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Abstract

This note investigates some decision problems for three-way two-dimensional finite automata.
It is shown, for example, that

(1) the emptiness problem for nondeterministic three-way two-dimensional finite automata
over a one-letter alphabet is solvable,

(2) the universe problem for deterministic three-way two-dimensional finite automata over
a one-letter alphabet is solvable,
and

(3) the universe, containment, and equivalence problems for non-deterministic three-way
two-dimensional finite automata are unsolvable.

1. Introduction and Preliminaries

In [1], Rosenfeld introduced a new type of automaton on a two-dimensional tape,
called the three-way two-dimensional finite automaton, and showed that three-way
two-dimensional finite automata are less powerful than (four-way) two-dimensional
finite automata [2, 3, 4].

In this note, we are mainly concerned with fundamental decision problems for
three-way two-dimensional finite automata.

Let X be a finite set of symbols. A two-dimensional tape over X is a two-
dimensional rectangular array of elements of X. The set of all two-dimensional tapes
over X is denoted by X(). Given a tape x in £, we let /,(x) be the number of rows
of x and I,(x) be the number of columns of x. If 1<i<I(x) and 1< j<I,(x), we let
x(i, j) denote the symbol in x with coordinates (i, j). Furthermore, we define

x[(, 1), (5 7]

only when 1<i<i'<l,(x) and 1< j<j' <I,(x) as the two-dimensional tape z satisfying
the following: (i) I,(z)=i'—i+1and l,(z)=j —j+1; (ii) for each k, r (1 <k <1,(2),
1<r<iy(2), z(k, =x(k+i—1, r+j—1).

We denote a non deterministic (deterministic) two-dimensional finite automaton
by ‘2-NA” (‘2-DA”). (See [2, 3, 4] for definitions of 2-NA’s and 2-DA’.) A
2-NA (2-DA) can move right, left, up, or down on a two-dimensional tape surrounded
by the boundary symbol ““#”. A three-way nondeterministic (deterministic) two-
dimensional finite automaton is a 2-NA (2-DA) whose input tape head can move right,
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left, or down, but not up. We denote a three-way nondeterministic (deterministic)
two-dimensional finite automaton by ‘“TR2-NA” (““TR2-DA”). We especially denote
a 2-NA (2—DA, TR2-NA, TR2-DA) which operates on two-dimensional tapes over a
one-letter alphabet, by ‘“2-NA(0)” (‘“2-DA(0)”, “TR2-NA(O)”, “TR2-DA(0)”).
A 2-NA (2-DA, TR2-NA, TR2-DA) M starts in its initial state, with the input head on
the upper left-hand corner of an input tape x. We say that M accepts the tape x if M
eventually halts in a specified state (accepting state) on the bottom boundary symbol #
of the input. We denote the set of all two-dimensional tapes accepted by M by T(M).
Let Z[2-NA]={T|T=T(M) for some 2-NA M}. Z[2-DA], £[TR2-NA], etc.
have a similar meaning.

We first show that the emptmess problem for g[TRZ—NA(O)] is dec:1dable and
that the universe problem for Z[TR2-DA(O)] is decidable. As a corollary of this
result, we show that #[TR2-NA(O)]& £[2-NA(O)] and Z[TR2-DA(O)]& Z[2-
DA(O)]. We then show that the universe, containment, and equivalence problems for
Z[TR2-NA] are undecidable.

In the last section, we briefly state some problems which are related to decmon
problems for (three-way) two-dimensional finite automata.

In this note, we assume that the reader is familiar with fundamental knowledges of
automata and formal languages theory.

‘2. Main Results _
It is known [4] that the emptiness and universe problems for £Z[2-DA(O)] are
undecidable.

We first show that a different situation emerges for .?[TR2~NA(O)] and
Z[TR2-DA(0O)].

TueorEM 1: The émptiness problem for #[TR2-NA(O)] and Z[TR2-DA(0)]
is decidable. '

Proof. It is sufficient to show that the emptiness problem for .#[TR2-NA(O)]
is decidable. Let M be a TR2-NA(O). - We consider the nondeterministic two-way
finite automaton* with end markers, M’, which operates on (one-dimensional) tapes
over a one-letter alphabet as follows. Let x €{0}(? be an input tape to M. On the
input string we {0}* of length I,(x), M’ simulates the actions of M on x as follows.
M’ moves its head right (left) one square for every one right (left) move of the head of
M. If the head of M moves down one square, M’ chooses one of the following two
actions. _

(1) M’ stays on the same square, and begms to s1rnulate the next action of M. -

(2) M’ guesses that the head of M has reached the bottom boundary symbol ﬁ,

and begins to simulate the actions of M on the bottom boundary symbols #’s.
After M’ choose the action (2) above, M’ enters an. accepting state if it finds out that

+ See [5] for definitions of nondeterministic two-way finite automata.
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M enters an accepting state. .
- Tt'is obvious that M’ accepts the set

T = (v (0} [w=x[(L, D) (1 L G wis
the top row of x) for some x in T(M)}.

Clearly, T(M') is empty if and only if T(M) is empty. The theorem follows from the
fact that the emptiness problem for the class of sets accepted by nondeterministic
two-way finite automata with end markers (i.e., the class of regular languages) is de-
cidable [5]. - QE.D.

As stated before the emptlness problem for & [2—NA(O)] is undecidable. F rom
this fact and Theorem 1, we can get the following corollary.

 CoroLLARY 1: (1) #[TR2-NA(O)]§ £[2-NA(O)], and
2) Z[TR2-DA(0)]< £[2-DA(O)].

REMARK 1: Rosenfeld [1] showed that for the alphabet consisting of two
letters, three- way ﬁn1te automata are less powerfu] than four -way finite automata

LemMMA 1: If T g{O}(Z) and Te ,2” [TR2—DA(O)], then T ={O}(2)— Te #[TR2-
DA(O)]. That is, £[TR2-DA(O)] is closed under complementation.

Proof. Let T (={0}®) be a set in L[TR2-DA(O)], and M be a TR2—DA(O)

with g states accepting T.

We construct the TR2-DA(O) M’ as fol]ows Let x be an input tape to M . On
each row of x, M’ acts as follows.

(1) M’ simulates M and if M ever halts, M’ rejects the input x if M accepts and vice
versa. ‘

(2) In the finite control, M’ counts the number of times the input head of M hits the
left and right boundary symbols #’s on the present row, respectively. If either of
these counts grows larger than g, M’ accepts the input x since M is cycling on the
row. ' :

(3) In the finite control, M’ counts the number of moves M has performed since its
input head last encountered a boundary symbol # on the present row. If this

" count tries to grow larger than g, then M has entered a state ‘‘s” twice on the
present row since encountering a boundary symbol and M either is heading for a
boundary symbol (on the present row) or cycling near one end of the present row.
M’ now memorizes (in the finite control) the state ‘‘s” and counts the horizontal
displacement of the input head of M from its present position until the memorized
state “‘s” of M is repeated (on the present row). If the displacement is zero, then
M is cycling and M’ accepts the input; if the displacement is not zero, then the
input head of M will eventually hit a boundary symbol, up the boundary symbol
count, and the process starts all over.

Of course, M’ moves its input head down one square for every one down move of the
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input head of M. If the input head of M reaches the bottom boundary symbol #, M’
checks whether M eventually enters an accepting state, and M’ rejects the input if M
enters an accepting state and vice versa. (Clearly, M’ can do this check in the finite
control.) It will be obvious that T(M")={0}® —-T. S Q.E.D.

From Theorem 1 and Lemma 1, the following result follows.

THEOREM 2: The universe problem for #[TR2-DA(O)] is decidable.
We next examine the universe, containment, and equivalence problems for
Z[TR2-NA].

THEOREM 3: The universe, containment, and equivalence problems for #[TR2~
NA] are undecidable. ' '

Proof. Given a single-tape (one-dimensional) Turing machine (see [5]) M, define
a two-dimensional tape x,, representing a valid computation of M on an initially blank
tape (if it exists) as follows:

(1) Foreachi(1<i<k=I,(xy)), there exists some integer j; such that
 xlG 1), Gy j)]=ay and  xp[G, ji+1), Gy L(xa))] € (6},
and

@ xulk, 1), (k, L(xp))] =

where o, is the initial configuration of M, «,,, is the configuration resulting from «;
after one move of M, «, is a halting configuration, and ¢ is a symbol not in ' U K (I
is the tape alphabet of M and K is the state set of M)?.

Then x,,, if it exists, is in (" U K U {¢})?. Now define the set

(FUK U {¢})@® —{x3,} if x,, exists,
" ('uKu {¢H® otherwise.

Then T,,=X® (where Z=IU KU {¢}) if and only if M does not halt on an initially
blank tape. We can easily construct a TR2-NA to accept Tp,. (The construction is
left to the reader.) The theorem now follows from the undecidability of the halting
problem for Turing machines on blank tape. Q.E.D.

It is unknown whether or not the emptiness, universe, containment, and equivalence
problems for #[TR2-DA] are decidable. It is also unknown whether or not the
containment problem for #[TR2-DA(O)] is decidable. (If Z[TR2-DA(O)] were
closed under intersection, we could show by using Theorem 1 and Lemma 1 that the
containment problem for #[TR2-DA(O)] is decidable.)

+ Note that for each i(1<i<k), the length of «,,, is larger than or equal to the length of a; since
we may assume that M does not rewrite a non-blank symbol by the blank symbol, and so x, is well
defined. ’
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3. Related Problems

We first demonstrate the relationship between (three-way or four-way) two-
dimensional finite automata and two-tape finite automata over a one-letter alphabet.
(See [6] for definitions of two-way two-tape finite automata.) A semi-one-way two-
tape finite automaton (denoted by STFA) is a two-way two-tape finite automaton
(denoted by TTFA) whose first input head can only move right and whose second input
head can move right or left. We denote a deterministic STFA (nondeterministic
STFA, deterministic TTFA, nondeterministic TTFA) over a one-letter alphabet by
“DSTFA(O)” (‘‘NSTFA(O)”, “DTTFA(O)”, ‘“NTTFA(O)”). We denote the set
of all pairs of tapes accepted by a two-tape finite automaton M by T(M), and let, for
example, #[NSTFA(O)] denote the class of sets accepted by NSTFA(O)’s. Let T be
a set of two-dimensional tapes over a one-letter alphabet (e.g., {0}), and let R(T)=
{(t,, t;) € {0} x {0}* | I(t;)=1,(x) and I(t;)=1,(x) for some x in T} (where I() is the
length of ¢t for each string f). Further, for each class & of sets of two-dimensional
tapes over {0} (a one-letter alphabet), let R(£)={R(T)| Tin £}.

From the following proposition, we can say that the emptiness, universe, contain-
ment, and equivalence problems for #Z[TR2-XA(O)] and £[2-XA(0)] (Xe{D, N})
are equivalent to those for Z[XSTFA(O)] and Z[XTTFA(O)], respectively.

ProrosiTiON 1: For each X e {D, N},
(1) R(Z[TR2-XA(0)])=<ZL[XSTFA(O)], and
(2) R(Z[2-XA(0)])=<Z[XTTFA(O)].

Proof. We only show that R(Z[TR2-XA(O)])=Z[XSTFA(O)]. (The other
cases are left to the reader.) Let M be a TR2-XA(O). It suffices to show that there
exists some XSTFA(O) M’ accepting R(T(M)). Consider a XSTFA M’ which acts as
follows. (Let the first and second heads of M’ be H; and H,, respectively.) First,
M’ keeps the initial state of M in the finite control with both H, and H, positioned on
the right square immediately of the left endmarkers. After making this situation, M’
simulates one move of M as follows. If the input head H of M moves down one
square, M moves H, right one square without moving H,, and if H moves right (left)
one square, M’ moves H, right (left) one square without moving H,. (If H, reaches
the right endmarker, M’ sees that H reaches the bottom boundary symbol, and if H,
reaches the right (left) endmarker, M’ sees that H reaches the right (left) boundary
symbol.) Of course, M’ enters an accepting state only if it finds out that M enters an
accepting state. It is obvious that T(M’)=R(T(M)). Q.E.D.

CoROLLARY 2: (1) The emptiness problem for Z[NSTFA(O)] is decidable.
(2) The universe problem for Z[DSTFA(O)] is decidable. (3) The emptiness, uni-
verse, containment, and equivalence problems for #[DTTFA(O)] are undecidable.

Proof. The result (1) ((2)) follows from Proposition 1 and Theorem 1 (from
Proposition 1 and Theorem 2). The result (3) follows from Proposition 1 and the
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undecidabilities [4] of the emptiness, universe, containment, and equivalence problems
for [2-DA(O)]. o Q.E.D.

In fact, we can get the following result which strengthens part (1) of Corollary 2.

Fact 1: The emptiness problem for the class of sets accepted. by nondetermmlstlc
semi-one-way two-tape ﬁnlte automata is decidable.

Proof. Let M be an nondeterministic semi-one-way two-tape finite automaton.
Consider an nondeterministic one-way stack automaton M’ which acts as follows.
(See [7] for definitions of nondeterministic one-way stack automata.) When an input
string ty is presented to M', M’ first nondetermlmstlcally writes down a string ¢, on the
stack tape with the input head on the left endmarker. M’ then simulates the actions of
M on the pair of tapes (t,, t,), and accepts the input string t; only if M’ finds out that
M accepts the pair (t, t,). (To describe the details of the actions of M’ is left to the
reader.) Clearly, T(M) is empty if and only if the set accepted by M " is empty. . The
result now follows from the decidability [7] of the emptmess problem for nondeter-
ministic one-way stack automata. . , o ..Q.E.D.

Bird [8] showed that the equivalence problem for deterministic ohe-way two-tape
finite automata is decidable. As far as we know, it is unknown whether the equivalence
problem for deterministic semi-one-way two-tape finite automata is decidable.” If the
equivalence problem for #[TR2-DA(O)] were decidable, then it would follow from
Proposition 1 that the equivalence problem for #[DSTFA(O)] is decidable.
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