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Abstract

The temperature distribution for non-steady heat conduction in solids, where the initial
temperature distribution is parabolic and the surface heat flux is controlled by fluid convection
or radiation, can be expressed in the following equation, regardless of solid shapes of plates,
cylinders and spheres.

t—t* _p_ toi—tsi g

to—1t* Log—12*

E and E’ were expressed in Equations (8) ~ (13) for each solid shape in Table 1 and calcu-
lated by the computer for various values of parameters such as a#/R?, 1/ Rh, and r/R. If the
initial temperature distributions were uniform, temperature curves in solids were found to be
parabolic at any time for dimensionless time af/R?>0.2, regardless of solid shapes. E and E’
for the center and surface of solids were shown in the charts for each solid shape. If these charts
are used repeatedly with Equations (4) and (7), temperature distribution histories can be calcu-
lated easily for the case that the surface convection or radiation conditions (heat transfer
coefficients and equilibrium temperatures) are changed stepwisely. Charts for E,, and E’;y,
which serve to obtain the average temperatures, were also given.

For the extreme case that the heat transfer coefficient tended toward infinity and the
surface temperature became closer to the equilibrium temperature, the charts for the average
temperature were shown.

Introduction

Charts for calculation of temperature distribution in solids of simple shapes

such as plates, cylinders, and spheres for nonsteady heat conduction, when the
heat transfer of solid surface is controlled by the heat convection or radiation,
were reported by many investigators such as Gurney LurieV, Heisler,® Hottel,®
But these charts are limited
only to the use for the constant convection or radiation conditions and not

etc. and quoted in various technical handbooks.

applicable when the surface conditions are changed.

In the practical operations of heating or cooling of solids, it is occasionally
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necessary to change the heat flux of surface convection or radiation. Because
the sudden temperature changes or the large temperature gradient in solids may
cause the troubles or damages of materials due to the thermal stress.

It is the purpose of this report to present the charts for calculations of tem-
perature distribution in solids when the surface conditions are changed stepwisely.
One of the authors of this paper has already reported such charts for cylinders®.
This report contains the full charts for plates, cylinders and spheres in the wide
range of parameters such as time, thickness of solid, thermal properties, and fluid
or radiation heat transfer coefficient. '

The charts for the constant surface temperature, which is the limit condi-
tions of the infinite heat transfer coefficient, were also given. These full charts
for plates, cylinders and spheres and for both initial conditions of the constant
and parabolic temperature distributions had not be published.

All charts may be used not only for calculation of the heating or cooling
operations but also for the mass transfer, for example, the drying of materials
denoting the moisture content instead of the temperature.

Equations for calculation

Equations of heat conduction used in this report were summarized in Table
1. Equations (1), (2), and (3) are the one dimensional heat conduction equa-
tions of the semi-infinite plates with the thickness 2R, the semi-infinite cylinders
with radius R, and the spheres with radius R, respectively. Equation (4)
denotes the initial conditions and means the parabolic temperature distribution
in solids at the time §=0. This condition includes the case of the constant initial
temperature when ¢,; is equal to t,;, which was used in the already published
chartsV»®.  The reason to use the parabolic initial temperature distribution
conditions were described later. Equation (5) means that the temperature dis-
tributions are symmetric and that the temperature gradient is equal to zero at .
the center of =0 for all solid shapes. Equation (6) gives the boundary con-
ditions of 7=R and means that the heat conduction flux at the solid surface is
equal to the rate of heat convection or radiation. The solutions of Equation
(1), (2), or (3) with the boundary conditions of Equation (5) and (6) have already
been given by Carslaw and Jaecer® for the general initial temperature distribu-
tion. These solutions could be represented in the form of Equation (7) for the
parabolic initial temperature distribution, regardless of the solid shapes. E
and E’ were given in Equations (8) and (9) for the plate, Equations (10) and (11)
for the cylinder, and Equations (12) and (13) for the sphere. For each solid
shape, £ is the solution for the constant initial temperature ¢,;, which were used
in the previous charts. When the initial temperature distribution is parabolic,
the solutions are of the form that the second term (¢,;—¢,;)/(t,;,—t*) E’ is subtract-
ed from E. E and E’ are given by the infinite series. The values of u, in each
term of the series are the & th positive root of Equation (14), (15), or (16) for each
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shape.

The surface temperatures are obtained from the values of =R in the equa-
tions of E and E’. These values are shown in the column of E and £/ in Table
1. The center temperatures are given also from the values of =0 in the equa-
tions of E and E’ for each shape and shown as E, and E{ in Table 1. The
volume average temperature, which is equal to the mass average for the constant
density, can be calculated by the Equation (35), (36), or (37) for each shape.
E,, and E’,, for the average temperatures were obtained by the substitutions
of Equations (8)~(13) for each shape, in Equation (7) and the integration in
Equation (35), (36), or (37). If the temperature distributions at any time are
approximately represented by the parabolic form of Equation (4), the average
temperature can be expressed with the values of center and surface temperature
as shown in Equation (38), (39), or (40) for each shape, which is obtained by
the substitution of Equation (4) in Equation (35), (36), or (37).

Calculated results

E., El, E,, E}, E,,, and E}, for plates, cylinders, and spheres were calcula-
ted for the various values of m=A/Rk and af/R?. Calculations were carried
out by the FACOM 231 computer of the Faculty of Engineering of Yama-
guchi University. When the values of af/R? is less than 0.2, the conversion of
series of £ and E’' becomes gradual, especially for large values of m. The
series calculation were performed until the residual terms became less than
108, which corresponds to the value of u}a6/R? in the series larger than 15.

Results of the calculations were shown in charts with dimensionless time
a6 |R? as abscissa and Es or E’s as ordinate using the parameter of 1/m. E,, E,
E,, E}, E,,and E}, for the plate were shown in Fig. I (a~f). These values for
the cylinder and the sphere were also shown in Fig. 2 (a~f) and Fig. 3 (a~f)
respectively. In these charts, af/R? as abscissa was divided into 3 ranges, i.e.,
0~3, 3~10, 10~30; and for each of the ranges the abscissa of af/R? changed
the scale. E,, E,, and E,, are the solutions of the constant initial temperature
and are the same values given in the already published charts. The charts of
E., E,, and E,, must accompany the charts of E/, E{, and Ej, for the calcula-
tions of temperature histories in the case of stepwise change of surface con-
vection or radiation conditions. These charts were all shown in the same scale
covering the wide range of parameters.

In these charts, £ and E’ for intermediate values of 1/m can be read precisely
by the interpolation of the plot for log E or log £’ vs. 1/m.
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Temperature distributions

‘Temperature distributions in solids, as the dimensionless form at any time,
can be shown from Equation (7) in the following equation:

ts_t___ (ES_E)_ﬁ(E;——E/)
ts—to  (Es—Eo)—p(EL—E})

(41)

‘where

— Log— 1t
p toi—t* (42)

The initial temperature distribution conditions are classified into the fol-
lowing six cases from the values of p as illustrated in Fig. 4.

1 2 3 4 5 6

P=0

‘) tbL>T*
Toe=tse
<t
‘tﬂ.—‘ tsL

Fig. 4. Classification of the initial temperature distribution

1. p=0 In this case, the initial temperature is constant and uniform.
If t,;—t*>0, the solid is cooled, and if ¢,;—t* <0, the solid is heated.

2. 0<p<<l In this case, the initial temperature distribution is para-
bolic. Ift,;—#*>0, then ¢,>¢*, and the solid is cooled. However if ¢,;—#* <0,
then t,<<t*, the solid is heated.

3. p=1 With the parabolic initial temperature, the initial surface
temperature is equal to the equilibrium temperature. But the surface tempera-
ture can not be held constant for >0, unless the heat transfer coefficient is infi-
nite. The variations of the surface temperatures were shown with those of the
center temperatures in Fig. 5. For example, when the solid is cooling, the surface
temperature increases from the initial value of ¢* for some time after the start of
cooling, reaches to the maximum value, and then decreases again exponentially
to the equilibrium temperature. The maximum temperature depends on m
and the larger values of m give the larger maximum temperature. This means
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L ) % ra—
0 05 4 B/Rz 1 15

Fig. 5. 'Surface and center temperature change for p=1

that the heat flux of the inner part of the solid due to the temperature gradient
is larger than the surface heat flux of convection or radiation in the initial period.
The constancy of t,=¢* at any time can be held only when the surface heat flux
is infinitely large. This case was discussed in the last section. The cases of 4,
5, and 6, in Fig. 4 are less interesting because these will be the rare cases in the
practical operations. In these cases, the direction of the heat flux changes at
the surface. In this report, the cases of 1, 2, and 3 in Fig. 4 were discussed.

In order to consider the temperature distributions in solids, the values of £
and E’ must be analized. The logarithmic values of E and E’ in Fig. I~3
show the linear changes with af/R? for the range of af/R?>0.3. This means
that the equations of E and E’ converge rapidly, and for a6/R?>0.3, all terms
after first can almost be neglected. If E and E’ can be expressed with the first
term alone, Equation (41) is reduced as follows for each shape, and the effect
of the parameter p can be neglected.

For plates:
ts—t __ cos(u;r/R)—cos(ui)
ts—1o o 1—COS(lL1> <43>
For cylinders:
ts—t Jo(ulr/R)—"Jo(ul) '
= 44
ts—to 1—Jo(z1) .

For spheres:

to—t __(7/%{’) sin(u 1T'/R)—Sin(u1)

- 45
ts—bo uy—sin(u;) (45)

The functions of cos (x), Jo(x), and sin (x) can be expressed in the form of
series expansion.
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cos(x)%l——;‘!i%r—ff—f—”— Lt (-1 é:;, s (46)
.‘fo(x)zll——-pf;——{—‘_;fg__ _|_(__1)k (92212))2 (47)
sin(x)=x— T+ E (- 1>k(2ki;),+ (48)

Subst1tut1ons of Equatlon (46) into Equatlon (43) for plates, and respective
substitutions of equations for cylinders and spheres, give the following ap-
proximate equations. ~

For plates: - ‘ B ‘,
__‘ 2 L% L 2 _L__ 4 _
sty B ) il G o)
12 ' 360
(49)
For cylinders K
e fy_(py TG 1 ;‘é[H( ) +() |-
ts—to R . 1— 1g1+gé__..
(50)

For spheres:

ts—t {1“(11‘3_)2] 1- g§[1+<;€>2] 81?110[“( ) ( >}
: 1_35 840_"

(51)

From Equation (49), (50), and (51), the dimensionless temperature dis-
tributions at any time can be reduced to the form of Equation (4) regardless
of solid shapes when #; is small. The value of «; is the first root of Equation
(14), (15), or (16) for each shape and is shown in Fig. 6 as the relation of 42 and

m. When the values of m tend to zero, u; converges to the value of (—%) for plates,

2.4048 ... which is the Ist root of Jo(u,)=0 for cylinders and z for spheres.
When the values of m tend towards infinity, u; tends to zero and in the range of
m>10, u; can be expressed in the linear function of 1/m for each shape. This
means that the temperature distribution tends to the parabolic equation of the
temperature distribution to the parabolic equation as m tend towards infinity.
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- SPHERE

Fig. 6. The Ist root of Equation (14), (15) s

and (16) '

04

In order to know the accuracy of approximation of the temperature distri-
bution to the parabolic equation at any time, the strict values of (¢,—t)/(¢;,—)
were calculated from Equation (41). T

The temperature distribution curves of (t,—t)/(t;—%) vs. r/R depend on
ad/R?, m, and p. The curves for a0/R?=0.3 were shown in Fig. 7, 8, and 9
for each shape. In these figures, the curves for m=0.1 are almost independent
on p, but give lower values than the parabolic curve. The effects of p on the
error of approximation become increasingly more predominant for the larger
m. For m=10, the curve of p=0 is almost coincident with the parabolic curve,
whereas the curve for p=1 deviates somewhat to a great extent. If p=0, the
approximation of the parabolic equation becomes better for larger values of m.

"
Iy .
K meot NONNY PARABOLIC E
X P25 SO
Ee p= \ N
_,‘__. N\ \\ O =0k
- O‘e,éw=n3\ \ \ m =10
o5t m=i \\' \ p=o
P=0 P =05
P=05 Pa‘
Pt =03\
t=0.3 o\
e SO\
P=0
p=0.5
Pet = W\
\\\\‘
. \ ‘\
N\
o1t AN
N
0 o 05 1

Fig. 7. Temperature distribution for plate.
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Fig. 8. Temperature distribution for cylinder
1
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\
01
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Fig. 9. Temperature distribution for sphere

For the curves of af/R?=0.4, the deviation from the parabolic curve is much
less than the deviation that for the curves of af/R?=0.3; which means the
approximation of the lIst term in . the series is almost accomplished for larger
values of m when af/R?*=0.4. The reason that the dependency of p becomes
larger for larger values of m is due to the fact that the approximation of the 1st
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term is insufficient because of the smaller values of u, for larger values of m as
shown in Fig. 6. '

In Fig. 10, 11 and 12, the temperature distribution curves for p=0 and a0/R?
—0.2 were shown in the form of (¢—t*)/(t,—t*), which was obtained by

1 - - 10
i N M=
- \\ . 20
Y NN ,
23 \t\ O
S~ i N\ NG
Yo N
o F=0 N\ ¥
Z osf N\
N
NN
. KXY
— ——— PARABOLIC E N\
] 1€ Ey N
— STRICT VAWE \
017 o N\
o 1 n i 2 1 2 i
0 O 05 1
R
Fig. 10. Temperature distribution for p=0 (plate)
1 o 1 Ty
- [ = ~ S
n N 2 . N 222,
-:3 \\\\ N ! \\\ \
X XD \§\ ‘\\\ 7 \g D(B/Rz_oz §\ )
* /R =0.2 N, e Fa N \
b W N + P=0 N\
] - \\\ e - | \\ \0\5\ N
» \ £ NN
~/ R \ B \ R
05 \ 05 N\
\ A\ A
\\\\o \ &
L Ny —— —— PARABOLIC Eg. ’
———— PARABOLIC Eq, DN OLIC By \\
— STRICT VALUE N\ STRICT VALUE \\{
\
01} \ o1} \
0 L ] 1 1 1 " \ o 2 1 i i i 3 1
0 o 05 % 1 0 01 05
Fig. 11. Temperature distribution for p =0 Fig. 12. Temperature distribution for p=0

{cylinder) (sphere)

E|E,. These figures show that the curve for p=0, namely the constant initial
temperature, gives the good conformity of the parabolic distribution curve even
for the small value of @f/R*=0.2. Another remark was that the distribution
curve becomes flat for large values of m and for m=10, the difference between
the surface temperature and the center one is 5%, of that of the surface tempera-
ture and the equilibrium temperature. This corresponds with the ratio of the
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external thermal resistance, 1/k, to the overall internal thermal resistance,
R[2. Fig. 13 shows the asymptotic curves for large values of af/R? (af/R?
>0.4), in which the effect of p is negligible and depends only on the values of

[ F4A91

3 N
g X
g \\\
£ \
o
'
-
A d
05 Fig. 13. Asymptotic curve of temperature distribu-
tion for large af/R? (af/R?*>0.4)
PLATE
—eneeese CYLINDER
~—-— SPHERE
01
%o 05 =

From these caluculations of the temperature distribution, the following
conclusions were obtained.
1) When p=0, af/R?>>0.2 and m>1, the parabolic curves give the good
approximation and when 1<m<0.1, the fairly well approximation for p=0
and af/R?*>0.2. :
2) When 0<{p<{1 and m>1, the parabolic curves give the good approxima-
tion for af/R?>0.4. The approximation is 1mproved rapidly for the larger
values of af/R?.
3) When 0. 3<a0/RZ<O 4, the approximation is good for 0<<p<<0.5. The
approximation is improved for the smaller values of b, and the deviation due to
the values of p becomes larger for the larger values of m. !
4) The asymtotic curve for the large values of @f/R? varies with the Values of
m and independent on the values of p. For m>1, the approximation of the
parabolic equation is satisfactory. For 1>>m>>0.1, the approximation is fairly
well; and for m<0.1 the approximation includes some errors, especially for the
intermediate values of r7/R.

The calculation method for the stepwise change of
surface convection or radiation conditions

The conclusion in the foregoing section, that the temperature distribution
at any time af/R?>0.2 for p=0 can be approximated to the parabolic equation,
gives the method for calculations of temperature histories when the surface heat
convection or radiation conditions are changed stepwisely. When the solid,
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which has uniform constant temperature initially, is heated or cooled by surface
convection or radiation, the temperature distribution attain to the parabolic
curve for the dimensionless time a@/R?>0.2 with the allowance of some error
for the case of small values of m. The surface and center temperatures can be
obtained from the charts for E, and E, at the time a6/R?>0.2 when the surface
convection or radiation conditions are changed. Then, these temperatures
gives the initial condition in Equation (4) in the new heating or cooling period
in which 0<{p<1, and the surface and center temperature changes for the new
period can be calculated from the charts for E,, Ej, E; and E! with Equation
(7). The surface and center temperatures at any time for af/R?*>0.4, (a0/R?
>0.3 with the allowance of some error for the large values of p when m is large),
give the temperature distribution in the new period as the function of (r/R)
according to the Equation (4). The average temperatures are calculated from
the charts for E,, and E’,,. But more conveniently if the surface and center
temperatures are given at any time, af/R?>0.4, The average temperatures
can be obtained from the arithmetic calculation of the Equation (38), (39), or
(40) for each shape.

PLATE
CYLINDER — —— —
SPHERE =~ = o mmmeme
FROM Eq:(3%) o

v (39) ©
" (40) o

~
NDe
S RN
100} t}‘i.’::\ﬁrt‘\i;?-‘:\\
t*=50l¢) S ISeem TS
0 , - . .
0 1 2 3 4 5 6
O (&)

Fig. 14. The example of calculation

The use of charts and calculations were illustrated in the following examples.

The solid, with R=10 (cm), 1=1 (kcal/mhr°C), C,=0.2 (kcal/kg°C),
p=2000 (kg/m3) and the initial temperature t,;="{;; =600 (°C), are cooled
initially by the gas stream with the temperature t*=300(°C) for the time =2
(hr) and then cooled by the gas stream of t¥*=50(°C) for =4 (hr). The heat
transfer coefficient is A=20 (kcal/m?hr°C). The temperature histories were
calculated for the center, surface, and average temperature for the shape of plate,
cylinder and sphere, respectively. Results were shown in Fig. /4. The average
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temperatures obtained from Equation (38), (39), or (40) were coincident with
those obtained from the charts of E,,and E’,, for each shape.

Calculations for the constant surface temperature

When the heat transfer coefficient becomes larger, the surface temperature
approaches to the equilibrium temperature immediately after the start of heat-
ing or cooling. The limit condition, that the heat transfer coefficient tends
towards infinity, in which m tends to zero, gives the constant surface temperature
of the equilibrium. Equations of this case were summarized in Table 2. The
boundary condition of Equation (6) becomes Equation (52). The solutions of
(1) (2) or (3) with Equations (4), (5), and (52) were popular, and here these
were given in the form of Equation (7), obtained from Equations from Table 1
for m—0. E; and E/ were zero in this case. E,, Ej}, E,, and E,, were given
in Fig. I~ 3 as the values for 1/m=co. For the average temperatures, Equa-
tion (74), (75), and (76) were given in the form of (¢,,—t*)/(t,,,—t*), where
tss, 1s the initial average temperature, and obtained from Equations (38), (39),
and (40) in Table 1. Equations of (¢,,—t*)/(t,,,—t*) for p=0 and p—1
were also given in Table 2. The charts for (¢,,—*)/(t,,,—t*) were shown
in Fig. 15, which is often used for the calculation of the second drying rate period,
but not given for the full form in the handbook.®
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Fig. 15. (tgot*) | (tavi-t*) for ¢,—¢*
Conclusions

"The charts for heat conduction problems with the parabolic initial tempera-



ture distribution, including the case of constant initial temperature, with the
surface convection or radiation, were obtained for plates, cylinders, and spheres
as shown in Fig. I~3. The temperature distributions were able to be approxi-
mated by the parabolic form for af/R?>0.2 p=0 and m>>0.1, in each shape
and from this fact the calculation method of temperature histories for the step-
wise change of the surface heat transfer conditions, were derived. The charts
for average temperatures in the case of the constant surface temperature were
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also given.

1)
2)
3

4)
5)

6)

Nomenclature

specific heat of solid [kcal/kg°C]
heat transfer coefficient [kcal/m2hr°C]
A|Rh[—]

(toi—tei)[(ti—1*) [—]

radius or thickness of solid [m]
distance from the center [m]
temperature [°C]

2/0C, [m?/hr]

time [hr]

thermal conductivity [kcal/mhr°C]
density [kg/m?]

'o»cogﬂﬁ;g'wsb-é)

suffix * ¢ equilibrium value
o : center value
s : surface value
av: average value
1 : 1initial value
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