NOISE CHARACTERISTICS OF Co-yFe₂O₃ PERPENDICULAR MAGNETIC RECORDING HARD DISK

Setsuo YAMAMOTO, Takayuki ANDOU, Hiroki KURISU, Mitsuru MATSUURA, Takanori DOI* and Kohsaku TAMARI*

Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755, Japan * R & D Division, Toda Kogyo Corporation, Meijishinkai, Ohtake 739-06, Japan

Introduction

We have already proposed a new fabrication method of $Co-\gamma Fe_2O_3$ perpendicular magnetic recording thin film hard disks [1,2]. The $Co-\gamma Fe_2O_3$ hard disks exhibit superior high density recording performance and hardness tolerable for contact recording without media overcoat [3,4]. In this study, noise characteristics of the $Co-\gamma Fe_2O_3$ disk was investigated.

Experimental

The Co- γ Fe₂O₃ disks were prepared by following process: At first, a NiO underlayer, which had $\langle 100 \rangle$ orientation, with NaCl-like structure was deposited onto a glass substrate by reactive rf sputtering. Succedingly, a CoO-Fe₃O₄ single layer was reactive sputtered on a NiO underlayer using a CoFe alloy target at a substrate temperature from 200 to 280°C. Finally, annealing was performed at 260-350°C for 0.5-2 hours to obtain Co- γ Fe₂O₃ layer which has large perpendicular magnetic anisotropy ($K_u \sim 6 \times 10^5$ erg/cm²) and high perpendicular coercivity of about 2500 Oe .

Noise characteristics of the $\text{Co-}\gamma\text{Fe}_2\text{O}_3$ disks and several longitudinal disks whose specification was listed in Table 1 were measured using a MIG-type ring head with a gap length of about 0.2 μm in contact recording. The head-disk relative speed was 3m/s. Medium noise, $N_{\text{m,mrs}}$, was estimated by subtracting the sum of head impedance noise and amplifier noise from the measured noise in the frequency region from 0 to 8MHz.

Results and Discussion

When the Co- γ Fe₂O₃ layer thickness was varied from 600 to 1300 A, maximum SN ratio was obtained at 900A. Reverse DC erase noise measurement was performed [5]. The longitudinal particulate thinly coated flexible disk (Zip) shows minimum medium noise at intermediate reverse DC erase magneto-motive-force. On the contrary, longitudinal thin film hard disk shows the maximum medium noise at MMF of $0.06AT_{p-p}$. For the Co- γ Fe₂O₃ perpendicular disk, the maximum medium noise was measured at reverse DC erase MMF of $0.1AT_{p-p}$. It was concluded that the Co- γ Fe₂O₃ perpendicular disk shows a thin film media like noise behavior.

Noise spectra when 84.7kFRPI signal was recorded are shown in figure 1. The Co- γ Fe₂O₃ perpendicular disk has largest B_r δ value except for the Zip disk. However, the medium noise level of the Co- γ Fe₂O₃ perpendicular disk is as low as longitudinal hard disk designed for MR head use.

Figure 2 shows the recording density dependence of SN ratio (S_{p-p}/N_{m,rms}). The Co-

1. Name: Setsuo YAMAMOTO

Company Name: Faculty of Engineering, Yamaguchi University

Address: Tokiwadai, Ube 755, Japan

Telephone: int. access code 81-(836)35-9111 ext.9486

FAX: int. access code 81-(836)35-9486 Email: yamamoto@po.cc.yamaguchi-u.ac.jp

2. Subject Category: 3 (Magnetic Recording: Media, perpendicular)

3. Presentation: Poster

γFe₂O₃ perpendicular disk showed the highest SN ratio than any other longitudinal recording disks now on the market at high densities over 40kFRPI.

Conclusion

It was proved that the Co-γFe₂O₃ perpendicular magnetic disks have remarkable capabilities for ultra-high density recording media, i.e. hardness tolerable for contact recording without overcoat, high density recording performance, and very low noise characteristics.

References

- [1] T.Doi and K.Tamari, J. Appl. Phys., 79(8), 4887 (1996).
- [2] T.Doi and K.Tamari, J. Magn. Soc. Jpn, 20(2), 73 (1996).
- [3] S.Yamamoto, T.Andou, H.Kurisu, M.Matsuura, T.Doi and K.Tamari, J. Appl. Phys., 79(8), 4884 (1996).
- [4] S.Yamamoto, T.Andou, H.Kurisu, M.Matsuura, T.Doi and K.Tamari, J. Magn. Soc. Jpn, 20(2), 137 (1996).
- [5] H.Aoi, M.Saitoh, N.Nishiyama, R.Tsuchiya and T.Tamura, IEEE Trans. Magn., 22, 895 (1996).

Table 1 Specification of tested magnetic recording disks

Recording media	Hc [Oe]	Br°δ [G°μm]
Co-γFe ₂ O ₃ HD	2500 (±)	367 (δ=900Å)
For inductive head used HD	1756 (//)	. 289
For MR head used HD	1775 (//)	119
Particulate FD (Zip)	1565 (//)	540

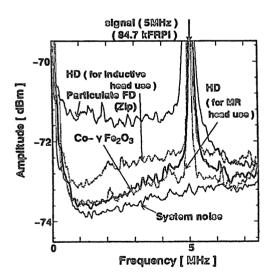


Fig.1 Noise spectra for various recording disks. 84.7kFRPI (5MHz) signal was recorded.

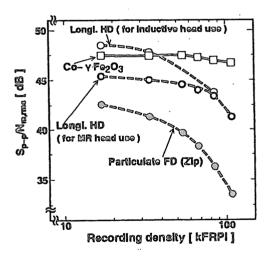


Fig.2 Recording densisty dependence of signal to medium noise ratio.