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Abstract

An analytical method of dynamic instability of three-dimensional framed structures
to which it is difficult to apply the theory of continuum mechanics is proposed in the two
cases of regarding and disregarding the effect of damping, in the cases where the effect of
forced vibration is neglected. The equations of motion of Mathieu-Hill type are set up using
the linearized finite displacement method, and the equations of boundary frequency in the
regions of dynamic instability of columns and arches are derived applying the proposed method.
The results show good agreement with the boundary values of a column simply supported
at the both ends.

Introduction

[t is generally known that the critical loads of the columns or the framed structures
as shown in Fig. 1 are considerably affected by the frequencies and amplitudes of the
periodic loads. The problem for estimating the critical loads of a column subjected to
the horizontal periodic loads as shown in Fig. 1 (a) is regarded to be the same as that
for obtaining the natural frequencies affected by an axial force and this is comparatively
readily solved. On the other side, parametrically excited vibration occurs in the struc-
tures if the periodic and non-periodic loads act in the same direction as shown in Fig.
1(b) and (d). Many studies [1, 3, 4] have been carried out in this connection using
the method of continuum mechanics.

(a) (b) - W-penodnc Load
- Periodic Load

Fig. | Structures Subjected to the Periodic and Non-periodic Loads.
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In this study, assuming that the shape of framed structures exhibits regular ge-
ometry, that is, shallow arches, flat shell, etc., are excluded, framed structures to which
it is difficult to apply the continuum mechanics are taken up and the dynamic stability
of them, in the case where parametrically excited vibration occurs, is investigated.

In parametrically excited unstable vibration, the effect of damping should be
considered since it has comparatively large influence. It is noted that, if damping
is taken into account, the regions of instability become narrow. Moreover, it is also
known that there occurs the resonance by forced vibration in the case where the fre-
quencies of the periodic loads are near to the natural frequencies of the structures and
the forced vibration exerts influence on the dynamic stability. However, since the
forced vibration has no influence upon the dynamic stability if the frequencies are far
enough from a natural frequency with same modes as ones due to periodic loads, the
effect of forced vibration may be neglected.

In this paper, dynamic stability is investigated, regarding or disregarding the
damping, in the case where the effect of forced vibration is neglected. Although there
are several cases in which the instability due to the combination resonance in addition
to the simple parametric resonance is important for some kinds of structures with
certain boundary conditions under certain loads, only the instability due to the simple
parametric resonance is here dealt with.

In the analysis, the equations of motion with small amplitudes in the stable vibra-
tion are first derived. Expressing the equations in the unstable vibration by the dis-
placements in the stable vibration and perturbed ones (i.e., additional displacements),
the equations for boundaries of dynamic instability of the structure are established
and the boundary values of the regions of dynamic stability are founded. Following
assumptions are made:

(1) all the external loads act on the nodes of the structure,

(2) all the periodic loads have a constant period,

(3) the amplitudes of all the periodic loads and magnitudes of all the non-periodic
loads vary at a constant ratio respectively and are much smaller than critical
loads for prebuckling mode,

(4) the external loads have no masses,

(5) the stresses in the members of the structure do not exceed the proportional limit,

(6) local buckling and instability phenomenon do not happen in changlng the mag-
nitudes of the periodic and non-periodic loads and

(7) the masses of the structure are concentrated on the nodes, i.e., the lumped mass
system is considered as the substitute.

In the calculation, it is presumed that the periodic solutions on the boundary of
the regions of instability are close to harmonic vibration since it is verified in the study
of Y. Sugiyama [2] that, although this assumption is not valid on the upper boundary
of the principal region, they are appropriate in the steady state motion.

In the last chapter, columns and parabolic arches are analyzed by the prbposed
method and the results are compared with those of the simply supported column al-
ready analyzed by the theory of continuum mechanics,
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Equations of Motion

When the magnitudes of non-periodic loads and amplitudes and frequencies of
periodic loads are kept within the characteristic ranges of the structure, i.., they are
within the regions of dynamic stability, a very small change in displacements is pro-
duced for their infinitesimal change of them and the amplitudes of the displacements
do not unboundedly increase with time. But, when some of the values mentioned
above exceed the characteristic ranges, that is, they enter the regions of dynamic in-
stability, the pattern of vibration is quite different from the mode in the stable vibration
and the unstable phenomenon in which the amplitudes of the displacements unbound-
edly increase with time takes place. In the former state, the equations of motion
with infinitesimal amplitudes hold approximately, but in the latter state, they no longer
hold and the equations with finite amplitudes are required.

In this paper, the equations of motion with infinitesimal amplitudes are set up
supposing that the magnitudes of the non-periodic loads and the amplitudes and
frequencies of the periodic loads take certain values adjacent to the boundary of the
regions of stability and the structure is kept in the state of stable vibration. Next,
supposing the state in which the values mentioned above undergo slight changes and the
structure vibrates unstably, the equations of motion with finite amplitudes are obtained
from the dynamic equilibrium of nodes of the deformed structure. In this case, it is
assumed that the internal forces in each member are linearly proportional to the dis-
placements of nodes, that is, Hooke’s law is satisfied and the linearized finite displace-
ment method is applicable. The equations of motion and the solutions of general three-
dimensional rigid framed structure with m nodes in total as shown in Fig. 2 will be
presented in the following.

Fig. 2 Framed Structure Subjected to the Periodic and Non-periodic Loads.

Equations of motion with infinitesimal amplitudes- Let us consider the case

where non-periodic load Pg; and periodic load P;sinwt act on the i-th node of the
structure, where w is a circular frequency. We represent the displacements of the
i-th node by a vector d;, especially, the displacements due to non-periodic and periodic

loads by d,; and d, respectively.



540 ‘ Tadayoshi Aipa

di={ui, Ui’ Wi’ Qxi’ Oyiv Ozi}T (i= 1, 2,..., n’l) (l)

Furthermore, we represent the coordinates of the i-th node by a vector f; and the
rotation angle of the principal axes of the cross section at the end i of the member
ij by o;;.

fi={xi yi z}7 (i=1,2,..., m) (2)

Now, let the local rectangular coordinates (x', y’, z'), be established as shown in
Fig. 2, taking the member axis ij as x’-axis and the principal axes of the cross section
at the end i as y’- and z'-axes respectively. The above mentioned angle is a rotation
angle required to make y’-axis parallel to the x—y plane by revolving y'- and z’-axes
about x’-axis.

Representing the end forces at the end i of the member ij referred to the local
coordinates by a vector Nj; and the transformation matrix by T;;, by which Ni;
is transformed into N;; in reference to the gloval coordinates (x, y, z), the equations
of motion of the i-th node are represented in the following form since the transforma-

tion matrix T;; is a function of f;, f; and «;;, and the end force vector N;; is a function

of f;, £, o, do;+d; and do;+d;:

d*d,

W

= nglTij(fia fj’ O‘ij)N:'j(dOi'f‘Ji, do; +djs fi, fjs &
where the matrix W, is a mass matrix of the i-th node.

A set of equations of motion is obtained by applying Eq. (3) to each node of the
framed structure, which is rewritten in the following matrix form:

w LK @+ d)= — P, —Psi 1
iz HK (o +d)=—P,—Psinor 4
W, | dy, d
0 L - |d
W= W, s dog=0dg, o, d=( "2,
o :
ij ld()mI &rn
o
Py= qu , P= 1?2 . ' (5)
11’5,"} Ii’mj

where K is the stiffness matrix of the structure.

Equations of motion with finite amplitudes- Let it be supposed that the magni-
tudes of the non-periodic loads and the amplitudes and frequencies of the periodic
loads slightly change and take certain values adjacent to the boundary of the regions
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of dynamic instability. In this case, certain finite perturbed additional displacements

will be produced. Denote these additional displacements of the i-th node by 4d;.
Then a equation of motion of the i-th node is expressed approximately as follows:

2 - - : -
WL @+ 48) = = S Ty (B AT, £+ 48, o+ A )N (g 4,

ir 1j

+Ad,,d01+d —I—Adj, fi,f,0,;)—Py;— —P;sinwt (6)

Expand T;; and Nj; in series and neglect the terms higher than the second order of
Ad, and put again d for Ad, then Eq. (6), using Eq. (3), becomes as follows:

d?d; ,
Wi——d?lmm = — (fp j ij)Nij(db dja i’ j’ alj) 2 I{HHJ i fp
ocij’ OU+N, )d +H_1u(fu Jj Ua OLJ+N;J)d } (7)
where
! GT,, ! ’
ll_[(ft’ Js U’ OU+N ) { _____ (NOlj+NlJ) (NOLJ+N )
OT;; ) 0T, , oT;; ,
a =8 (N()LJ+N )1 Yij a nIA (NOLJ+N )s '“U a """""" (NOL1+NLJ)7
0T, , :
it Ny + N0 (8)
, aT,; : aTl :
Hjij(fi: fj’ aijs OLJ+NlJ) { . (N01J+NU)’ a e (N011+N )’
6Tl _
G (Noy +8;),0,0,0f (9)

in which 7, u;; and v;; are direction cosines of x'-axis of member ij and Np;; and

Nj; are respectively the end force vectors at end i of the member ij due to non-periodic

load P, and periodic load P sin wt.
Let the loads acting on the i-th node in non-periodic and periodic fundamental

loadings be denoted by P,; and P;sinwt respectively, then Py; and P; satisfy the
following relations respectively:

P0i=POf’0i’ Pi=p§i (10)

where P, and P denote the ratios of actual and fundamental loads for non-periodic
and periodic loads respectively, that is, the magnitudes of actual loads P,; and P;
are respectively P, and P times as large as those of the respective fundamental loads.

Therefore, when the end force vector of end i of the member ij under non-periodic
fundamental loading is denoted by Ny, ; in reference to the local coordinates, Np;;
is expresses in the following form:
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N(;ij=PONIOij (11)

Similarly, when the amplitude of the end force vector of the same member end under
periodic fundamental loading is denoted by N, N} j 1s expressed by N; i

ije

Ni;=PN; sinwt (12)

Since N;i is the amplitude of end force vector due to fundamental loads l3isin ot (i
=1, 2,..., m), it is a function of w. But N’,.j may be considered to be the same as

the end force vector due to nonperiodic loads P, (i=1, 2,..., m) if w is sufficiently
apart form the natural frequencies mentioned above. Hence, Eq. (7) becomes,

dd; ,
Wrﬁ" = =201 Ty, £, 00N (dy, dy, £, £, o)~ Po Xy {H(F,

f, ijs N ()ij)di“f“Hjij(fi» fj7 &ijs N ,Oij)dj}_pSin wt 2'}': 1 {Hiij(fia fj’
%;js N;j)di'l'—Hjij(fia f;, o N;j)dj} (13)

This is the equation of motion with finite amplitudes of the i-th node.
A set of equations is obtained by applying Eq. (13) to each node of the frame,
which is indicated in the matrix form, thus:

2
w 4

gz~ T PoK;d+PsinwrK,d+K,d=0 (14)

where W is the mass matrix which is the same as Eq. (5), K, is the stiffness matrix
of the structure, K, and Kj are initial stress matrices due to non-periodic loads P and
f’o respectively, and

| | (15)
l , J

Boundary Frequencies and Critical Loads

Eq. (14) is the Mathieu-Hill equation. Tt is well-known that the periodic solutions
of this equation with the period equal to or two times that of the external load bound
the regions of stability and instability; more exactly, two solutions with identical
periods bound the regions of instability and the two solutions with different periods
bound the regions of stability [1].

Express the latter periodic solution in the following form [1]:

d=a siniwt+ B cosiwt (16)

where @ and B are independent of time, then the boundary frequencies of the principal
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region of dyhamic instability are approximately calculated by the following equation.
K;+3PK, + PoK; —}w?*W[=0 (17)
Similarly, express the former periodic solution in the following form [1]:
d=3B,+ asinwt+ B coswt (18)

where B, is independent of time, and we have the approximate boundary frequencies
for the second region of dynamic instability:

‘K1+P0K3—CO2W]=0 (19)

K, + PyK; PK, 1
_ =0 (20)
éPKZ K1+P0K3—(1)2W

Boundary Frequencies and Critical Loads when the
Effect of Damping is Considered

Consider the damping force proportional to the derivative of the displacement
with respect to time in the vibration of structure, then Eq. (14) is transformed into the
form below:

W~~‘Z§g~~ +D 994 pKd+ Psin oK, +K,d=0 1)

Since the damping matrix D cannot be easily obtained in general, let it be assumed
that the damping matrix D of the structure during the vibration with infinitesimal
amplitudes can be applied to D and that it can be diagonalized by modal matrix.

When the damping constants for each mode of free vibration are known, the
damping matrix can be evaluated by the modal analysis as follows:

Denote the first, second,..., and m-th natural circular frequencies of the system,
which satisfy the equation of motion of undamped free vibration, by w,, w,,... and
w,, and the normalized modal vectors corresponding to the respective natural circular
frequencies by @,, @,,... and @, then the damping matrix D satisfies the following
relation according to the previous assumption:

[#]"D[P] = | 2h,w, =[2hw] (22)
I
Lo 2h,0,,

where [®]=[®,, D»,..., D,,] and hy, h,,... and h,, are the damping constants cor-
responding to the respective modes of free vibration. Therefore, D is expressed
utilizing the damping constants, thus

D =W[®][2ho][$#]TW (23)
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Let us now express the periodic solution of Eq. (21) using the relation of Eq. (16) to cal-
culate the boundary frequencies of the principal region of dynamic instability ap-
proximately by the following equation of boundary frequency:

K, +PK;—}102W LPK,—-3}wD
_ =0 (24)
1PK, +30D K, + PoK;—iw?W

Similarly, expressing the periodic solution of Eq. (21) by Eq. (18), we have the ap-
proximate boundary frequencies of the second region of dynamic instability:

K, + P,K, PK, 0
?}"I_)Kz K1+POK3-602W _(DD =O (25)
0 C!)D K1+POK3—-602W
Applications

Columns- The regions of dynamic instability about the principal axis y of the
cross section for columns made of aluminium having the cross section shown in Fig.
3 (a) are estimated using the proposed method. Three cases, shown in Fig. 4, are
investigated. Especially, when the effect of damping is considered, the damping
constant h for each mode of free vibration in unloading condition is 0.05 and the
regions of dynamic instability is estimated.

CASE
Zz
S
=
a
pd
o]
(&)
Y >
z ¢ %
- 2
o
x t X
: 4.0 ~ é
(b) P, 399320 195470 93333
4.0 Unit: em. 92 w, 4642.7 3203.4 2061.6
(a) (c) P.: kg w, : rad/sec.
Fig. 3 Shapes of Cross Sections. Fig. 4 Columns Subjected to the Periodic

and Non-periodic Loads.

In the analysis these columns are substituted by the lumped mass systems, as
shown in Fig. 5 (a), consisting of seven nodes. And it is assumed that the loading con-
dition of a downward unit load acting on the top is regarded as the non-periodic fund-
amental loading, and the loading condition of a unit periodic load 1sinwt, acting in
the same manner, as the periodic fundamental loading. By P,, specify the value
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of P, at the static critical state, and by «, the first natural circular frequency. These
are shown in Fig. 4.

; Fo+ Psinut 1 l l P + Psinwt
—_
e §
S Q
w
a1

Fig. 5 Lumped Mass Systems.

The boundary values of the regions of dynamic instability are founded by the
following procedure: When the effect of damping is neglected, a value of P, (the
magnitude of critical load) is evaluated after P and w are given. When the effect of
damping is considered, the damping matrix D is first calculated at the unloading
state and a value of P, is evaluated against the given values of P and . Subsequently,
those results are represented by the values of w/2Q, together with the excitation para-
meter u, where Q is the first natural circular frequency of the structure subjected to
the non-periodic loads and pu=P/2(P, — P,).

The calculated results are partially shown in Tables 1, 2 and 3. The values in

Table 1. Boundary Values of the Regions of Dynamic Instability of a Column for Case I.

Upper bound Lower bound
Region
o /282 /" /282
Case of neglecting the effect of damping
0.725 1.334 (1.313) 0.364 0.810 (0.798)
0.474 1.233 (1.214) 0.296 0.852 (0.839)
Principal 0.340 1.175 (1.158) 0.203 0.907 (0.893)
0.259 1.138 (1.122) 0.171 0.924 (0.911)
0.117 1.064 (1.057) 0.095 0.964 (0.952)
0.322 0.508 (0.500) 0.539 0.329 (0.323)
0.142 0.507 (0.500) 0.191 0.489 (0.482)
Second 0.080 0.506 (0.500) 0.102 0.501 (0.495)
0.042 0.504 (0.500) 0.051 0.503 (0.499)
0.026 0.501 (0.500) 0.026 0.500 (0.500)
Case of considering the effect of damping
1.164 1.114 (1.092) 0.686 0.649 (0.641)
0.802 1.203 (1.180) 0.628 0.710 (0.701)
Principal 0.586 1.114 (1.092) 0.525 0.811 (0.801)
— - 0.482 0.855 (0.845)
— — 0.445 0.896 (0.888)
2.076 0.484 (0.475) 0.699 0.094 (0.092)
Second 1.056 0.461 (0.452) 0.676 0.184 (0.182)

— — 0.643 0.269 (0.267)
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Table 2. Boundary Values of the Regions of Dynamic Instability of a Column for Case II.

Upper bound Lower bound
Region
7 /282 7 w/282
Case of neglecting the effect of damping
3.897 2.241 (2.213) 0.443 0.756 (0.746)
0.682 1.312 (1.297) 0.288 0.853 (0.844)
Principal 0.384 1.163 (1.151) 0.197 0.906 (0.896)
0.159 1.085 (1.076) 0.140 0.935 (0.927)
0.112 1.061 (1.054) 0.091 0.959 (0.953)
0.310 0.506 (0.500) 0.266 0.468 (0.463)
. 0.198 0.505 (0.500) 0.184 0.487 (0.483)
Second 0.100 0.503 (0.500) 0.098 0.498 (0.495)
0.040 0.499 (0.500) 0.040 0.499 (0.499)
0.024 0.496 (0.500) 0.024 0.496 (0.500)
Case of considering the effect of damping

0.975 1.344 (1.328) 0.473 0.781 (0.772)
0.563 1.192 (1.178) 0.385 0.845 (0.836)
Principal 0.375 1.112 (1.099) 0.317 0.894 (0.885)
0.268 1.057 (1.046) 0.264 0.933 (0.924)
—_— — 0.225 0.969 (0.960)
1.135 0.484 (0.477) 0.666 0.185 (0.181)
Second — — 0.568 0.341 (0.338)

Table 3. Boundary Values of the Regions of Dynamic Instability of a Column for Case III.

Upper bound Lower bound
Region
7 /282 7 w[2
Case of neglecting the effect of damping
0.869 1.363 (1.367) 0.401 0.772 (0.774)
0.519 1.229 (1.232) 0.317 0.824 (0.826)
Principal 0.356 1.160 (1.164) 0.207 0.888 (0.890)
0.201 1.093 (1.096) 0.143 0.923 (0.926)
0.132 1.061 (1.064) 0.104 0.944 (0.946)
0.465 0.499 (0.500) 0.650 0.196 (0.197)
0.262 0.499 (0.500) 0.507 0.347 (0.348)
Second 0.167 0.499 (0.500) 0.351 0.433 (0.434)
0.116 0.499 (0.500) 0.159 0.486 (0.487)
0.065 0.499 (0.500) 0.084 0.495 (0.496)
Case of considering the effect of damping ‘
0.789 1.300 (1.303) 0.662 0.595 (0.597)
0.478 1.180 (1.183) 0.414 0.784 (0.787)
Principal 0.329 1.118 (1.121) 0.330 0.840 (0.842)
0.187 1.054 (1.057) 0.217 0.909 (0.912)
0.121 1.018 (1.021) 0.112 0.978 (0.981)
0.994 0.486 (0.487) 0.654 0.197 (0.198)

Second L —_ 0.525 0.353 (0.355)
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parentheses in the column of w/2Q are the boundary frequencies of a simply supported
column, obtained by Egs. (26), (27), (28) and (29), approximately derived in accordance
with the theory of continuum mechanics [1].

Case of neglecting the effect of damping:

Principal region of dynamic instability-

©/2Q=\/(1%1) (26)
Second region of dynamic instability-
©/2Q=1, ©/2Q=3/(1-2p?) 27)

Case of considering the effect of damping:
Principal region of dynamic instability-

of2m= {1 ~342 £ /(4> — 42 +14%)) (28)
Second region of dynamic instability-
w[2Q=3/{1-p?+/u*—4*(1—p?)} (29)

where
A=28/{0),\/(1—P0/P*)}, e=hw,.

From the tables, it is recognized that results calculated by the proposed method
agree well with the boundary frequencies analyzed by the theory of continuum mecha-
nics [5].

Arches- The regions of dynamic instability of the parabolic arches made of
aluminium are analyzed. The arches have the same axis as shown in Fig. 5 (b) and
their cross sections are shown in Figs. 3 (b) and (c). Similarly, in the case of columns,
when the effect of damping is considered, the damping constant is assumed to be 0.05.

In the analysis the arches are divided into ten segments and their masses are con-
centrated on each node. And it is assumed that the condition of unit loads acting
downwards on each node is the non-periodic fundamental loading, and condition of
unit periodic loads with the magnitude of lsinwt, acting in the sane manner, is the
periodic fundamental loading.

(Arches deforming in their planes) The arches with cross section shown in Fig. 3
(b) are investigated for the three kinds of boundary conditions as shown in Fig. 6.

The values of P, at the static critical state and the first natural circular frequencies
w, of the arches deforming in their planes are shown in Fig. 6.

The procedure of calculation for boundary values of dynamic instability is similar
to that of columns. The results are partially shown in Tables 4, 5 and 6. The values
in parentheses in the column of ®/2Q are the boundary frequencies of simply supported
column, evaluated by the approximate Egs. (26), (27), (28) and (29).

It will be clear from the tables that the boundary frequencies of the regions of
dynamic instability of the arches illustrated in Fig. 5 (b) and 6 can be evaluated utilizing
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the approximate Eqgs. (26), (27), (28) and (29) for simply supported column, if we
permit the difference of about 1%. _

(A4n arch deforming out of its plane) An arch with the cross section shown in
Fig. 3 (c), which is clamped at both the ends, is observed. A value of P, and the
first natural circular frequency w; of an arch deforming out of its plane are

CASE 1 il o
=
S
=
[a]
4
8
2 | X v v
8
z
2
8
P 1.0 1.0 0.2
P. .2.0999 1.3406 0.9049
wy 135.53 107.36 84 .13
Pand P: : kg w: : rad/sec.

Fig. 6 Arches Subjected to the Periodic and Non-periodic Loads.

Table 4. Boundary Values of the Regions of Dynamic Instability of an Arch Deforming
in its Plane for Case 1.

Upper bound Lower bound
Region
7 w[282 7 /282
Case of neglecting the effect of damping

0.632 1.284 (1.278) 0.484 0.727 (0.719)

0.526 1.240 (1.235) 0.365 0.803 (0.797)
Principal 0.447 1.206 (1.203) 0.305 0.839 (0.834)

0.337 1.157 (1.156) 0.236 0.877 (0.874)

0.264 1.123 (1.129) 0.172 0.909 (0.909)

0.573 0.503 (0.500) 0.580 0.289 (0.286)

0.438 0.502 (0.500) 0.457 0.385 (0.381)
Second 0.345 0.502 (0.500) 0.338 0.442 (0.439)

0.278 0.501 (0.500) 0.245 0.470 (0.469)

0.191 0.499 (0.500) 0.179 0.482 (0.484)

Case of considering the effect of damping

0.610 1.262 (1.255) 0.588 0.656 (0.649)
0.509 1.219 (1.215) 0.488 0.730 (0.723)
Principal 0.433 1.187 (1.184) 0.370 0.808 (0.802)
0.327 1.140 (1.140) 0.261 0.873 (0.869)
0.257 1.107 (1.109) 0.176 0.917 (0.918)
1.111 0.501 (0.495) 0.638 0.226 (0.219)
Second 0.762 0.498 (0.493) 0.585 0.291 (0.286)

0.412 0.487 (0.485) 0.357 0.454 (0.450)




Analysis of Dynamic Stability of Framed Structures

Table 5. Boundary Values of the Regions of Dynamic Instability of an Arch Deforming

in its Plane for Case II.

549

Upper bound Lower bound
Region
¢ ®[20Q u ©22
Case of neglecting the effect of damping

0.745 1.323 (1.321) 0.525 0.694 (0.689)

0.606 1.267 (1.268) 0.478 0.729 (0.723)

Principal 0.505 1.226 (1.227) 0.394 0.782 (0.783)
0.430 1.193 (1.196) 0.299 0.839 (0.837)

0.324 1.145 (1.150) 0.197 0.892 (0.896)

0.426 0.501 (0.500) 0.631 0.228 (0.225)

0.335 0.499 (0.500) 0.517 0.344 (0.342)

Second 0.270 0.498 (0.500) 0.453 0.387 (0.384)
0.222 0.497 (0.500) 0.333 0.442 (0.441)

0.186 0.496 (0.500) 0.204 0.476 (0.479)

Case of considering the effect of damping

1.789 1.666 (1.659) 0.480 0.730 (0.726)

1.228 1.487 (1.483) 0.437 0.760 (0.755)

Principal 0.921 1.379 (1.377) 0.397 0.785 (0.782)
0.725 1.306 (1.305) 0.362 0.807 (0.804)

— — 0.302 0.842 (0.841)

1.091 0.501 (0.497) 0.581 0.292 (0.289)

Second 0.545 0.495 (0.494) 0.458 0.389 (0.387)
0.315 0.484 (0.486) 0.299 0.472 (0.469)

Table 6. Boundary Values of the Regions of Dynamic Instability

in its Plane for Case III.

of an Arch Deforming »

Upper bound Lower bound
Region
7 /29 7 /28
Case of neglecting the effect of damping
0.528 1.239 (1.236) 0.332 0.819 (0.817)
0.415 1.191 (1.190) 0.257 0.864 (0.862)
Principal 0.339 1.159 (1.157) 0.202 0.894 (0.893)
0.240 1.115 (1.114) 0.162 0.916 (0.915)
0.159 1.077 (1.077) 0.133 0.932 (0.931)
0.496 0.500 (0.500) 0.632 0.226 (0.223)
0.345 0.501 (0.500) 0.456 0.384 (0.382)
Second 0.253 0.500 (0.500) 0.289 0.458 (0.457)
0.194 0.500 (0.500) 0.277 0.474 (0.473)
0.124 0.500 (0.500) 0.147 0.490 (0.489)
Case of considering the effect of damping

0.675 1.284 (1.282) 0.509 0.710 (0.707)
0.513 1.221 (1.219) 0.384 0.793 (0.792)
Principal 0.404 1.174 (1.174) 0.295 0.849 (0.848)
0.331 1.144 (1.143) 0.205 0.901 (0.900)
0.202 1.087 (1.086) 0.149 0.932 (0.932)
1.374 0.500 (0.497) 0.690 0.118 (0.110)
Second 0.759 0.495 (0.494) 0.635 0.227 (0.223)
. 0.476 0.490 (0.490) 0.556 0.318 (0.315)
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P,=0.8196 kg, w,=>50.265 rad|sec.

The procedure of calculation of the boundary values is similar to that of the column,
and the results are shown in.Table 7. The values in parentheses in the column of
w/2Q indicate the boundary frequencies of a simply supported column, calculated
form the approximate Eqgs. (26), (27), (28) and (29).

Table 7. Boundary Values of the Regions of Dynamic Instability of an Arch Deforming
out of its plane.

Upper bound Lower bound
Region
7 w22 z /280
Case of neglecting the effect of damping

0.460 1.214 (1.208) 0.469 0.735 (0.729)

0.279 1.133 (1.131) 0.331 0.823 (0.818)
Principal 0.189 1.090 (1.091) 0.240 0.876 (0.872)

0.138 1.063 (1.067) 0.137 0.929 (0.929)

0.083 1.031 (1.041) 0.071 0.955 (0.964)

1.992 0.505 (0.500) 0.593 0.276 (0.273)

0.495 0.503 (0.500) 0.364 0.432 (0.429)
Second 0.218 0.501 (0.500) 0.200 0.481 (0.479)

0.059 0.491 (0.500) 0.121 0.498 (0.493)

0.076 0.493 (0.500) 0.077 0.495 (0.497)

Case of considering the effect of damping

0.433 1.177 (1.172) 0.479 0.743 (0.737)
0.263 1.101 (1.099) 0.341 0.835 (0.830)
Principal 0.181 1.065 (1.062) 0.248 0.891 (0.888)
0.130 1.031 (1.036) 0.144 0.949 (0.948)
0.098 1.008 (1.018) 0.093 0.980 (0.982)
Second 1.949 0.500 (0.495) 0.600 0.277 (0.274)
0.436 0.473 (0.469) 0.408 0.457 (0.449)

Thus, it can again be said that we are able to evaluate the boundary frequencies of
a fixed arch with loading condition illustrated in Fig. 5 (b) using the approximate equa-
tions.

Conclusion

The equations of motion with finite amplitudes are obtained using the linearized
finite displacement method and the analysis of dynamic elastic stability of general
three-dimensional framed structures subjected to the periodic loads is presented.

In the two cases of regarding and disregarding the effect of damping, the boundary
values calculated by the proposed method show good agreement with those obtained by
the theory of continuum mechanics for the dynamic instability of a simply supported
column. Therefore, it can be said that the proposed method is useful to estimate the
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dynamic instability of the frames. In addition, when the regions of dynamic instability
of columns except a simply supported column and arches chosen in applications are
expressed with respect to w/2Q— u plane, With this in the case where the non-periodic
fundamental loading is equal to the periodic ones, it may be said that the boundary
frequencies of the regions of instability of columns and arches chosen in applications
can be obtained from the approximate Egs. (26), (27), (28) and (29) irrespective of
column and arch and of difference in boundary conditions. However, if these loadings
are not equal, these approximate equations are not available.

Although the applications for columns and arches only are shown, the proposed
method can equally be applied to various kinds of framed structures. Accordingly,
their dynamic elastic instability accompanying the simple parametric resonance can
be investigated in the same way.
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Appendix II. Notations

The following symbols are used in this paper:

D =damping matrix;
d =displacement vector;
d, d, =displacement vectors due to the periodic and non-periodic loads, respectively;
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=displacement vector of i-th node;

=displacement vectors of i-th node due to periodic and non-periodic loads, re-
spectively;

=coordinates of i-th node which are expressed in vector form;

=damping constant for k-th natural free vibration;

=number specifying the node considered;

=number specifying the node adjacent to the node cosidered;

=stiffness matrix of framed structure;

=intial stress matrices under non-periodic fundamental loads P and .l",,, respectively;

=total number of nodes of the structure;

=end force vectors of end i of member ij refered to the global and local coordinate
axes, respectively;

=end force vectors of end i of member ij under the periodic and non-periodic loads,
respectively, referring to the local coordinate axes;

=end force vectors of end / of member if under the periodic and non-periodic fun-
damental loads, respectively, referring to the local coordinate axes;

=amplitude of vector of periodic load acting on the framed structure;

=amplitudes of vectors of the periodic actual and fundamental loads acting on
i-th node, respectively;

=vector of the non-periodic load;

=vectors of the non-periodic actual and fundamental loads acting on i-th node,
respectively;

=ratios of the actual load to the fundamental load under the periodic and non-peri-
odic loads, respectively;

=P, value of static critical state;

=transformation matrix;

=displacements of i-t4 node in the directions of x-, y- and z-axes, respectively;

=mass matrix of framed structure;

=mass matrix of i-th node;

=global coordinate axes; °

=global coordinates of i-zh node;

=local coordinate axes of member ij; ,

=rotation angle of principal axes of cross section of end i about member axis ij;

=increment of displacement vector of i-th node due to periodic load, i. e., additional
displacement vector;

=increment of coordinates of i-t4 node by deformation;

=increment of rotation angle «,; by deformation of framed structure;

0zi5 044 0,,=rotation angles of i-th node about the axes parallel to the global coordinate axes,

Aijs Pijs Vij
7

P,

(2]

@

W

Q

respectively ;
=direction cosines of member ij;
=excitation parameter;
=k-th normalized modal vector;
=modal matrix;
=circular frequency of the periodic load;
=k-th natural circular frequency; and
=first natural circular frequency of structure subjected to the non-periodic load.



