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Abstract

The results of an experimental and theoretical investigation on the damping action of
the submarged vertical thin barrier are presented.

The experimental data also are compared with published theories. Further more, in
this paper, a new theory is presented for the transmission of wave passing through a submerged
plane barrier. This theory is based on a consideration of the Wave Maker Theory by T. H.
Havelock.?

1. Introduction

Theoretical and experimental results are presented for the transmission of water
waves, passing over a rigid submarged vertical thin barrier located between regions of
given depth and some distance above the sea bottom.

. One of the problems in the design of such a structure is developed here together
with the results of laboratory tests on a model structure under a variety of wave con-
ditions.

The theory is based on consideration of wave power transmission, momentum
transmission and wave maker theory.

Laboratory data are presented to show that these theory are useful from the engi-
neering standpoint.

2. Theoretical Development

Energy Transmission Theory?

Author developed a theory for the partial transmission of gravity wave for a sub-
marged vertical thin barrier (See Fig. 1).

We found that

K = \/ sinh 2ko(h—d—d') +sinh 2koh—sinh 2ko(h—d) +2ko(h—d’)
! sinh 2koh+2koh

(D

where k, denotes the wave number, h is a still water depth, d denotes a upper edge of
the barrier and d’ denotes a length of vertical barrier.
When d—0, d’=d. From Eq. (1), we immediately have next equation.
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Eq. (2) is coincide with the Wiegel’s theory® for the transmission of wave past a rigid
vertical thin barrier extending from the water surface to some depth below the surface.
On the other hand, when d'—h —d.
We immediately have next relation.

_ ./ sinh 2koh—sinh 2ky(h—d) + 2kyd
K= Sinh 2k oh + 2ol 3)

Eq. (3) is coincide with the Fuch’s theory*) for the transmission of wave past a rigid
‘vertical thin barrier extending from the sea bottom to some distance below the surface.

Momentum Transmission Theory?>)

In 1974 author developed a theory for the partial transmission of finite amplitude
wave for this structure (See Fig. 2).

We found that

K = #sinh 4ko(h—d—d') —sinh 4ko(k—d) +sinh dk h+ 4ko(h—d')
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In the Eq. (4), when d—0, d'=d. We immediately have next relation

_ ofsinh dko(h=d) + 4kolh—d)
= ik (%)

Eq. (5) is coincide with the author’s equation® for the rigid vertical thin barrier ex-
tending from the water surface to some depth below the surface.
On the other hand, when d'=h—d. We immediately have next relation

__ 4fsinh dkoh—sinh 4ko(h—d) + 4kod
K=Y Sinh 4koh -+ 4o ©)

It is a interesting point that Eq. (6) denotes a wave transmission coefficient for the
rigid vertical thin barrier extending from the sea bottom to some distance below the
water surface.

Wave Maker Theory

Concider the partial transmission of uniform small amplitude wave in finite water
depth for a submarged vertical thin barrier that occupied a region between some dis-
tance above the sea bottom and a given depth.
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Fig. 3 Notation and Definition of Symbols.

We consider a two dimensional motion, in which a vertical plane occupies the line
x=0, d, y, h, where the axis of y is taken vertically downwards and y=0 is the mean
water surface. (See Fig. 3).

The wave motion, being such a could be produced from the rest by natural forces,
is irrotational and simple harmonic.

The fluid is assumed to be incompressible and invisid so that a velocity potential
o(x, y, t) exists.

The velocity potential satisfies the next relation.

2p o2
-6}‘1’2—+.@?;—=0 %)

Neglecting the square of the fluid velocity at the free surface, and omitting the ef-
fect of capillarity, the condition at the surface is given as next relation.

(% -95),mal =0 ®




50 Kazuo KAaNAYAMA

Furthermore, the surface elevation is given by next relation.

-5

®

»=0

For simple harmonic motion we assume a time factor ei*’, and equation (8) gives
, 5¢>

Furthermore, the boundary condition on the bottom y=#h is that no flow occures
across this surface, ie;

=0 - (10)

y=0

d¢ -
=0 (11)

The corresponding elementary solution of equation (7) are
¢ =ei*"ko®) cosh ko(y — h) (12)
where k, is the real positive roof of
gkytanh kyh =02 (13)
and B
¢;=eiot"kixcosk;(y—h) (14)
where k; is real positive root of next relation.
gk; ta-ﬁwkjh-l-az=0 (15)

This equation has an infinite sequence of real roots, together with an imaginary
root ikg. : . :

In the case of no barrier in the water, equation (12) and (14) give a solution of
“equation (7). - From the linearity of equation (7), also next equation is satisfied equa-
tion (7). '

O=A'¢p+2B'¢; (16)

where constant A’ and B’ are decided from boundary conditions.
In the case of existing of barrier in the water, we have the additional boundary
condition.

% _ =/(sinot | a7

‘where, we assume then the possibility of expanding a function f(y) in the form
F(v)=A cosh k(y—h)+ ZB; cos k(y— h) )

where the summation extends over the real positive roots of the equation (15).
We find that the coefficient 4 and B; are given by next equation.
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4k,
A= 2kyh+sinh 2kohg Sf(y)cosh ko(y—h)dy (19)
B.= 4k~ S ( )COSk ( hd (20)
IS RS2k gk YoV y—hydy

From equation (17) and (18), we derived next relation.

od
ox

={Acosh ko(y—h)+ 2 B;cos k j(y—h)} sin ot 1

x=0
On the other hand, we obtain next relation from the equation (12), (14) and (16).

0P
Ox

= — A'kyeit cosh ko(y—h) — ZB’kje"‘" cosk;(y—h) (22)

x=0
From the equation (21) and (22), furthermore, we obtain next relation.
A'=Aky™1, B'=Bjk;"! (23)
Substituting equation (23) into equation (16), we obtain after development
&= Aky! cos (ot —kox)cosh ko(y—h)
—2Bjk;te **sinatcos k(y—h) (24)

Equation (24) gives a velocity potential in the case of existing barrier in the water.
Considering the partial standing wave will arise on the barrier, we use a velocity dis-
tribution of partial standing wave for the boundary condition:

U] g= gTa(l_ a, \cosh ko(y—Hh)
=0T a /) coshkyh

sin ot 25)

where, a, and a denote a reflected wave amplitude and incident wave amplitude respec-
tively.

From equation (25) and (17), we obtain next relation for f(y), 0<y<d and d+d’
<y<h

OER LI BNy R 26)
d<y<d+d f(y)=0 ' 27

where Kt is a wave transmission coefficient.
The value of coefficient A and B; follow from equation (19) and (20), and from
equation (24) we deduced the velocity potential in this case;

b= gT" (1 —/T= K%)cosh ko(y — h) sin(ot — kox)

x Sinh 2ko(d—h) +sinh 2koh—sinh 2ko(d+d' — h) +2kod —2ko(d+d —h)
cosh koh(smh 2koh+2koh)

- (28)
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where we neglect the flow disturbance neighboring the vertical plane barrier.
Substituting equation (28) into surface condition we lead to a next relation for
surface elevation.

n=a(l—,/1—K?)cos (6t —kox)

sinh 2ko(d — k) +sinh 2koh —sinh 2k(d + d’ — k) + 2kod — 2k o(d+ d’ — h)
sinh 2k i+ 2k oh

(29)
On the other hand, we postulate the transmitted wave form by next relation
nt=a,sin (ot —kyx+¢) (30)

Considering the continuous of the wave form at x =0, we derive the following equa-
tion from equation (23) and (24),

a,=a(l—/1-K?)

sinh 2koh+2ko(h—d) —sinh 2ky(h—d) +sinh 2k (h—d —d') a1
sinh 2koh+2koh

where we neglect the phase angle e.
From the equation (31), we derive the next relation for the transmission coeffi-
cient Kt. ‘

W
A=W,
W= sinh 2koh+2ko(h—d) —sinh 2ko(h—d) +sinh 2k (h—d —d’) (32)

sinh 2koh+ 2k h
In the equation (32), when d—0 d’ =d, we immediately have next relation

2F Fo Sinh 2ko(h—d) +2ko(h—d) (33)

Ke=15 %7, sinh 2k ok + 2k oh

In the equation (33), it is a interesting point that Function F is coincide with the
Wiegel’s theory® for the rigid vertical extending from the surface to some depth below
the water surface. Furthermore, in the equation (32), when d'—>h—d, we immedi-
ately have next relation.

K 2F F _ Sinh 2koh —sinh 2ko(h— d) + 2kod 34)

T 14 F12, sinh 2k h+ 2koh

In the equation (34), it is a interesting point that function F’ is coincide with the
fuch’s theory*).

3. Test Apparatus and Testing Method
Fig. 4 shows the principal parts of the apparatus used for the testing. The experi-
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Fig. 4 Arrangement for the Test Channel.

ments were performed using a 0.7 meter wide, 0.9 meter depth and 20 meter long wave
test channal. The rigid vertical thin barrier was fitted in to the channel about halfway
between the wave generator and the opposite edge.

The wave generator was set to give a wave train of given height and period. The
wave height were measured with the barrier instilled in the desired position. The wave
generator was started and measurement were made on waves. Only the data obtained
on the lee side wave mater used in computing the transmission coefficient Kt.

In analyzing the data, the first few waves were passed by as these not of constant
period, therafter the analyzing was made for the next few waves. Considerable care
was exercised in placing the barrier so that there would be no leakage between the bar-
rier and the wall of the wave channel. Experimental condition were as following Ta-
ble 1.

Table 1. Experimental Condition.

Wave steepness 0.0037 — 0.1056

Relative depth 0.11 — 043

Water depth 40 cm

Barrier length d” 8, 12, 16, 20, 24, 28, 32 cm
Barrier depth d 4 — 28 cm

Fig. 5 shows some examples wave record.



54 Kazuo KANAYAMA

o Mo
122%(8.4+10.0+8.6+9.4

-~ H22x(8.14100

" In Lee of Barrier

Fig. 5 Sample Wave Record.

4. Testing Results and Concideration

The experimental results are shown in Fig. 6, compared with the wave maker
theory, momentum transmission theory and energy transmission theory.

In Fig. 6, it appears that these theories are useful to the engineering, but any im-
provement in the theory is needed.

The trend of increase in the value of transmission coefficient Kt with decreasing of
value d’/h and increasing of relative depth h/L is consistent. This would be expected
from the fact that, all the other condition being equal, the transported wave momentum
and wave energy into the lee of barrier increase as the relative depth is increase and the
value of d'[h is decrease.

Momentum transmission theory predict the transmission coefficient more closely
than does the wave maker theory and energy transmission theory. Wave maker theory
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Fig. 6 Comparison of the Experimental Results with Calculated Results ((A)~(H)).
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and energy transmission theory predicts a smaller value of transmission coefficient than
does the momentum transmission theory.

D
2)
3)
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5. Conclusion

The momentum transmission theory predicts the transmission coefficient ade-
quately than does the energy transmission theory and wave maker theory.
A consistent trend of increasing transmission coefficient with decreasing a value of
d’/h and with increasing of relative depth h/Lis evident in the laboratory measurement.
The writer would like to express his appreciation to K. Tanaka for giving helpful
sugestions, and to H. Ishida for performing the laboratorv experiments and calculation.
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