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Abstract

A procedure is presented for identifying the system triple {4, B, C} and the system order
for linear, constant, multivariable, discrete-time plants from actual input-output data.

The approach is based on the minimal realization and the cross-correlation technique
between the input sequence and the output measurement sequence. The dimension of the
system is determined from checking the rank of the Hankel matrix which is constructed by the
Markov parameter estimates obtained by the auto-correlation of the input sequence and the
cross-correlation between the input sequence and the output sequence.

The estimates of the triple {4, B, C} are calculated by Markov parameter estimates using
minimal realization algorithm.

I. Introduction

In recent years, a considerable effort has been made in the area of identifying the
parameters of linear constant, discrete time systems given input-output data records.
This development has been stimulated by the desire to apply the elegant results of
modern control and filtering theory to practical problems. In most cases, these pro-
blems assume the perfect knowledge about the underlying systems. In practice, however
we can seldom expect a priori information regarding them. In such cases, system
identification methods have to be employed to obtain the necessary information.

For the practical usefulness of identification procedures, the state space repre-
sentation is considered in this paper, since many available modern control theories
regard this representation.

Some recent papers have discussed the system identification from input-output
data. : '

In single input-output systems, Saridis and Stein?’, and Wong and Polak? con-
sidered some techniques for the identification in the case of the known system order.
The work of Mehra® uses the system model in an adaptive Kalman filter.

In multiple input-output systems, Gopinath® presented the identification method
of systems with unknown size. Budin® improved Gopinath’s work and proposed
the more efficient procedure. Furthermore, Passeri and Herget®, and Gupta and
Fairman? gave identification procedures in the framework discussed in the references
4) and 5). In these methods, determining a selector matrix has played an important
role, while it has given considerable difficulties.

* Department of Information Processing Engineering, Technical College, Yamaguchi University



272 Yasuhiro KAwWAZOE

Guidorzi® proposed a unified approach for linear multivariable system iden-
tification based on a canonical representation of a model without restricting special
inputs. In resent paper by Tes and Weinert®, the systematic procedure for estimating
the system structure and parameter of an innovation model was constructed by a special
canonical form via the correlation technique.

The approach presented in this paper is based on the correlation technique between
actual input-output data, and the minimal relaization concept. The most popular
application of the cross-correlation technique is well known to be the determination
of the impulse response of a plant by correlating the white input sequence with the ob-
served output sequence. The comparison of some identification algorithms has been
presented by Saridis'!®, who reported that the modified cross-correlation method
proposed by Hill and McMurty!? gave good results as far as examined. In another
works, the correlation techniques have been used by Wouters!?, Funahashi and
Nakamura!®, and Chow!#. In the area of minimal realization, Ho and Kalman!®
were the first to provide an algorithm from the sequence of Markov parameters, and
Rissanen'® reformulated Ho-Kalman’s algorithm. Furthermore, Silverman!'” pro-
posed an algorithm based on Gauss elimination, and Gupta and Fairman!® treated
the Markov parameter matrices as the elements of vectors in an inner product space.
Tether'® discussed an algorithm for constructing minimal linear partial realization
of an unknown system from an external description as given by its Markov parameter.
On the other hand, Rissanen and Kailath??) have given an algorithm for recursive
determination of linear models driven by a white noise sequence, whose approach is to
construct a partial realization from the estimates of the covariance matrices obtained
by the output data which are stationary processes.

In this paper, the first step is to get the estimates of Markov parameters from
correlation techniques by using input-output data and the second step is to identify the
system order and the triple {4, B, C} by the use of the minimal realization algorithm
from Markov parameters.

II. Problem Statement

It is assumed that measured imputs and outputs are modeled by the following
discrete-time system :

x(k+ 1)= Ax(k) + Bu(k) ‘ (1)
y(k)=Cx(k)+v(k) (2)

where, x(k) € R", u(k) € R" and y(k) e R™.

The sequence {u(k)} represents the perfectly measurable control input. In this
paper, {u(k)} is assumed to be a zero-mean white input sequence independent of the
state. Furthermore, it is assumed that the sequence {v(k)} is a stationary 'ﬁoise;,in;
dependent of the input sequence {u(k)}. The problem is then to obtain the estimates
of the system order n and the system triple {4, B, C} from the actual input-output data.
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II1. The Markov Parameter from Output Data

Consider iterations of the state equation and the measurement equation given by
(1) and (2) so that

y(k)=Cx(k)+v(k)

y(k+ 1) = CAx(K) + CBu(k) +v(k+ 1)
: 3
y(c+ p)=CA*x(K)+ 3, CA/Bu(l+ p—j =)+ ¥(k+p).

Taking a look at the cross-correlation function between the output and the input, we
have, for our real process,

R,.(p)& E{y(k+ p)u”(k)}
= CAPE{x(k)uT(K)} + ”i; CAIBE{u(k+ p—j— Du?(k)}
p2

+ E{v(k+ puT(k)}. “4)

By the assumption, it is easily seen that

E{x(kyuT(k)}=0 (5)
E{v(k+ p)uT(k)} =0, for all p 6)
E{u(k+ p)uT(k)}=0, for p#£0. @)

Using (5), (6) and (7) yields
R, (p)=CAP"'BR,(0), for p=1, 2,... - (8)
where,
R,(0)4 E{u(k)u’(k)} €)
is a nonsingular matrix. Then (8) gives
R(p)AR,(p)[R,(0)]"'=CAP !B, for p=1,2,... (10)

The right hand side of (10), CA?~'B is called the Markov parameter. Therefore,
the problem identifying the parameters 4, B and C is reduced to the minimal realization
discussed by Ho and Kalman!®) or Rissanen!® when the Markov parameters are given.

IV. The Minimal Realization from‘The Markov Parameter

Ho and Kalman!5 have presented the following algorithm to get the minimal
realization from Markov parameters. This procedure starts from the determination
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of the minimal system order.
(1) Determination of the minimal system order:
Construct the following Hankel matrix S, (mp x rp) from the Matkov parameter.

R1) RQ) --R(p)
spzzx R§2) R(3) R(p+1) (11)
R(p) R(p+1)--R2p-—1)

where, m and r are the dimensions of the output vector and the input vector respectively.
The minimal dimension n of the system is chosen as the rank such that

n=rank (S,)=rank (Sge1)="+ (12)

hold.
(2) Realization of the triple {4, B, C}: :

Find a nonsingular mq x mq matrix P and a nonsingular rq x rq matrix Q that
satisfy

In,n On,rq—n )
PSqQ= """""""""" """"""""""""""" =qu,nEn,rq (13)
qu—n,n ; mq—n,rq—n
where,
[I;; O,;-1 (@(ix})) if i<j
[ e
E ;= (i xJ)) if i>] 14
Oi-.j A I
;] o (xi) o if i=j

I;; and O,; are the ixi unit and ixj zero matrices respectively. P and Q are
obtained by applying the elementary operation as follows.

Sg [ mg,m Ing,rm| P |
{ ........ B }:{ ....... ol J (s
Irq,rqéorq,mqb Q Eorq,mq )

The Gauss-Jordan sweep-out method is effective regarding the computational
aspect. Then the minimal realization is obtained as follows:

A=E, ,,P[65 )E,,, (16)
B=E, ,,PS,E,,, a7
C=EpmgSiEran (18)

where,
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(RA+k) RQ+k) --Rg+k)
otS,=| RQ+k) R(3+k) -R(g+1+k) (19)
R(g+k) R(g+1+k)---R2q+k)

V. Practical Approach for Estimation of Markov Parameter

The auto-correlation R,,(0) and the cross-correlation R, (p), p=1, 2,..., which
are used for getting the Markov parameter R(p), are theoretical values as far. There-
fore, their estimates have to be required from input-output data for practical purpose.

When u(k) and y(k), k=1, 2,..., N are obtained, the estimates of R, (0) and
R,(p), p=1, 2,... are described as follows respectively:

1 N
R,.(0) =3 ¥ u(k)u’ (k) | (20)
R,.(p)= N z y(k+puT(k),  p=1,2,... @1

Due to the prescribed assumption, the following relation may be valid.
R, (0)= hm Z u(k)uT(k) (22)

R,.(p) —11m Z y(k+p)uT(k) p=1,2,... (23)

Defining the estimate of the Markov parameter R(p) from N observations of
input and output data yields

R () =[ 3 S ¥+ (0 || 3 3 u0w (@) . 24
Now, it is clearly seen that |
| lim RY(p)=R(p). @9

From the above discussion, it is possible to obtain consistent estimates of Markov
parameters R(p), p=1, 2,... for sufficiently large N.

V1. Extension of On-Line Estimation

Let denote following notations:

RY,0) = 3wt () | (26)

RY(p) = X ¥ (ke +p)uT(R) | @7)
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Then R¥(p) is described from (25) as

R¥(p) = RY,(p) [ RY,(0)]. | (28)
Putting
RN, (0) =Uy (29)
Vw=Us, (30)
we then have,
Val=Uy=Uy_;+a(N)uT(N) (31
=Vl +u(Nur(N) (32)

Applying a matrix inversion lemma to (32) yields,
Vi=Vyo1= V(N [uT (M) Vy_ju(N)+ 1] T (N) Vy_, (33)

On the other hand, (28) is written as

R¥(p)= Wy V=3 W )(NV) = WE (39
where,
Wy=3 W(K) | (35)
W () =30+ T (0 (36)
VE=NVy (37)
Wh=~Wy (38)

It is easily seen that V§ and W# give the following recursive relationships:

V=71 (V1= V- u(N) W (V) V- u(N) + N— 11T (N) V§-,}
(39)

-1 1 ...,
W;{;:-Nw— W,’$_1+7v- W(N), for N>2 (40)
An on-line estimator of the Markov parameter is defined by (34), (39) and (40).
In this case an initial value V¥ is given by (41) approximately, because V#* does not

exist for the singularity of u(1)uT(1).
V¥ =diag { [u;(1)217, [uy()1L,... , [u(1)*]"1} (41)

where uy(1) is the i-th element of u(1). This initial value V¥ defines a sequence {P%},
for which the following property is seen by (39).
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lim P%=1lim V#=[R,,(0)]! (42)
N—=o0

N-»00
So the actual estimates of Markov parameters are obtained as
RN¥(p)=W%V%, p=1,2,... 43)
with the property

lim R¥(p)=R(p), p=1,2,... (44)
N—-w

VII. A Numerical Example

A numerical example is presented in this section to illustrate the proposed identi-
fication procedure. Consider the following two dimensional input vector, two dimen-
sional output vector, fourth order system whose pulse transfer function is given by

|:G11(Z) G12(Z)}
G(z) = Gy1(z) Gpy(2)

G,(2)

where,
G,,(2)=23—0.322+0.74z +0.418
G,,(2)=23—1.322+1.54z—-0.674
G,y(2)=1.12% —0.682% —0.059z +0.062
G,y(2)=2%—1.522+0.74z —0.12
G z)=z*—1.823+1.1922-0.342z4-0.036

As an input signal the Gaussian sequence with zero mean value and unity variance
is employed and a measurement noise is implimented by the Gaussian noise N(0, 1072).

The Markov parameter estimates are given in Fig. 2-5 and the test for determining
the system order is illustrated in Fig. 1.

Before discussing the determination of system order, we shall now discuss about
the implications of computer arithmetic. At the first step of Gaussian elimination of
the Hankel matrix, the maximum absolute value of all elements is employed as the
pivot element. The dimension of the system is decided by checking the absolute ratio
p, of the new pivot element s, at the k-th step per the pivot element s,, at the frist step.

PN _Sch\
Sy

The results of the structural identification are shown in Fig. 1, which presents
significant sharp decreases at k=4 on an average. Therefore, it is reasonable to
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determine the system order as 4.
The estimates {4, B, C} of system triple are presented in Table 1.
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Table 1. Estimates of System Triple

N i B é
500 092 032 0.03 —0.01 0.67 0.37 2.44 —0.67 —0.07 —0.61
—0.31 0.56 —0.06 —0.02 1.0 0.02 {1.08 043 0.67 —0.07

-0.34 0.88 0.18 —0.02 0.0 1.0
—-1.51 159 1.52 —0.01 00 00

1000 093 032 0.06 0.01 0.68 0.40 [2.24 —0.53 0.1 —0.59J

-0.34 0.56 —-0.07 0.08 1.0 —0.05 097 043 0.68 —0.15
—-0.20 0.81 0.27 —0.03 0.0 1.0
—1.49 1.88 1.68 —0.05 0.0 0.0 _ .
5000 0.90 032 0.04 0.01 0.67 0.39 2.21 =0.57 . 0.18 —0.54.) -
—0.22 0.58 —0.19 0.02 1.0 0.07 {0.96 043 0.62 0.0 } ’
—0.23 051 0.06 —0.03 00 --1.0 : ’
—172 195 153 0.27 00 -00 )| : R
10000 090 031 005 0.0 0.68 041 {2.14 —0.57 0.17 —0.53]

—-0.20 0.60 —0.16 0.03 1.0 0.06 097 04 0.59 —0.12
—0.66 0.86 0.36 —0.02 0.0 1.0
—1.82 200 1.63 —0.03 00 00

VIII. Conclusions

The over-all identification procedure has been developed from input-output data
by the aid of the correlation technique and the minimal realization algorithm. As the
first step, correlation technique has played an important role in order to estimate Markov
parameters by using a known zero mean white random sequence as an input control
signal. The final step uses the minimal realization algorithm from Markov parameters,
which is called the Ho-Kalman algorithm. Furthermore, an on-line identification
scheme has been considered for the practical purpose so that it aV01ds the large com-
putational burden of an off-line scheme. ‘

As a numerical example, the fourth order system with two inputs and two outputs
was considered to show the proposed identification procedure.
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