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Abstract

The problem of state estimation for noisy discrete-time nonlinear dynamic systems is discussed
by proposing the multi-stage iteration filter-smoother in conjunction with the algorithms for
prediction, filtering and smoothing which are based upon the viewpoint of marginal maximum
likelihood estimation.

Results of the numerical example indicate greatly improved preformance over the filtering
only.

1. Introduction

In this paper, the problem of the state estimation for noisy discrete-time
nonlinear dynamic systems is developed by the use of the approximated algo-
rithms for sequential prediction, filtering and smoothing. The estimation of
states in noisy nonlinear dynamic systems based on noisy nonlinear measure-
ments has been investigated in the past few years and, especially, the effort has
been done in the area of nonlinear filtering for the purpose of estimating the
current state for the control. On the other hand, the nonlinear smoothing has
been little discussed. The problem of the nonlinear smoothing is very impor-
tant in the viewpoint of the parameter estimation problem, since we may desire
to have the better estimate by the use of the smoother, when the observed
information is limited.

The nonlinear optimal filter needs in theory the solution of an infinite-
dimensional process. However, in the practical side of technology, there is
the needness of the approaches to suboptimal filtering for the nonlinear system,
since the computational aspects of the truly optimal nonlinear filter are prohitive.

The suboptimal nonlinear filters can be roughly subdivided into first-order
filters and higher-order filters. In general, in higher-order filters, the second-
order filter is used.

Wishner et, al discussed three different estimation schemes, the first-order
filter, the second order filter and the single-stage iteration filter.)’ In the former
two filter, if the norminal trajectory and state are not close to the true trajectory
and state, the truncated expression in the Taylor series represents poor ap-
proximation.

The first-order filter has been pointed out to be a biased estimator.?
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The bias is due to the multiplicative effect of nonlinearities in the state
equation and the observation equation.

Chen and Eulrich used some local iteration algorithm based on the first-
order filter in conjunction with the use of one stage optimal smoothing, for the
purpose of improving the approximation of the nonlinearities, and it was shown
that the bias is reduced by the local iteration.®

Meditch provided the approximated algorithm for sequential prediction,
filtering and smoothing from the viewpoint of marginal maximum likelihood
estimation.) The algorithm utilized the approximations which are first-order
in the system dynamics and second-order in the measurement function for predic-
tion and filtering, and the approximation which is second-order in the system
dynamics.

The author discusses in this paper the multi-stage iteration filter-smoother
in conjunction with the algorithms for prediction, filtering and smoothing which
are discussed by Meditch.

This paper is organized as follows: The problem formulation is given in
Section 2, and the algorithms for prediction, filtering and smoothing are given
in Section 3.

The derivation of the multi-stage iteration filtering-smoothing algorithm
is given in Section 4. A simple numerical example is presented in Section 5.
Finally, a discussion and a conclusion of the results are offered in Section 6
and Section 7.

2. Statement of the Problem

Consider the nonlinear discrete-time system driven by zero mean Gaussian
noise w;, and discrete noisy measurements,

xpr1=f(x) +wp (1)
yir =h(xp)+ v, (2)

where
k is the discrete-time index,
x 1s an n-vector, the state,
y is an m-vector, the measurements,
w and v are respectively the white Gaussian random sequences with zero

mean and
ELww] =040 €))
E[vwl =Ry (4)
Elwvi ]=0 (5)

0;; 1s the Kronecker delta,
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Q and R are assumed to be positive definite,

f () and h(-) are respectively n and m-dimensional, vector valued, twice

continuously differentiable functions of the indicated variables.

We obtain an estimate x,, k>0, given the sequence of measurements
{¥0s ¥1, --» ¥;i¥» j=>0. We shall have three cases of (i) prediction, where j=k—1
and k=0, 1, ...: (ii) filtering where j=k and k=0, 1, ...: and (iii) smoothing
where j=N is fixed and k=N—1, ..., 0. The problem is to obtain algorithms
for computing the best estimates for x;, k=0, 1, ... using the measured data.

3. Algorithms of Prediction, Filtering and Smoothing

In this section, referring to References 4), we take likelihood functions,

L(xy, Y,_1)=lnp (x| Y1), for prediction,

L(xy, Y,)=lnp (x,]1Y,), for filtering,
and L(xy, x4,1, Y§)=Inp (%4, %4,1|Yy), for smoothing. In these relations,
Y.={¥o0, ¥1, ---» ¥1}, and p(+|*) is conditional probability density function. We
consider only first and second-order moments and assume that third and higher-
order moments are negligible.

The algorithms of prediction, filtering and smoothing are shown as follows.

Prediction:
R pie-1=f(Rp-1/2-1) (6)
Pijp-1=fx(Ze-1p-1)Pr-1/2-1f L (Zp-10-1) T Qi1 (7)
where
fx(&k—llk—'1> =0f(x)/0x|x=%r-1/4-1 (8)
Filtering:
ﬁk/}e=&k/k—1+Gk[yk—h(§k/k-1):| : (9)
Py =[I—Pyjp-18:Erin-1, y)J™* Prja-1 (10)
where
Gy =Puphi(Rep-1) Ry (11)
g(&nip-1, y) =hI(Erje- )Ry Lyr—h(Zrp-1)] (12)
ge(Zrp-1, y2)=0g(x, y2)/0x | x =X 51 (13)
Smoothing:
Rav=%pp+ Ae(Zr1n— Rri1sp) (14)

Pun=Pus— Ax(Prs1p— Praviy) AF (15)
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where
Ar=[1— P17 Riss Zrr18) 1 Priaf T(&Zr10)Q71 (16)
rEeies Zaorn) =F L @003 LR v —f &an)] 17)
Te(Zrins Bar1yw) =0p(x, Rey1yn)/0x | x=%1p1 (18)

P is the error covariance matrix
P=E{(x—%)(x—%)"} (19)

where E denotes the expected value,

4. Multi-Stage Iteration Filter-Smoother

We take the approach to use the iteration algorithm based on the filter in
conjunction with the use of the smoothing for improving the reference trajectory
on the state and the estimate.
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Fig. 1. Flow-chart of multi-stage iteration filter-smoother
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The approach is as follows:
At the k-th stage, %, and P, are obtained from the filtering algorithm.

Before processing the data y,,; and proceeding to the filtering at the next
stage, we choose R4z, £3.1/8, Pre and Py, and take the smoothing algo-
rithm until the initial stage.

At the initial stage, we replace &,,_, and Py_; by &y, and Py, respec-
tively and then proceed the filtering algorithm from the initial stage to the £-th
stage.

And repeat smoothing and filtering some times. If ||[£q_;—&q/|/2 is
small enough, we stop repeating smoothing and filtering, and proceed to the
filtering algorithm at the (k+1)-th stage, and so on. The flow-chart of this
process is shown in Fig. 1 where € is some small positive.

5. Example

We consider the second-order system.®

1
ka:l:xk/(l—f;x},x%)J_l_wk (20)

Xk
where

xp =[x}, x3]"
_[25.107* 0
a=[*% 10-¢)

The measurement is scalar.
ye=(x})+vs (21)
where
R,= 102

The error covariance matrix is denoted by

P=E{=—8)=—2) = p 3] (22)
We take the next starting conditions.
(a) True initial state: x, =[20, 0.30]7
(b) A priori state: Ro1=[18, 0.34]7

(c) Error covariance matrix:

s 0
P°/~1—[o 25.10-4]
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Table 1. Multi-stage iteration filtering-smoothing estimate when y, y, and y; are obtained
Ist-stage 2nd-stage 3rd-stage
Iteration
! 52 51 %2 5l %2

0 21.0 0.34 2.99 0.279 1.54 0.284
(20.0) (0.30) (2.87) (0.299) (1.49) (0.299)

2 20.2 0.273 2.91 0.279 1.53 0.280

4 20.1 0.283 2.88 0.285 1.52 0.285

6 20.1 0.287 2.87 0.288 1.52 0.290

8 20.1 0.289 2.87 0.290 1.52 0.290

10 20.1 0.291 2.87 0.292 1.52 0.292

15 20.0 0.294 2.86 0.294 1.52 0.294

20 20.0 0.295 2.86 0.295 1.52 0.295

25 20.0 0.296 2.86 0.296 1.52 0.296

( ): True value
Table 2. Error variances
Ist-stage 2nd-stage 3rd-stage
Iteration '
Pyy Pys Py P, Py Py

0 0.141-10-7  0.250-10-%  0.332-10-* 0.570-10~* 0.132:10-3%  0.503-10~¢
2 0.238-10-8  0.110-10-*  0.106-10-*  0.882:10-% 0.143-10-%  0.963-10-5
4 0.138-10-%  0.601-10-5% 0.123-10-* 0.603:10-%  0.153-10~%  0.964-10-5
6 0.977-10-%  0.425-10~5  0.132:10~* 0.476-10-5 0.158-:10~3  0.576-10-5
8 0.758-10-%  0.332-10-% 0.138:10~¢  0.402-10-% 0.162:10-3  0.498-10-%
10 0.620-10-°  0.274:10-5  0.142-10-*  0.353-10-5  0.164-10~%  0.451-10-5
15 0.427-10-°  0.192-10-%  0.149-10-¢  0.282-10-% 0.168:10~%  0.380-10-%
20 0.326-10-°  0.148:10-%  0.152:10-¢  0.242-10-% 0.170-10-*  0.341:10-5
25 0.263-10-®*  0.121-10-%  0.155-10-¢*  0.217-10-* 0.171:10-®*  0.316-10-%

Table 3. Time histories of estimation errors by multi-stage iteration: filtering-smoothing
(M.I.F.S.) and filtering

&! z?
Stage .
M.LF.S. Filtering / M.I.F.S. Filtering

3 0.030 — 0.003 —

4 0.020 0.038 0.005 0.009

6 0.022 0.066 0.003 0.010

8 0.007 0.068 0.000 0.01
10 0.091 0.022 0.001 0.01
12 0.187 _ 0.000 _
14 0.107 —_— 0.000 —
16 0.120 — 0.002 _—
18 0.090 — 0.001 _
20 0.066 _— 0.001 _—
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6. Results and Discussion

The results are shown in Table 1~Table 3. Table 1 gives the multi-stage
iteration filtering-smoothing estimates at the 3rd-stage, and Table 2 gives the
corresponding approximate error variances. Time histories of estimation errors
by the multi-stage iteration filter-smoother and the filter are given in Table 3.
In Table 1 and Table 2, it is seen that the estimates are improved at the initial
stages by iterations. From this example, iterations are not taken from the
fourth-stage when the criterion of the convergence of the estimate is 1076, The
performances of the multi-stage iteration filter-smoother and the filter are com-
pared on the basis of the errors of the estimates in Table 3. It is seen that the
multi-stage iteration filter-smoother gives significantly better performance, when
compared to the filter only.

7. Conclusion

A multi-stage iteration smoothing-filtering algorithm has been obtained
in conjunction with the prediction, filtering and smoothing in an on-line fashion
to update the estimates of the initial state until new measurements become
available. However, the sampling period must be large as the some iterations
are possible in this approach. As a numerical example, we considered the
second-order nonlinear system discussed by Meditch.®

The performance of the multi-stage iteration filter-smoother is successi-
vely improved. The author is presently engaged in comparing the multi-stage
iteration filter-smoother with the locally iterated filter-smoother under the
various conditions.®
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