A Modified Algorithm for Taking Reciprocal of n-bit Integers

By Hiroshi TANIGUCHI, Itsuo TAKANAMI and Katsushi INOUE
(Received July 16, 1979)

Abstract

For an integer P whose bit-length is just n, its reciprocal is defined by [227=1/P |, where
|x] denotes the greatest integer equal to or less than x. It is well known!!? that the time for
taking reciprocal is, to within a constant factor, the same as the time to do integer multiplication
in bit operation. So we first explain Cook’s Algorithm which requires the same order of time

_ as multiplication. Next, we propose a modified algorithm and prove its correctness and analyse
the complexity of computation. This shows that the algorithm is expected to improve constant
factor in complexity.

1. Introduction

An algorithm shown by Schdnhage-Strassenl?] is asymptotically the fastest
known way to multiply two integers together. The algorithm requires time
O4(nlog nloglog n)*, where n is a bit length of the integers. On the other hand, it is
well known that certain integer operations, such as division, squaring and taking
reciprocals, require the same order of time as multiplication. '

Specially for taking reciprocal operation, there is the Cook’s algorithm using
divide-and-conquer approach which requires the same order of time as multiplication.
We first explain the algorithm which is defined only for integers whose bit-length is a
power of 2. If the bit-length is not a power of 2, the generalization should be obvious
—add 0’s and change scale. For both cases, we also discuss the upper bound of
executing time. Finally we propose a new algorithm, prove its correctness and com-
pute the upper bound of its executing time. The new algorithm is considered to
improve constant factor asymptotically. ’

2. Preliminaries and Cook’s algorithm

In this section, we first give a notation of integers and a definition of reciprocals
of integers. Next we present Cook’s algorithm whose executing time is O(M(n)), where
M(n) is the time to multiply two integers of size n. We also discuss the upper bound
of its executing time more rigorously.

Department of Electronics Faculty of Engineering Yamaguchi University Ube, 755 Japan
+ A function g(n) is said to be O(f(n)) (read order f(n)) if there exists a constant ¢ such that g(m)< cf(n)
for all but some finite (possibly empty) set of nonnegative values for n. We use Op to indicate order
...of magnitude under the bitwise computation. . In what follows, we omit the suffix B, if no confusion
occurs. : : :



308 Hiroshi TaniGucHr, Itsuo Takanami and Katsushi INOUE

DEFINITION 1: Let P=[p,p,---p,] be an n-bit integer with p, =1, where [x] is
the integer denoted by the bit string x (e.g., [110]=6). Its reciprocal integer Q is an
integer such that

Q=[2?""1/P]. (2.1)
That is,

22-1=QP+S  (0<S<P), 2.2)

where S is a unique integer depending on 227~ and P.
Now, we present Cook’s algolithm. For correctness of this algorithm, see [1].

ALGORITHM C: A recursive algorithm for taking integer reciprocals.

Input. An n-bit integer P=[p,p,---p,], with p,=1. For convenience, we assume
that n is a power of 2.

Output. . The integer A=[a,a,---a,] such that 4=]22~1/P]|.

Method. We call RECIPROCAL ([p,p,-++p,]), where RECIPROCAL is the recursive
procedure in Fig. 1. For any k which is a power of 2, it computes an approximation
to |22¥"1/[p;p,---p]]. Note that the result is normally a k-bit integer except when
P is a power of 2, in which case the result is a (k4 1)-bit integer.

procedure RECIPROCAL ([p,p,---p.]):

begin
1 if k=1 then return [10]
else
begin
2 [0001“'Ck/z]““RECIPROCAL([P1P2’"Pk/:]);
3 [dldz“'dzk]““[0001"'%/2]*23"/2—[0001"'Ck/2]2
[pip2--pil;

comment Although the right-hand side of line 3 appears to
produce a (2k+1)-bit number, the leading [(2k+1)st] bit is
always zero;
4 Laoay - ap][didy---di1];
comment [a,a;---a,] is a good approximation to 22*~1/[p,p,---
pe].  The following loop improves the approximation by adding
to the last three places if necessary;

5 for i«2 step —1 until 0 do
6 if ([aoay---a ] +2)*[p,p,---p,]1 2%~ then
7 [aoa,---ar]—[aoa; - -a,] +2
8 return [aqa,---a;)
end
end '

Fig. 1. Procedure RECIPROCAL.



A Modified Algorithm for Taking Reciprocal of n-bit Integers 309

We give some assumptions and notations before we discuss the executing time.
(i) M(n) denotes the time to multiply two integers of size n. M(n) satisfies the
following condition: foraz1

a*M(n)zM(an)ZaM(n).

(ii) A(n) (S(n)) denotes the time to add (substract) two integers of size n. A(n)
satisfies the following condition: for some constant ¢, A(n)<cn.

(iii) A shift operation, a multiplication or a division by some powers of 2, does
not require any time on bit operations.

On the upper bound of its executing time, we get the folloWing theorem.

THEOREM 1: Let Tg(n) denotes the time for executing procedure RECIPROCAL,
where n is a bit length of a given integer. Then we have the following inequality.

Tr(n) £5M(n)+ con—5S5M(n)/n+c, (2.3)
where ¢, ¢, are some constants not depending on n.

Proof. Line 2 requires Tx(k/2) bit operations. Line 3 consists of squaring,
multiplication and subtraction, requiring M(k/2+1), M(k+2) and O(k) times, respec-
tively. (Recall that a multiplication by some powers of 2 does not any time.)

By our assumption on M, M(k/2+1)<M(k+2)/2. Furthermore, M(k+2)—M(k)
is O(k) and thus line 3 is bounded by 3M(k)/2+ ¢’k for some constant ¢’ not depending
on n. Line 4 is clearly O(k).

It appears that the loop of lines 5-7 requires three multiplication, but the
calculation can be done by one multiplication, [aqa,---a;]J*[p;p,---pi), and some ad-
ditions and subtractions of most 2k-bit integers. Thus lines 5-7 are bounded by
M(k)+ c"k for some constant c¢”. ‘

Putting all costs together, we have

To(n) < To(nf2) + —52— M(n)+c"n 2.4)

I/I

for some constant ¢
To solve the above recurrence, put n=2!, Tg(2")=r;, and M(2*)=m,;. we have

5
NSro +5

zm,.+c"'2i' for 1<isl (2.5)

By summing up (2.5) from i=1 to I, we have

r0+ Z m;+c” Z 2 (2.6)

i=1
By our assumption on M, m; < %, m; for 1Sigl.

Then we have



3i0 Hiroshi TANiGUCHT, Itsuo ‘TAkanami and Katsushi INOUE
r,‘gro +(——2,+{ +c ) i=21 2i
_5 2 I/Izl Sml 2 "
=Jm 1 + C - —'—‘27—' + 1"0 —4ZC

Therefore, we have

. TR(MéSM(") +con— 5]‘{1()1)

T

where ¢, and ¢, are some constants such that cozzc”", ¢y = Ty( 1)‘—2c”’. Q.E.D.

3. Generalizalization of Cook’s algorithm

In the previous algorithm, it was assumed that a bit-length n was a power of 2.
If not, the generalization should be obvious by adding extra 0’s and changing scale.
That is, assume that P is an n-bit integer and n=I1+m (l is a power of 2 and O0<m<I).

Now consider P’ whose length is just 2/ by adding |—m 0’s to P. Tt is clear that
P’=P2'"m. - Then the previous algorithm can be applied to P’ since the size of P’ is
a power of 2. "

Let Q' be the reciprocal of P'. We have

Q=12 | (3.1)

Below, we modlfy the definition on M to dlSCUSS the difference between the exe-
cutlng times of the previous case and this case. '

DEFINITION 2. Let M (n, m) be the time to multlply an n-b1t mteger and an
m-bit integers. M’(n, m) satisfies the followmg condition for each n, m.

(i) M'(n, m)=M'(m, n). S : BN )
(i) Let n,=Max (n, m) and ng=Min (n, m). Then,
M(ns) M'(n, m)<M(ny). | (3.3)
Let f be a function such that
fi N2 —R

and f(n, m)=M'(n, m+1)— M'(n, m) for each n, m in N, where N is the set of non-
negative integers and R the set of real numbers. We can assume that f ‘satisfies the
following conditions. '

(i) If n=1, then for each m v
femzfamy (34

(i) If m=1, then for each n



A-Modified Algorithm for Taking Reciprocal of 7-bit Integers 311

S, myzf(n, ) R (3.5)

Let Tx(n) denote the time for executing procefure RECIPROCAL, where n is not
a power of 2. It is clear that the following inequality holds.

TR(n)< ). : (3.6)

On the other hand, it is natural that the upper bound of T R(n) should be really less
than Tg(2l), since the shift operations do not require any time. This version is shown
by the following corollary whose proof is similar to that of Theorem 1.

COROLLARY 1: Let n=I+m, [ bea poW’e'r.of 2 and .0< m<l. We have
Te(n) < Te(D)+ M(D+2M' 2L, n)+ ¢, (3.7)

where ¢, is some constant not depending on n. .

4. A modified algonthm

In section 2, we assert that Q and S are the quotient and the remalnder respectlvely,
when 22%-1 is divided by P. In Cook’s algorithm, only the quotient Q was used
recurrently. Now if we construct a modified algorithm which use not only the quo-
tient Q but also the remainder S, we can expect that the algorithm should be faster
than Cook’s one. We also require the modified algorithm compute the reciprocals of
n-bit integer without adding extra 0’s, even if n is not a power of 2. So, propose the
following algorithm.

ALGORITHM M: A modlﬁed algorlthm for taklng re01procals

Input. An n-bit integer P=[p,p,---p,], with p;=1.

Output. The ‘integer Q=[goq'-*q,] and S=[s,s,---s,] which are the quotient and

the remainder respectively, when 227~1 is divided by P. Note that S is an at most
n-bit integer. ‘ ‘

Method. We call the procedure MODIFIED([plpZ-'--p,,]) which i‘s” the recursive

procedure in Fig. 2.

‘procedure MODIFIED ([p1p2*Pi):
begin .
1 if k=1 then return ([10] (oD ,
comment The first and second component is the quotxent and the remalnder
respectwely
else
) begin ,
2 le<]k|; mf—k——l »
' comment |[1[=1and for i>1, _lzl_ is the greatest pOWer of 2 less
than i. Note |2 = m=1 for mz=1. e -



312 Hiroshi TaNiGucHI, Itsuo TAkANAMI and Katsushi INOUE

3 ([eocy---crd, [tit2+-1,])«MODIFIED ([p, p,---p/1);
4 [rira 1] =[P+ 1P1s 2 D]
5 [bsb1'"bk]“[tltz"‘tl]*zm'“[rxrz"'rm]*[cocx“'cl]
comment b, is a sign bit: b,=0 if nonnegative.
6 [dyd;:+ dy s ] [bsby - -b]x[cocy---c];
7 [eoes -+ 21~ 1] [cocy e J#2m 2" 4 [dd -+ dy 1 1];
8 (9091 @]+ [eoes --e];
9 for i—2 step —1 until 0 do
begin
10 (9091 921 ([4091-+* @] +2)*[P1 P2 Pi];
1 if [g0g:1---92x] 271 then
begin
12 (9041 - a)[g0q:1 a1 +2};
13 [s182° 5]« 2271 —[gog, -+l
end
end
14 return ([goq, i), [5152+++5¢])

end
end

Fig. 2. Procedure MODIFIED ([p;ps...p:)).

THEOREM 2: The algorithm M finds [g,4,--q,] and [s,s,---5;] such that

(9091 ]*[P1P2 Pkl =22% "1 —[5y55-+-5;]
and 0=[s;s, -5, ] <[p;p,---pi], for a given integer [pip2+Pil

Proof. The proof is by induction on k. The basis, k=1, is trivial by line 1.
For the inductive step, let C be [coc,---c;] obtained at line 3, P'=[p,p,--p,l,
R=[p;41Pi+2-'P:], and T be [¢t,t,---t;] obtained at line 3.

Then P=[p,p,--p.]=p'2™+R. By the induction hypothesis we have

CP'4+T=2%"1 (3.8)

where 0ST<P'. Let B=[bb,--b;], D=[dd;--dy.;], and E=[ege;  -€;42-1]-
Furthermore, let Q be [goq,---q,] obtained at line 8.

Since p;=1, 2""1<p'<2!), 0SR<2™, and thus 2'-1<C<2 0ST<P'<2h. It
follows that —2*¥ <B<2* and hence the (k+ 1)-bits including a sign bit are sufficient
to represent B. Similarly (k+1I41)-bits including a sign bit and (k+2[)-bits are
sufficient to represent D and E, respectively, since —2¢t!<D<2¥*! and E<2k+2i-1
+2k+l.

Consider the product PQ=P<C2’"+L BC J) 3.9)

'QEF‘-T
Now let Q’'=C2™+BC/[2%! (i.e., Q=|0Q')).
From (3.8) we have '



A Modified Algorithm for Taking Reciprocal of n-bit Integers 313

CP'2%m 4 T2m=22k"1,

Thus,
PC2m=22k=1_2m(T2m—RC)=2%"1_2mB, (3.10)
Therefore,
, - n PC
PQ’' =221 “B(Z T 321
____22k-1_B{2m.__(_P_2§;;':ij_{)_g_}, (3.11)

From (3.8) P'"C=22"1—T, and by substituting 22/~!—T for P’'C and performing
some simplifications, we have

' PQ’=22k=1_pB2[221-1292%k~1_[ (3.12)

where 0 U=B?[221-1<22m*1 since —2F¥<B<2*¥ and thus 0<B?<22k=220%m),
Now

PQ=PIQ']>P(Q' 1),
so from (3.12) we have,
226-13> PQ' > PQ > PQ' — P=2%"1 - — P>22k=1_Qm+1 _2k,
Thus
pPQ=2%-1_§'

where 0< S’ <22m+1.4.2k Since P2>2*"1, it follows that by adding at most 5* to Q,
we obtain the quotient which satisfies the statement of theorem for k. This job is done
by lines 9-13. Once the quotient was determined, it follows that the remainder is also
correctly computed at line 13.  So the induction step follows. Q.E.D.

Finally, we discuss the time of executing this algorithm. We first need the fol-
lowing lemma.

LeMMA 1: For each nonnegative integer j, we have
2M'(2j, DEM2))+M(J).

Proof. Put a(j)=M(2j)—M'(2j, j) and b(j)=M'(2j, j)=M(j). Then, we have
a())= EAMQ, j+i+ D)= M@, j+ D)

- jg_‘_:f@j, j+i)  (See definition 2).

+ If k is a power of 2, then at most 5, otherwise at most 3.



314 - Hiroshi. TANIGUCHI, . Itsuo TAKANAMI . and ‘Katsushi. INOUE

Similarly, we have b(j)= Z f( ]+l ])
By using (3.4) and (3.5), we have

a()=b()= S, J+D~f(+i )
2 S UG+ +D~G+, D)
TG DI
.. =0 o o
Therefore, 2M"(2j, j) < M(2j) + M(j).  _QED.

THorEM 3: Let Ty(n) denote the time of executing the modified algorithm,
where n 1s a brt length of 1nteger P. We have the followmg mequahty

" Toa(m)S Ty MYy )+ M(n, -+ M(n) +cym C(Ga13)

where = |n|, m=n—I=n-]n| and c; is some constant.
If n is a power of 2, the solution of (3.13) is

TM(n)g,—%M(n)Jrcw—% Mlg”)+c5 (314

where ¢, and c5 are some constants.

Proof. The proof is similar to that of theorem 1. First we show (3.13). The
times required at lines- 3, 5,6, 7, 9-13, and 14 are Ty(I), M'(l, m)+O(n), M(n, l),.O(n),
M (n)+ O(n), and O(n), respectively. So we have (3.13). -

- Let.n be a power of 2, n=2% for some integer k, then I= |n| =n/2 and m= n/2
Furthermore put Ty(2")=t;, M(2")=m;, and M'(2}, 2i~1)=uy,, then we have

, t<t, 1Mo Fumy 4 cy2f : c(3.15)

for i such that 1<i<k.
By summing up (3.15) from i=1 to k, we have

k .
LSty+ ;’ (u+m;+m; - +c32%).
From Lemma 1, we have u; < (m +m, 1) for each i such that 1<igk. By our

assumption on M and performlng some algebraic s1mp11ﬁcat10ns we can readily have
the inequality (3.14). L , : Q.E.D.



A Modified Algorithm for Taking Reciprocal of n-bit Integers 315

5. Conclusion

We have investigated some algorithms for taking reciprocals and have proposed

a modified algorithm expected faster than the previous one asymptotically.

Acknowledgement

H. Taniguchi, one of the authors, would like to thank Professors H. Anzai of

Kyushu Institute of Technology and S. Yoshida of Kyushu University for their hearty
encouragement.

[11]
[2]
(31
(4]

References

Cook.S. A. and S.O. Aanderaa, “On the minimum complexcity of functions”, Trans.
Amer. Math. Soc., 142, 291-314 (1969).

Schonhage. A. and V. Strassen, *“Schnell Multiplikation grosser Zahlen”, Computing, 7,
281-292 (1971) »

A.V. Aho, J. E. Hopcroft and J. D. Ullman, “The design and analysis of computer algo-
rithms”, (Addison-Wesley Pub. Co., 1974)

H. Taniguchi, 1. Takanami, and K. Inoue, “Some New Algorithms for Taking Reciprocal
of n bit Integer”, Technical Report No. AL79-14, IECE of Japan (1979) (in Japanese).



