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Abstract

A numerical method for the elastic wave propagation problems involving infinite con-
tinuous systems has been proposed. In the method, the fictitious boundary consists from
two kinds of mixed boundaries. Results obtined by the proposed method are compared
with those with Lysmer’s viscous boundaries. It is shown that the 2-step successive averaging
method gives results almost the same as those with Lysmer’s viscous boundaries.

1. Introduction

One of the analytical studies of blast effects, foundation vibrations and other
dynamic problems is to consider them as wave propagation problems in an infinite
solid. For the complicated geometrics encountered in practice it is not possible to
find closed form solutions and, therefore, it is necessary to resort to numerical methods
of the finite difference or finite element method.

With these methods only a finite number of nodal points can be considered; thus
the numerical methods are not directly applicable to infinite systems. In a finite
system, the reflected wave from the boundary may disturb the numerical results. Some-
times an infinite system may be approximated by a finite system with a special viscous
boundary condition!>2). This kind of boundary absorbs some part of the energy
arriving at the boundary.

The purpose of this paper is to propose one of transmitting boundaries which
consists from two kinds of mixed boundaries. The usefulness and the limitations are
- shown in some examples.

2. Reflection of waves at the boundary

2-1. One dimensional problem
The wave equation in one dimension is given by

) —
u _ 1 J*u c=\/_li

0x2 - C% az =N (l)
The solution of (1) may be written using D’Alembert solution as
“=f(x"cot)+g(x_+cot). ......... (2)
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Thus longitudinal wave propagates at the celocity ¢, in a thin rod without distortion.
Now consider the domain x=0. The stress field in the rod will be given by

o(x, )=E{f'(x—cot)+g'(x +cot)}
=0/ (x—cot)+o(x+cot). e 3)

Here o, and o, are the incident and reflected stress waves respectively. Similarly, the
velocity field in the rod will be given by

V(x, )=co{ —f'(x=cot) +¢'(x +cot)}

=2 {~0,(x—cot) +0(x +Cof)} . SIRRC)

Now we suppose some force F(f) to be aéting on the end of the rod and the end to be
moving at the velocity V(). Then, balancing of force at the end of the rod requires

F(t)= —A{c/0, )+040, 1)}.  ceerrnn. (5)
The velocity of the rod tip will be given by

V=2-{-0,0, 0+00, ). e )

When the rod end is fixed, the boundary condition is given by V(t)=0, and the relatlon
between incident and reflected waves is given by

6,00, t)=0,(0, 1) e (7)
On the other hand, when the rod end is free, F(f) becomes zero and we get the relation
a0, )= — 00, t) . e (8)

2-2. Propagation and reflection of waves in a half space®4

We consider first the reflection of plane dilatation wave at a boundary x=0.
The direction of propagation of the incident dilatation wave is taken to be in the xz-
plane making an angle «; with the x-axis. If we consider a simple harmonic wave in
which the displacement normal to the wave front is denoted by @,, we may take

Sy =A;sin(pt+fix—g,2) e )]
where A, is the amplitude of the wave and |
fi=plcicosa; g =plc;sina,
u1v=<1‘51 cos gy w;=—®, sina,.

The wave is here taken as travelling in the direction of decreasmg x and z, (¢, being
the velocity of propagation of the wave).
Now, if dilatation and distortion waves are reflected at an angle cxz and ﬂz to the
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x-axis, and their displacements normal to the wave front are @, and @; respectively,
we have

@,=A,sin(pt—fx—g,z+64)

......... (11)
®,=A,sin(pt—f3x—gzz+90,)
and
' fa=pleycosa,  gy=plcysina,
fy=plcycos B, gs3= —plcysin B,
......... (12)

u,=—®@,cosa, w,=—®P;sina,
us=®@3sinf, wy=—P;cosf,.

Where ¢, is the velocity of propagation of distortion waves and J,, é, allow for any
phase change on reflection. Now, we consider the case of mixed boundary con-
ditions, given by

u=t,,=0 at x=0.

Such conditions correspond to an elastic half space constrained by a rigid lubricated
boundary. '

In order to satisfy the conditions, &, =a, is necessary and with 6, =0, =0 we have
u=u,+u,+us=(4,—A,;)cosa,; +A;sin f,=0
1,,=2(A;,—A,)cosa, sin f,—A;cos2B,=0.

Since these equations apply to harmonic wave with any frequency and any angle of
incident, 4, =A4, and A;=0 must be satisfied.
Consider the case of another mixed boundary condition given by

w=0,=0 at x=0
Similarly we have
(A, + A,)cos 2f, sin oy — A sin B, sin 28, =0
(A;+Ay)sina;+Azcos f,=0

In order to apply to the wave with any frequency and any angle of incident, we have
A,=—A,and A;=0. Itisseen that no mode conversion occurs for the dilatation waves
incident to these mixed bounddry. Now, consider a plane distortion wave impinges
on the boundary, we have the amplitudes of incident distortion wave, reflected di-
stortion and dilatation waves as B,, B,, B; respectively. Then for the case of the bound-
ary conditions u=1,,=0 at x=0, we have B,=—B;, B;=0. And for the case of the
boundary conditions g, =w=0 at x=0, we have B; =B, and B;=0. It is seen that no
mode conversion occurs for incident distortion wave too.
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Fig. 1a Reflection of dilatation wave at a boundary.
1b  Reflection of distortion wave at a boundary.

3. Transmitting boundaries

3-1. Viscous boundary

[n order to get the solution for infinite region through a finite system it is necessary
to use the appropriate boundary conditions at the fictitious boundary. We consider
a plane dilatation wave travelling in xz- plane makmg an angle a w1th the x-axis. The
stress field at (x, z) is given by :

ax=(x+2u)cosaci—zsina—”f—

1 (4]
u LW
o,=ACoS O ———(A42u)sinet — oo (15)
Cl' Cl .
. u w
] — C _
Tx;=—Usina et +pcosa c

Where A and u are the Lame’s constants; 1 and w are the velocities in x and z directions

respectively. - In order to settle a boundary for numerical analysis at (x, z), it is enough

to give the stress boundary condition at (x, z) by (15) to pass all energy arriving at the

boundary to the exterior region. Therefore, at a boundary x =constant, it is necessary

to give above a,, 1,, as boundary conditions. For the case of a boundary z = constant,

it Is necessary to give above a,, 7., as boundary conditions. :
When the propagating wave is distortional one, the stress field is given as

0= (A+24) cos ﬁ—f——z sin ﬁ_;l”_
, 2 €

=heospL—(iaopsing L 16)
2 2 - : ’
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. y w
Tyy = -—usmﬁ—y—+ucosﬁ~»~—
Cy ‘ ()

and the boundary conditions are given in similar ways.

It is seen that the boundary stresses o, 6,, T, at transmitting boundary are given
as the functions of &, w and «, f. This corresponds to a situation in which the boundary
is supported on infinitesimal dashpots making angles given by the functions of a, B, ¢;,
¢,. As an instance, we take the direction of propagation of incident dilatation wave to
make rectangle with z-axis (#=0) and the fictitions boundary to be given by x=con-
stant. Then the velocity # only remains and w disappears. The boundary stresses are
given by

g =—-~(A+2-'[—Q =c

u
x cy 1P
Ty =0
When the incident wave is distortional, the boundary stresses are given by

o,=0
sz=_l'l“ W=C2pw
5]
These conditions are the Lysmer’s viscous boundary conditions with a=b=1.

3-2. Method of average of reflected waves at two different mixed boundaries
Consider a one-dimensional semi-infinite elastic rod (x=0). When the end of the
rod (x=0) is free, the stress field is given by ‘ :

0y =0{(X+Cot)+0,1(x = o)
and when the end is fixed
0, =0,x+cot) +0,,(x—cot)

o,, and o,, are the reflected stresses at free and fixed boundaries respectively. The
boundary condition at each end requires

d,,(0, H)+07,,(0, )=0

So, when we superpose the stress fields for rods with free and fixed end, stress field be-
comes equal to the double of the incident stress.

o(x, )=0,(x, )+0,(x, )=20,x+cof)  crreree (19)

This means the average of stress fields with fixed and free ends gives the stress field

in infinite rod. , a
Now we extend the similar method into two-dimensional stress propagation

problem. Consider a plane dilatation or distortion wave travelling in xz-plane impinges-
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on a boundary. Now, the boundary is a rigid lubricated or another kind of mixed
boundaries. The reflected waves at each kind of mixed boundary are eliminated by
averaging process. ‘

The method seems to give a transmitting boundary. After travelling some distance,
however, the reflected wave at one mixed boundary may incident on another or the same
mixed boundary. Then the signs of two reflected waves at two different kind of mixed
boundaries coincide again and the averaged stress field contains the effect of reflected
waves. So this averaging method is available only until the reflected wave is reflected
secondly, and the averaging process corresponds to a extension of the analysing region.

Now, the stress field given by the averaging process of two stress fields is the
exact solution of the problem before the second reflection occurs at one of the mixed
boundaries. So the stress field may be used as an initial stress field in successive
iteration analysis. If we iterate the process, averaging successively the two stress
fields before the second reflection occurs, we may get the successive exact solution.
The averaged stress field is a part of stress field in infinite stress field and at the boundary
the shape of the pulse is step state. So in numerical analysis some modification is
necessary in order to simulate the continuous wave train by this step pulse. One of the
method to do this is to modify the displacement at wave front. In one dimensional
central difference scheme

2
Wit =2yt —y" 1+ R, j:l—t
j
the displacement u”~! may be modified to
il — u'}—(l.O-—cl%yu}—u}“l) R CRERER (20)

Here, M is the lumped mass of node j and R; is the nodal force.
In two dimensional problem, the modifications are given by

utt — u}—(].O—cZ AA; )(u;!—u;!‘l)

- 4 -
wh 1+——w;!—<1.0—c1—‘%)(w5?—w;! 0]

for x=constant boundary.
This procedure corresponds to the use of a stress pulse with a sloping wave front
instead of step like pulse front.

4. Numerical results and discussions

In the numerical analysis of wave propagation problem, Finite Element method
of spatial discritization and central difference method for time integfation were em-
ployed. In the finite element analysis the plane stress rectagular elements and lumped
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mass method were used. The numerical constants are Young’s modulus E=100.0,

Poission’s ratio v=0.25, density p = 1.0 and time step for numerical integration 4¢=0.07.
The space mesh sizes are Ax=4y=1.0. '

4—1.” One-dimensional problem

As one-dimensional example, we consider a rod with length=10.0 and width
b=1.0 subjected to a short duration of impulse loading applied at one end. The

opposite end is the fictitious one and its condition is free or fixed. We represent the
load by ‘

P(n)=250.0<1.0—cos—§—gn>, 0<n<20

=0 n=20

Now, the lateral node displacements are constrained and the problem is one-
dimensional. The stress at the centre of the element 5 is shown in Fig. 2. The com-
pression wave impinging on the free end (fictitious end) is reflected as tension wave,
and after travelling along the rod it is reflected again at the loading end (free end) as
compression wave. The compression wave impinging on the fixed end (fictitious end)
is reflected as compression wave, and then reflected as tension wave again at the loading
end. These two stress state are opposite in sign between the first and the second
reflection at the fictitious end. Average of two stress states in element 5 is shown in the
figure and it shows the almost complete elimination of reflected waves in the interval.
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Fig. 2 Stress wave in rod with free or fixed boundary.
(E=100.0, p=1.0, 41=0.07, 4x=1.0)
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After the second reflection at the same end, however, the reflected wave becomes agaln
visible.

In Fig. 3, the result of successive averaging method, in which the reflected waves
by free and fixed boundaries are averaged successively before the second reflections at
the fictitious boundaries occur, is shown. In this method, the averaging process may
be excuted at any integrating time steps between first and second reflections at the
mixed boundaries. 2, 5, 15 in the figure mean the number of time integrating steps
between the successive averaging processes. The exact solution is the numericl result
in the sufficiently long rod in which the reflected waves from the fictitious boundaries
do not come into the result. In one-dimensional problem, the Lymser’s method with
a=b=1 is theoretically exact and the numerical result almost coincides with the exact
solution. The result of successive averaging method with every 2 steps iteration is
better than the result with every 5 or 15 steps iteration.

x At
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250 30 50

|
Sx
2 5 15
0 o A\c‘\/&/ O\ A
\ = \7\7’ = T

\ Continuous
-250

\ ’
ol I\

& Lysmer
Fig. 3 Comparison of the numerical results of successive averaglng
method in a rod.

4-2. Two-dimensional problem
As two-dimensional examples followings were examined.
(1) Semi-infinite rectangular plate under concentrated in-plane pulse loading along its
symmetrical axis
(2) Semi-infinite plate under concentrated in-plane pulse loading along its symmetrical
axis
The difference of above two examples is the number of fictitious boundary planes
to be settled. The load is represented by

P(n)= 5000(10 cos 2% ) 0=n<20

=0 n=20

(1) Semi-infinite rectangular plate; Problem with one fictitious boundary.

In Fig4, AB, BD, are free and CD is fictitious boundaries respectively. The
numerical results are discussed on (i) the displacement u, at point C, (ii) o in element
(a), (iii) z,, in element (b), (iv) o, in element (c). . Exact solutions are the numerical



Finite Element Wave Propagation Analysis 265

results in a long rectangular plate where the reflected waves from the fictitious boun-
daries do not come into the results.

P= 500(1.o—c0527%n) (0 Sn <20
i =0 (n =20)
A 3 B

(I3

F

[
C| D
!

‘_

|

Fig. 4 . Semi-infinite rectangular plate and semi-infinite plate subjected
to impulse loads.

In Fig 5, o, in element (a) by the direct average method is shown. With each
mixed boundary condition (A and B), the stress in the element shows complicated
wave train. And with the averaging process, the stress coincides with the exact solu-
tion until the secondly reflected waves at the mixed boundaries come into the element.
This means the direct averaging method corresponds to the double extension of the

analysing region®).

0.5« (Free *Fixed)

250 Free Boundary ~ B-Boundary 0.5x(A +B)
G‘i ”'f;'--.’ . -/,f.
O\ /) 4Continuous
0 *
/ %:\\'-_ ’/ \y 7 v
. Mo -\“{’./ ’,1 \1 B
/ “.. |A-Boundary
-250 \/ Fixed Bpundary
-500
0 10 20 30 40 50 xAt 60

Fig. 5 Stress wave propagation and reflection in a semi-infinite rectangular plate and
the result by direct average method.
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In Fig 6a, the stresses in element (a) are compared. With every approximete
method there seem some deviations of numerical results from the exact result. It is
interesting that the result of successive averaging method shows a similar result as the
Lysmer’s result. The results of successive averaging method with 5 or 15 iteration steps
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-100 \ \—
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Fig. 6 Comparison of stresses in a semi-infinite rectangular plate.

a. o, in element (a)
b. 7, in element (b)
C. o0, in element (¢)
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show some vibration and it seem that the reflection wave eliminating process by aver-
aging does not work well. In Fig 6b, 6c and in Fig 7, we can see the same inclinations
as in Fig 6a. These results say that the 2-step successive averaging method gives a
almost the same result as Lysmer’s one.

15.0
be
10.0 J
>0 \./</
/ Continuous
0

0 10 20 30 40 s0 *& 60

Fig. 7 . Time dependent displacement of node C in Fig. 4.

(2) Semi-infinite plate; Problem with two fictitious boundaries.

In this problem the boundary BD is the fictitious one in Fig 4. Now, the wave
reflection by fictitious boundary occurs at CD and BD. This means a reflected wave
at CD at a integrating time step may incident on BD at the next step. In successive
averaging method, the reflected waves at the fictitious boundaries must be averaged
before they incident on the same or another fictitious boundaries. This needs the
averaging process at every time integrating step. If the averaging process is executed
at every two or more steps, the non-eliminated wave may come into the results. In this
problem, therefore, successive averaging method with one and two time integrating steps
are discussed. o ‘ DA

In Fig 8a, o, in element (a) is compared. In this problem the result of 2-step suc-
cessive averaging method and Lysmer method give the almost same results. The 1-step
successive averaging method means the averaging method at every time integration
step®). By the central difference time integrating method, wave travels only 1 space
mesh during 1 step time interval. This means all node displacements except those on
the fictitious boundaries coincide with for two regions with different mixed boundary
conditions. The successive averaging method with free and fixed boundaries give the
same result as those of 1-step successive averaging method with two kinds of mixed
boundaries. The result of this method shows a little larger error than that of 2-step
successive averaging method. ' : ‘

In Fig 8b, 8¢ t,, in element (b) and o, in element (c) are shown. They show the
resemblance between the results of 2-step successive averaging method and those of
Lysmer’s method.
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Fig. 8 Comparison of stresses in a semi-infinite plate subjected to impulse load.
a. o, in element (a)
b. 7, in element (b)
C. o, inelement (c)

5. Conclusions

A numerical method for the elastic wave propagation problems involving infinite
continuous systems has been proposed. In the method, the fictitious boundary consists
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from two kinds of mixed boundaries. Results obtained by the proposed method are
compared with those with Lysmer’s viscous boundaries.

It is shown that the proposed averaging method eliminates the energy of waves
arriving at the fictitious boundary. In the case when the reflected waves at the ficti-
tious boundary may impinge on the same or another fictitious boundary, the method
needs a successive averaging process. The 2-step successive averaging method gives
results almost the same as those with Lysmer’s viscous boundaries.

In the successive averaging process, the shape of the wave in the analysed finite
region is a stress pulse with a step state wave front and it is a part of continuous wave
train. In order to simulate a infinite wave train by a part of it, it is necessary to modify
the shape of the pulse. In the modification of this study, the pulse with sloping wave
front is used. With a improvement of this modification, the better results will be
expected.
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