs+ X0)} y](se']dz

—{Q,0us+ Q,0vs— M, dvs+ M, dug+ Q,0wg+ M,50

+ MS50'} |4 =0, (3.28)

which is the equation of virtual work in the unstable vibrating state.

4. Basic Equations and Boundary Conditions for the Problems

of the Dynamic Elastic Stability

The following basic equations and boundary conditions for the problems of the

dynamic elastic stability are obtained because virtual displacements dug, dvg, owg and 66

are arbitrary.

(Basic equations)

miis + ys0) — Ly + ELuy — {Q%us + y50))

+ (M20)' +(M303)" + 4,0 — q.(u5 — 50')

+ Lex{au(ul— 70')+ 4,05 + X0)} + {m, 0+ m (o5 + %0)} T

=0, 4.1)
m(Bs—x50) — L, + EL,0% — {Q%(v5 — xs0')}’
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+ (M$0)" —(MQus)” — q.0 — q.(vs +X0)

+[ey{q.(us—30') + q,(vs+X0')} +{m,0 —m (us— y0')}1’

=0, 4.2)
mwg—EAwg +q,(us—y0')+ q,(vs +Xx0')=0, 4.3)
1,50+ m(ygii s — xsis) — pIS0” + EIS0" — GKO”

—{Q2(ysus—xsvs) +Qrs0’ +2(M2B, — M.+ M2°B,)0"}

+ M2ug+ Mvs— (0B, + Q58, —M2°B,)'0

— 74,0 —q.(us— 30} — x{q.0 + g.(vs + X0')} + m(us— y6')

+my(v5+%0") + [ — wps {q(us— y0') + q,(vs + X0)}

+x{m,0—m (us—y0')} — y{m,0+m,(vs+x0)}]" =0, 4.4)

(Boundary conditions)

[ud i — ELug + QN us+ ys0) — (M)

—(M3vs) — e, {q(us— y0') +q,(vs + X0")}

—{m0+m(vs+Xx0)} — Q,10us|t =0, 4.5)
(szxug + M —My>5u’5|{)=0, (4.6)

[ul,,vs— EL 5 +Q%vs—x0")— (M30)

+(Mus) —e,{q(us— y0')+q,(vs+x0")}

—{m,0—m,(us—y6')} — Q,16v,6=0, 4.7
(Elyyvé —M3us+ Mx> ovsly=0, 4.8)
(EAwg—Q,)owgl6=0, 4.9)

[uIS@' —EISO" + GKO' + Q%(ysus — x5 +r30")
—Mus— Mvs+2(M2B,— M3B.+ M3 B,)0’
+(Q2B,+Q9B,— M2°B,)0 + w,5.{q.(us— JO')
+q,(vs +%0')} —X{m,0 —m_(us— y6')} + y{m.0+ m,(vs+x0")}
—M_]56/6=0, (4.10)
(EIS0" — M5)50'),=0, (4.11)

in which ri=r3+xZ+ y2.
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5. Conclusion

Basic equations and boundary conditions for analyzing the problems of dynamic
elastic stability of thin walled structural members were presented by applying the line-
arized finite displacement theory in continuum mechanics and using the principle of
virtual work and D’Alembert’s principle. Investigation of the stability of structural
members subjected to follower loads became possible with the application of equations
and conditions.
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