SINGULARITY AND DISTRIBUTION OF STRESSES
AT AND AROUND TIP OF A SHALLOW CRACK
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Complex variable anlyses are applied to the plane elastic problems of semi-infinite sheet with a mode I edge
crack of a cups-type morphology. Distributions of the stresses around the tip of the edge crack are derived and
the stress intensity factor for the crack is determined. The surface effect upon the stress intensity K1 is shown
to be given by a factor 8=3-2"%?inK1= B ¢ [ xc]"?, where ¢ and c are the mode I stress applied at infinity

and the surface crack depth, respectively.
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1. INTRODUNCTION

There have been a few works referring to the
significance of a surface crack, or an edge crack in a
two dimensional representation, from its crack tip
sigularity viewpoint[1][2]. Discussions developed up to
date, however, have been confined to the problem of a
classical or straight edge crack with well-defined square
corners, even where a shallow crack problem remains
difficult today, to which very limitted attempt of
solution in regorous manner has been given[1]. From an
engineering viewpoint, on the other hand, the surface or
edge crack which plays an important role in controling
crack propagation life and the integrity of structures
shows itself many times as a rather shallow crack,
especially in the initial stage of a stress-corrosion
cracking process literally acompanied by a corrosive
dissolution of the boundary, with not so well-defined or
rounded corners. For this reason an understanding of
the stress singularity behavior of the surface or edge
crack is of a comparable or even greater importance
than that of an internal crack from engineering as well
as intellectual interests. Thus, in the edge crack
mentioned here a shallow crack which is observed in
stress-corrosion crackings, including those of a
cusp-type morphology or with rounded cormners, is
involved.

Further, more importantly, the tip of such an edge
crack might be expected to produce an enhanced stress
intensity as compared with an internal crack of half
crack length equal to the edge crack depth, if we
assume that the physical volume around the edge crack
tip should be in charge of the elastic energy relaxed due
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to the presence of the stress-free surface. Equating the
relaxed energy with ( K2 - Ki? )/E times the effective
crack-affected volume will give an approximate
estimate of the stress intensity, Ki, which is enhanced
by the presence of the stress-free surface as compared
with a stress intensity, K , of internal crack with a half
crack length equal to the surface crack depth.

In this work the amplitude of singularity and
distributions of the stresses at and around the tip of an
edge crack of a cusp-type morphology will be examined
in an analytically exact manner, and the influence of the
stress-free surface upon them will be discussed.

2. FORMULATION OF THE PROBLEM

For the intended discussions the semi-infinite sheet
under tension with an edge crack of a cusp-type
morphology, delineated in Figure 1, is considered. Let
the sheet lie in the upper portion of complex z-plane, z
=X + 1y, with the tip of the crack being located at z = ic.
For analyses we make use of a couple of complex
potentials, known as Gursat's functions of complex
variable z, namely ¢ (z) and x (z), which are arbitrarily
chosen analytic functions and compose a bi-harmonic
function, known as Airy's stress function,.

F(z) = Re[z ¢ (2) + § ddz x (2)], )

The boundary condition consideration will be
facilitated, if we introduce such an auxiliary complex
plane, the £ -plane, { = & +in, illustrated in Figure
2, that the real axis and the upper-half plane map into
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the boundary and the upper physical region shown in
Figure 1 by a mapping function w (£ ),

z=o({)=c{{-1({+D)}. ()

In determining the function o (), we provide the
conditions,

w(0) = ic, and

Im o (Re ) vanishes at infinity. €))
Differentiating equation(2) yields

w'(L)=cl(L+i2)(L+i), “4)

from which we confirm that o ( { ) is analytic in the
upper-half plane, Im ¢ > 0. Crack tip is described by
o'(¢) = 0, which occurs at { =0 in the { -plane.
Primes are used to denote differentiation by the variable
shown in the parentheses. Thus, f'(z) = f'({ )/ 0 (L),
where, to minimize notation, we are designating f(z) =
flw({ )] as f({). Stresses, 0 x, 0 y and T xy , and
displacements, u and v, in rectangular coordinates can
in this way be written as

oxtoy=2¢"(L)w'(L)+comp.conj. (5)
gy-0 x+2iT xy — 2 [a)('C_)X

d{ " (CY o (LAL + x'(L)] /'(L) (6)
2u(u-iv) = k ¢(L)

-0 (L))o (L) o'(L)- x(L), @)
where 1 and « are elastic constants of the material,
and bars denote complex conjugates.

In terms of the functions ¢ (&) and x (&) the

load-free boundary condition on the line, n = 0,
delineated in Figure 1, can be written as

$(E)+ w(E)d'(ENw'(E)+ x(E)

= constant, (8)

since components, §p%dsX and §eYdsY, of the
resultant force on an arc PQ of an arbitrary curve with
element ds is expressed in terms of ¢ ({ ) and x (L)
as[3]

frds (X+1Y) =-1 [¢(L)
+ (L)' (LY o'()+ % (L)1 % 9)

and this equation is applicable to the boundary of
Figure 1, where s can be considerd as a function of £ .
Thus, the solution of the problem is attributed to
determining the functions ¢ (£ ) and x ( { ) which are
analytic in Im { > 0 and satisfy the appropriate
conditions.

If the z-plane is described by polar coordinates, r and
0 , with pole at the notch tip and 6 the counter-
clockwise angle with the y-axis, then

Vol 48 No.1 (1997)

MAKIO IINO AND SHUHEI OHSAKI

z= ow(l)=i(c+re ') (10)
Thus, from equation(2), { isrelatedtorand 6 as
cl =-ire®2+[-re'® -r2e2%/4c]'2  (11)

3. STRESS FIELDS AT AND AROUND TIP
OF A SHALLOW CRACK

In terms of the formulations carried out in the previous
section we will examine the essential character of the
stresses, namely singularity and distributions of the
stresses induced at and around the tip of the crack,
which will be shown to be influenced by the presence of
traction-free boundaries.

Examination of equation(8) shows that if the function

x () is so chosen in the upper-half plane, Im { >0,
that

2(5)=-6(L)- o (L) (LN (L),
forim{ >0, (12)

then x () is analytic there and satisfies the boundary
condition(8), disregarding the constant which is
responsible for a rigid body displacement. Noticing that
differentiation of equation(12) yields

2'(2)=-8'(L)- (L) (LN w'(L)

+ ({6 (CN o'(E)AL,

we find that equation(6) reduces to

6y-0x+i2txy =2 [[0(L)-w({)]X

d{o"({Y ()AL /w'(L)- E'(C)/w'(i)

- () (L], (14)

where ¢ ()= o'({ )/;'( ¢ ), which tends to unity at
infinity.

(13)

4. DETERMINATION OF COMPLEX
POTENTIAL ¢ ()

Since we now know from boundary condition
consideration that x ( £ ), which we introduced as an
arbitrary analytic function, should be related to ¢ ()
by equation(12), the problem reduces to the
determination of ¢ ( { ) which satisfies the loading
conditions at infinity,

Txy=0(f§'—>w). (15)
These conditions will be fulfilled, if ¢ ( { ) is so chosen
as to satisfy equations(16) and (17) to follow.

0x=0,0y~

ox+ oy =4Re[¢' (L) '(L)] = o, (16)
6y-0x+i2txy =2 [[@(L)w(L)]X

d{6'(L) o (ML /o' (L) - 6 (LN o'(L)
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- (D)o (CY ()] =-0.

Here we assume that the function ¢ () can be
represented by

26(8)=Acl +Bow({), (18)

which is so chosen that 2 ¢ ( { ) consist of Acw (),
L., the elementary solution for the crack-free geometry,
and a term, Bo[c{ - w({)], vanishing at infinity,
which sum up to the above representation(18), with A
= Bo and B = A, - Bo. Here coefficients A, and B,
therefore A and B, are real from symmetry
consideration in the loading conditions under
consideration. Then it will be readily shown that the
conditions- expressed by equations(16) and (17)
determines A + B, the sum of coefficients of the
non-vanishing terms of 2 ¢ '({ )/ » '( ) at infinity, as

(19)

17

A+B = ¢/2,

by noticing that the term 2[ w (£ )- w (£ )] ¥

d{o'({ )Y w'(L)}dL/w'(L) vanishes and

26 (L) w'(L) = Aoc+Bo[c/w'({)- 1] tends to Ao
at infinity in equation(17). Other than the loading
conditions, those for the displacements, u and v, to be
bounded in the area Im { >0, would require

(4/3)A+2B = 0, 20)
which corresponds to the condition that a term {(4/3)A
+2B}/({ -1)of 2 u (u-iv), equation(7), behaving as
being singular in Im { > 0, should vanish. It will also
be shown that a term of 1/ { , which consists of 2 12 (u
- 1v ) and behaves singularly on the bounday Im { =
0, has already vanished by satisfying the traction-free
boundary condition(8), or equivalently in the definition
of x (&), equation(12). From equations(19) and (20)
A and B are obtained as
A=3/2)o andB = -¢ @2n
Complete distributions of the stresses, o x, o y
and t xy, can now be determined from equations(5),
(14) and (18), with (21). To examine a crack tip
singularity let attention be restricted to the domain r <<
¢, where from equations(11) { is approximated to be

C =-i[(t/c)?e 2 (t/c) et /2
+ (/)2 e B8] (22)

Now it is possible to write down the stresses in the
vicinity of crack tip in terms of r and 6 as

o x =k1[2nr] cos( 0 /2) ¥

[1+sin( 6 /2)sin(3 6 /2)] , (23)
oy =ki1[2nr] cos( 0 /2) X

[1-sin( 0 /2)sin(3 6/2)] , (24)

t xy = -ki[2 7] Vsin( 8 /2) X

cos( 6 /2)sin(3 6 /2), (25)
where, it is to be noted, the factor k1 in the present
crack morphology is derived as
ki1 =3:27"¢ [nc]"2 (26)
and the azimuth dependences of the singular terms

compare identically to those with the internal straight
crack.

S. DISCUSSIONS

It i1s first to be mentioned that the factor ki,
equation(26), is in agreement with that obtained in the
direct evaluation procedure of the stress intensity
factors K1 and K1 1, namely that obtained by a general
formula[4],

Ki-iKin = lim26'(L)/w'(£)X
27 e {w(l)w(l.)}]"A

where an inessential modification of the definitions of
K1iand K1 1was made; accordingly the factor 2 7z e i
is introduced in equation(27) in place of 2 which
appears in the original formula[4]. § is the angle which
the normal of the crack plane makes against the y-axis,
and { o the { -coordinate corresponding to the crack
tip location. In the present example £ . = 0, and

¢ (£ ) is given by equation(18). Carrying out the actual
algebra yields

27)

20 (L)Y o' (L) =Bec/0'({)+(Ac-Bo), (28)
which reveals that factor B, = A contributes to
singularity, while we already know that the factor A, =
A + B depends on the uniformly applied stress o at
infinity as equation(19). Substituting the necessary
quantities in equation(27) and letting { approarch to
0 render

Ki =3-272¢[nc]"? (29)
which is identical with k1 defined in equation(26). The
present work treated an edge crack of a cusp-type
morphology, analytically deriving the enhanced stress
intensity due to the presence of the traction-free
surface. The derived stress intensity is 6 percent
greater, which means an effective crack length is 12.5
percent greater, than that of an internal crack with a
half crack length equal to the surface crack depth, but
compares inferiorly with 1.1215 o [ 7 ¢ ]'”? for an edge
crack with rectangular corners and with depth c[1].

6. CONCLUSIONS

The stress intensity and distributions of the stresses at
and around tip of an egde crack of a cusp-type
morphology were derived. The derived stress intensity
is expressed by K1 = 3-27%2 ¢ [z ¢]"?, with ¢ and
¢ being mode I stress applied at infinity and surface

H RS TR JE R 455



42 (42) MAKIO IINO AND SHUHEI OHSAKI

crack depth, respectively. The stress intensity is 6
percent greater, which means an effective crack length
is 12.5 percent greater, than that of an internal crack
with a half crack length equal to the surface crack
depth. The azimuth dependence of the carck-tip stresses
compares identically with that of the internal straight
crack.

REFERENCES
1) W.T Koiter, Discussion of "Rectangular Tensile Sheet with
Symmetric Edge Cracks", by O.L Bowie, J.Appl.Mech. Vol.

e - = X

0

Fig. 1 Infinite sheet with shallow edge crack of a cusp type
under tension in x direction

32 (1965), p-237.

2) M.Iino and K. Kaminishi, Conceptual Extension of Stress
Intensity to An Angled Defect I, An Edge Notch with Arbit-
rary Included Angle, Technology Reports of The Yamaguchi
University, Vol.5, No.5 (1996), pp.277-286.

3) N.LMuskhelishvili, Some Basic Problems of The Mathema-
tical Tehory of Elasticity, p.104, P.Noordhoff, Groningen
(1963).

4) G.C.Sih and H.Liebowitz, Fracture, Vol. 1L, p. 97, Academic
Press, New York (1968).

(Received April 15, 1997)

R A A AP I A A ;:
2

0y (o, 0)
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