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Abstract

This paper is concerned with the weak formulation of stochastic obstacle problems. First,
a mathematical model of a stochastic obstacle problem is given in a form of a variational
inequality. The weak solution of the stochastic obstacle problem is defined. The relation
between the weak solution and the strong one is stated. Secondly, under some conditions, it
is proved that the weak solution exists by using the method of penalization. Finally, the
existence of the maximum solution of the weak solution is shown. The mathematical
formulation of stochastic obstacle problems by the strong solution is valid only for a one
dimensional spatial variable, however, the weak solution proposed here enables to formulate
the stochastic obstacle problems in a multi-dimensional spatial region.

1. Introduction

It is well known that many physical phenomena are modeled by ordinary and/or
partial differential equations. Some nonlinear physical phenomena are modeled by
differential inequalities rather than differential equalities. Such differential inequal-
ities lead us to variational inequalities (Bensoussan, Panagiotopoulos?, Baiocchi®).
As typical examples of problems modeled by variational inequalities, dam problems,
Stefan problems and obstacle problems, so-called, free boundary problems, are consid-
ered. In this paper, a weak formulation of the obstacle problem which is one of free
boundary problems mentioned above is studied. Noting that the physical problems
contain more or less random factors, our attention is focussed on a weak formulation
of stochastic obstacle problems. First, the mathematical model of the stochastic
obstacle problem is given in the form of the variational inequality. The definition of
the weak solution of the stochastic variational inequality is stated. The relation
between the strong solution (Haussmann & Pardoux®) and the weak solution proposed
here is given. Secondly, by using the method of penalization, the existence of the
weak solution is proved. Finally, it is shown that the weak solution has the maximum
solution. The analytical method used in Haussmann & Pardoux?® is valid only for a
one dimensional spatial region and a strong regularity of data is required. On the
other hand, the mathematical formulation by the weak solution is available for a multi
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-dimensional spatial region.

2. Definition of the Weak Solution

Let G be an open domain with a smooth boundary I'" in R*. Consider the following
stochastic differential inequality:

u(t,x) =¢(x), in TXG (2.1a)

du(t,x) +Au(t,x)dt+dw(t,x) =f(t,x)dt, in TXG (2.1b)

(du(t,x) +Au(t,x)dt+dw(t,x) —f(t,x)dt) (u(t,x) —¢(x)) =0.

in TXG (2.1c)

with the initial and boundary conditions

u(0,x) =uo (x), on G (2.2)

u(t,x) =0, on TXTI (2.3)
where A(+) denotes an operator such that

_ X 2 a(+)
A() = i,j2=l a%, (au (x) a%, ), (2.4)

w(t,x) is a Wiener process with a covariance operator Q(t), ¢ and f are given
functions respectively. The function ¢ plays a role of an obstacle since the value of
u(t,x) cannot exceed v (x) from (2.1a). Physically, (2.1) is interpreted as follows:
Let u(t,x) denote a temperature distribution in the region G at time t. The system
(2.1) represents that the temperature u(t,x) is automatically controlled so as for the
temperature u(t,x) not to exceed the prescribed temperature v (x).

Define

0, if A<y
Ic (/1) —
+o00, if A>44.
Then, the subdifferential alc (1) is given by
0, if A<y
dlc(1)=1[0,00], if A=y (2.5)

empty, if A >
By using the subdifferential (2.5), (2.1) can be rewritten by

u(t,x) =y (x), in TXG (2.6)
du(t,x) +Au(t,x)dt+dw(t,x) +alc (u(t,x))dt = f(t,x)dt
in TXG 2.7

with (2.2) and (2.3).
In order to formulate (2.6) and (2.7), we introduce two Hilbert spaces such that
V=Hi(G) T H=L2*(G) (2.8)

where Hj(G) denotes a space {¢ | ¢ €E H'(G), $=0 onT) and where H!(G) denotes
a Sobolev space of the order 1 on G.
Identifying H wiht its dual, we have



On the Weak Formulation of the Stochastic Obstacle Problems 43

VCHCV=H"'G) (dual of V). (2.9
Define
K={¢ | dEV, ¢=¢ a.e. in TXG]}. (2.10)

Noting that the subdifferential a1, (u) is defined by
(W= {y(WEV |, v—w=0, for 'vEK]}. (2.11)

(2.7) is rewritten by the stochastic variational inequality;

u® €K (2.12)
WD), ¢)+ [ Au), gxds+ [ <4, dwis)>

+ [ x, @ds=(uo, $)+ [ (&, #)ds, for '$ €V (2.13)

J;(x(u), v—u)ds=0, for 've K (2.14)

where <+, *> denotes a pairing between V' and V.

In Haussmann & Pardoux®, under a strong restriction on data, the existence and
uniqueness of the strong solution of the stochastic variational inequality (2.12) to
(2.14) have been proved in the case where

0, if =20
Ik(l):
+oo if A <0

and G=]0,1[. In Rascanu®, “weak solution” and “almost weak solution” are defined
and the existence is proved, however, the “weak solution” and “almost weak solution”
are somewhat unnatural to us. Then, we propose a new weak solution different from
Rascanu and porve the existence of the weak solution proposed in this paper.

Definition 2.1: If u satisfies the followings, then u is called the weak solution of the
stochastic variational inequality (2.12) to (2.14).

(i) ueL2(QXT;V)

te ts
(i) j 0<\‘/+Au—f, v+m—u—w>ds+ J' . (v+m—u—w,dm)

1 I mt) | v —uo | 220

for any v such that
ve HY(T;V), m&e M?(T;H), m—w &€ L2(QXT;V) and
vim—w=+¢ a.e. in TXG
(iii) usy a.e. in TXG

where M?(T;H) denotes a space of square integrable H-valued martingales m with
m(0) =0.
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3. Existence Theorem
In this section, we prove the existence of the weak solution of the stochastic

variational inequality (2.12) to (2.14).

Theorem 3.1: With conditions

(C-1) :uo&E L2(Q;H) (Initial Value)

(C-2) : Q€ L' (H) (Covariance Operator of the System Noise)
(C-3) : f € L3(T;V’), (Input)

(C-4) : "a>0 s.t. Zn‘,aij&,-észaz | & ]2 (Coercivity),
1) i
there exists a weak solution in the sense of the Definition 2.1 of the stochastic

variational inequality (2.12) to (2.14).

In order to prove Theorem 3.1, consider the penalized equation associated with
(2.12) to (2.14):

W®, $)+ [ Aue, gds+ [ (w—p)*, @)ds

b A=, $)+ [ B)ds, for gV 5.1)

where (+)* denotes a nonnegative part of ().

Lemma 3.1: With the same conditions as in Theorem 3.1, there exists a unique solution
u. of (3.1) such that

e L2(QXT;V)N L2(Q;C(T;H)) (3.2)

and the following estimate holds

—i——E{j : | (ue—4)* | 2ds}=<Const. (independent of &).

For the proof of Lemma 3.1, see Appendix A.
Proof of Theorm 3.1: It follows from (3.1) that

| v(t) —m(t) —uw (t) —w(t) IZ—Zf:)(Aue, v+m—u—wd>ds

*%j:((ue—wlf)*, v+m—u—w)ds

= v —uo | *=2 |, vFm—u—w)ds+ | m(0) |*

+2[ <o, vm—u—wds+2 [ (vim-u-w, dm) (3.4)

for 'v& H(T;V) such that vim—w=4y a.e. in TXG and m—w & L2(Q X T;
V).

thing that
((Le—9y)*, vitm—u.—w)=((w—y¥)*, vir—w—y)
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— | (=) |20, (3.5)

(3.4) yields
JL<V+Aue*f, V+m—ue—w>ds+j:(v+m—u€—w, dm)

+% | m (1) |2+—%a | v(0) —uo | 220. (3.6)

From Lemma 3.1, we can extract a subsequence ue of ue such that
w— u weakly in L2(QXT;V). (3.7)
It follows frm (3.7) that

lim, inf E{ [ <Aw, wdds)ZE( [ <Au, wads). (3.8)
From (3.6) to (3.8), we have
I :f<\'r+Au—f, v+m—u—w>ds+ J :f (vtm—u—w, dm)
]. 2 1 2
+—2‘ | m(tf) l +-2‘" | V(O) —Up | =0. (39)
Furthermore, from (3.7), we have
L[| (amy)* | 2ds}<lim, inf B([ | (w—y)* | %ds)
(from (3.3))
=0. (3.10)
The relation (3.10) implies that
us a.e. in TXG (3.11)
The proof has thus been completed.

Theorem 3.2: With (C-1) to (C-4), the following relation holds for any weak solution
w
ut) <u*(t) a.e. in TXG (3.12)

where u* (t) is the weak solution obtained as the limit of the solution of the penalized
equation (3.1).

Lemma 3.2: With (C-1) to (C-4), the following estimates holds
J :f<9, u—u€>ds+—i—J :f((ue—wp)ﬂ #)ds
=z [ [<Au-uw), 6>ds (3.13)

for any 8 € L2(Q;H'(T;V)), 6(t;) =0 and 6 is nonnegative if u is a weak solution.

For the proof of Lemma 3.2, see Appendix B.
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Proof of Theorem 3.2; Let 6, be the solution of

—2 6, +6,=@u—uw)* in TXG (3.14)
91 (tf) =0. (3.15)

From (3.14) and (3.15), we have

Hl(t)z%j:exp{(t—s)/l} (u—w) *ds. (3.16)
Equations (3.14) and (3.16) yield

[ <, u—uodsz0. (3.17)
In (3.13), setting as §=4, and using (3.17), we have

1 ty N t

L=, o0dsz [ <Aw—w), 6:>ds. (3.18)
Noting that 6,— (u—u.)* in L2(Q X T;H), it follows from (3.10) that

([ a—ua)* | 2ds) 0.

Therefore,

u=u. a.e. in TXG, w.p.l. (3.19)
Lemma 3.1 and (3.19) yield

u=u* a.e. in TXG, w.p.l. (3.20)

The proof has thus been completed.
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Appendices

Appendix A. (Proof of Lemma 3.1): Let {e;};>; be an orthonormal basis of H which
made up with elements of V. Consider the finite dimensional stochastic equation

(@, e)+ [ <A, edds+1[ (=", e)ds

+ [ e dw) =g, e+ [t e)ds, for 1sisn (A.1)

For the function v such that



On the Weak Formulation of the Stochastic Obstacle Problems 47

v € spanle;, €,, ***** . en], v=y" a.e. in TXG,

applying Ito’s lemma to | u(t) —v | 2, we have

| @(t)—v | 2—i-ZJ ;(Au’;, uﬁ—v>ds+%f :((U‘E*vﬁ“)ﬂ w—v)ds

+2I2(u‘;—v, dw) = | w—v |+ (¢, w—v)ds

+3 [ |(Qe;, e)ds (A.2)
Noting that

(@—ym*, w—v)=| @—y¢")* |2+ (L—y"*, ¥"—V)

= | (w—y"* |2 (A.3)

(A.2) yields

@ v | +2a [ 1wy Ids+2-[ [y | %ds
2 -, dw) SC—-[ I £ 3dsta [l wv I (A.0)
where

G220 w I+ | v |21+ | L tr[Qlds.
Choosing ¢ as 2a-6>C=0 in (A.4) and using Gronwall’s inequality, we have
t; 1 t
BU[ 1 w—v I 2ds)+—B([ [ | @y | *ds}=C. (A.5)

where C, is a constant independent of n and e.
From (A.5), we can extract a subsequence W of i for a fixed & such that

w'— u. weakly in L2(QXT;V). (A.6)

From the monotone property of the operator (+)*, we have

%E{j ? | (ue—+)* | 2ds} =C,(independent of ¢).

Appendix B (Proof of Lemma 3.2): Consider
(1), $)+<Bu, $>+—((w—y)", )=( §) for ‘$EV (B.1)

z:(0)=us (B.2)

Multiplying (B.1) by v+m—w, where v & HY(T;V), m € M*(T;H), m—w € L2 (Q X
T:H) and v+m—w =4 ae. in TXG, we have

(ze, v+tm—u) +<Au, v+tm—u—w>

+%((lle_w)+, vitm—u—w) =<, vtm—u—w> (B.3)

From the Definition 2.1, we have
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ty t
J()(f, V+rnfufw>d5§f:<v+Au, v+m—u—w>ds
t 1 1
+ [ rm—u—w, dm) - [ mt) | [ VO —u, | (B.4)
Using (B.4) in (B.3), we obtain
ty
jo<v+Au—Aue—Ze—%—(ue—1ﬁ)+, v+m—u—wdds
b 1 1
+ [ Jwrm—u—w, dm) - [ mt) | | V0 —u, | #20 (B.5)

Let r € L2(Q;H'(T;V)) such that r(t;) =0 and r is nonnegative if u is a weak

solution. Substituting v—ir (1>0) for vin (B.5), we have

A
jff .1, .1 . 1
0<V—TI‘+AU—A1]¢—ZG‘—T(U€—¢) S V—Tr+m—u—w>ds
U 1 1 2 1 2
+ f \ (V—Tr-#m—u—w, dm) t | m(t;) | 5 | v(0) —u, | 220 (B.6)

Noting that

% | v(t,) _—i—r(tf) +m(t) —z (t;) | 2

-1 | v(0) —Lr(O)—u | 2+ f tf(\’/*“‘l‘*f'—Z V—ir+m—z >ds
2 A ° 0 A € A ¢

o1 _ 1 2
+J0(V 3 rtm—ze, dm)+—-m(t) | (B.7)
In (B.7), taking r=0, we have
I vt) Fmt) —z (t) | 2= | v(0) —u, | ?
o b 1
+JO<V*Z~M v+mfz€>ds+J‘0 (v+m—z., dm) +T | m(ty) |2 (B.8)
By subtracting (B.8) from (B.7) and noting r(t;) =0, we obtain
g 1 A1 oq o 1
WO ~to, ——1(0) 45 | =1 () |+ [ o=z, —3-rds
o 1. 1 _ e 1 _
+j0< 25 VT r+m z,s>ds+Jo( TR dm) =0. (B.9)
It follows from (B.6) and (B.9) that
ty te 1
O<V_Zs, V+m~u-w>ds+fo<*7f, Ze —u—w>ds
te 1 1
+f Au—Au———(u.—¢)*, v—5—r+m—u—wdds
0 & A
s 1 1
+I0 (v+tm—u—w, dm) + | m(ty) | 2+—2~ | v(0) —u, | 220. (B.10)

Multiplying (B.10) by A and tends to A —0, from Lemma 3.1, we have
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B[ Y, zo—u—wids) ~E([ KA@-w) —1-w— )", ds)20 (B.11)
Since ze=u—w, (B.11) vields

B[ K, u—uodsHE([ (w9, nds)

2E{ [ <A—u), rds). (B.12)

(B.12) implies (3.15).



