CONCEPTUAL EXTENSION OF STRESS INTENSITY
TO AN ANGLED DEFECT 11

—— A RHOMBIFORM CAVITY WITH ARBITRARY TIP ANGLES —
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Singularity and distributions of the stresses at and around tips of an internal rhombiform cavity are examin-
ed by applying complex variable methods to the plane elastic problems of the defect-containing infinite sheet
under symmetric and skew-symmetric loadings. The concept of the stress intensity in a crack problem is ex-
tended to the internal angled defect with an arbitrary tip angle, the general formulae for determining the stress
singularity factors being given. It is shown that exact solutions for the general stress distributions as well as
the local stresses can be derived by an effective use of the mapping function which composes the complex

potentials.
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1. INTRODUCTION

The primary intention of the stress intensity factor in
fracture mechanics is a perfect and unique description
of the dominant and singular stress state at crack tip by
means of a single parameter. In previous work[1] the
concept of the stress intensity for a crack was extended
to an externally cut V-shaped notch with an arbitrary
included angle and a finite depth, which has been left to
be solved notwithstanding its engineering importance.
It was shown that the problem required the introduction
of a mapping function with singularities of branch-
point type and related complex potentials. It was further
shown there that exact solutions for general
distributions of the stresses as well as the stresses local
to the notch tip could be derived by an effective use of
the mapping function which composed the complex
potentials.

In this work the analysis will be extended to an
internally cut rhombiform cavity with an arbitrary tip
angle under symmetric and skew-symmetric loadings,
which bears also a great engineering importance. It will
be shown that exact solutions for the general stress
distributions as well as the stresses local to the tip of
the internal cavity can be derived by a furhter effective
use of the mapping function which composes the
complex potentials.
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2. INITIAL FORMULATION

The infinite sheet under symmetric and/or skew-
symmetric loading weakened by an internal rhombiform
cavity with an arbitrary tip angle 23 will be
considered. The sheet lies in the complex z-plane, z =
X + iy, with the tips and the other corners of the cavity
described by z =0, - 12¢, ctan 3 - ic and -ctan 3 - ic, and
indicated by O, A, B and C, respectively, as illustrated
in Figure 1, where i = [-1]"2

For analyses we use a couple of complex potentials,
¢ (z) and x (z), which are arbitrarily chosen analytic
functions of the complex variable, z, but satisfy the
required boundary conditions, and compose the well-
known bi-harmonic Airy's stress function, F(z) =
Re[zd (z)+ § "dzx (2)].

For facilitation of the boundary condition consider-
ation, an auxiliary complex plane, the { -plane, Figure
2, is introduced, and a function relationship z = ()
1s sought such that the unit circle, { = ¢ = e’ and
its exterior, D*, conformally map into the boundary
and the exterior region occupied by the sheet, Q %,
Figure 1, respectively, with

w@) =0, w(-1) =-12¢c, w(l) =ctanB-ic

and w(-1) = -ctanf -ic, (1)
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Fig. 1 Internal rhombiform cavity under symmetric and

skew-symmetric loadings
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Fig. 2 Auxiliary complex plane, {
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being defined. By application of the Schwartz-
Christoffel transformation to this problem, it was found
that the mapping function, w ({ ), can be given as a
principal branch of

z= w({)
= C It [P %1]"2 87, 2
where n is related to 2 3 as
n=12-281x. 3)

The constant C can be determined as shown in
APPENDIX as

C = B(1/2,n)/ «, @)

where B(p, q) is the betha function.

Thus obtained mapping function, w (£ ), is analytic
for all finite points in D*. The tips and the other corners
of the cavity are described by the roots of w'({) = 0,
which occur at { = *iand %1 on the boundary, the
unit circle. The integral o ({ ), equation(2), can be
expressed as

o(L)=CJVOZIZHZ-D], (5)

which is characterized by the relationship propitious for
the present analyses,

o(l/T)= o(l). (6)

It should be noted that, if we assume integration starts
at{ = -1 in equation(2), then the integral will be
expressed, in place of equation(5), as

()
= o(-i)+C § EVOUZ[ZHZ-D], (Sa)

where o (- 1) = - i2¢ from equation(1).

The complex potentials, ¢ (z) and x (z), being
functions of z = w({ ), can also be considered as
functions of ¢ . Thus, we designate ¢ (z) = ¢ [w (L )]
as ¢ ({) and so on, which serves to minimize new
notations and permits such definitions as ¢ '(z) =
¢'(L )Y »'({) and so forth. Primes are used to denote
differentiation by the variable shown in the parentheses.
Thus, the stresses, oe¢, 0, and t:, , and
displacements, ue and u,, in curvilinear coordinates
can be written as

ottt o,=2¢"(L)Yw'({)+tcompcon. (7)

oa-0¢e+2ite, = {2/w'({)}X

Lo ()" (LY w'(L)}AT + x'(L)] (8)
2p(ue +iu, )= k ¢(&)

-0(8)e (L)' (L)- x(L), ®

where 1 and k are elastic constants of the material,
and bars denote complex conjugates.

In terms of the functions ¢ () and x () the
load-free boundary condition on ABOC of Figure 1 can
be expressed as[2]

d(o)+w(o)d'(oc)w'(o)+ x(0)
= constant, (10)

and the solution requires the determination of the
complex potentials ¢ () and x () which are
analytic in D* and satisfy the boundary condition(10).

When necessary, o ({), equation(5), can be
developed in a power series in a domain of interest.
Around the tip of the cavity, | (£+1/8)2 | <1,
w (£ ) can be expanded around { = ias

w({)= (iC/V)e“""z’”gak[(C +1/0)2] 2K,
v =1+2n (11
by term-by-term integration after expansion around {
= 1 of the integrand in a power series with respect to
Z for | Z | <1, where Z is given by
Z =(L +1/¢8)2. (11a)
The coefficients, ax, are defined by
ao = 1, and
ak = {v/(v+2k)}(ntk-1)- - - (n+1D)n/k !
(k=1,2,3---). (11b)

Forlarge | ¢ |, | Z | > 1, w (&) can be expanded
around { = ias

o()=CZbk[2/(L +1/L)]"?**-ic, (12)
k=0
by term-by-term integration of the integrand expanded
around { = iin a power series with respect to Z for
| Z | > 1, where Z is given in equation(11a) again.
The coefficients, b, are

bo =1, and

bi = -{1/(2k-1)}(n+k-1) - - (n+1)n/k |
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34 (34)
(k=1,2,3---). (12a)

In terms of the formulations developed above the
character of the stresses induced by the presence of the
cavity will now be examined. To do this let ¢ ( { ) first
be defined in the interior of the unit circle, Figure 2, as

6 (L) =-0(L)d' VLN VL) -%U/L),
{ €D, (13)

then the function ¢ () is extended into D™, following
the extension concept of Muskhelishvili[3]. You will
find the extended ¢ () analytic in D™ excluding {
= 0. The function x ( { ) can now be expressed as

2(0)=-61/0)- 0/ )d'(L) (L),
{ €D, (14)

which is clearly analytic for all the finite points in D*.
In equations(13) and (14) the bar notation is defined by

?(I/C) = f(1/7). (15)

3. DETERMINATION OF COMPLEX
POTENTIAL ¢ ()

Since we now know from the boundary condition
consideration that x({) can be expressed as
equation(14), the problem reduces to the determination
of ¢ ({) which satisfies the loading conditions at
infinity.

Examination of the function o ( { ), equation(11),
suggests that 2 ¢ ( { ) can be represented as
29 (L) =iCA[v o (L)iC]*, (16)
where A and A are constants which dependon2 3 ; 1
is assumed to be real and positive, A > 0, in order for

the displacements to be bounded at { = 1. The

corresponding 2 x ( { ) is, from equation(14),
22(£) =iCB[v o (L )iCl%, 17
B({)=Ac*({)+A1 € (L), (17a)

where ¢ (£ ) is defined by
(0)=-0/0)o(l), (18)

which can be expressed, from the relationship(6), as

(L) =-0(L) (L), (182)
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On the load-free boundary, ABOC, ¢ ({) = eFi28
= ¢ *2v where2y =2x -28.Then

B(L)=A e *2Y + AL e *27 (£ = g )(19)

Thus, B( 0 ) turns out to be a pair of constants, which
must be identical. Equating both the constants in
equation(19) reduces to

ReA[Asin2y +sind2vy]
+imA[Asin2y -sinA2y] =0, 20)

which implies that if A is real, i.e., for symmetric
loading in the x-direction at infinity, A must be the real
part of solutions of the eigen equation,

Asin2y +sinA2y =0, (21)
If A is imaginary, i.e., for skew-symmetric loading in
the y-direction at infinity, A must be the real part of
solutions of

Asin2y -siniA2y = 0. (22)
In both the cases B( { ) reduces to
B({)=AXcos2y +AcosA2y (L = o ).(22a)
In the area Q7, Figure 1, on the other hand, it will be
found that B({ ) varies with £, since & ({) varies
there. For instance, along the line C'C and BB' « ({)
varies as
E(0)=-(x+ic)(x-ic)
= (c-x)/(+x?)-12ex/( 2+ x3)
= exp| itan {-2cx/(c*-x?)}],
which varies with x. If the counter-clockwise angle, in
polar coordinates with pole at z = 0, with the positive
y-axis is denoted by 6 , then x = ctan( = + 6 ), and
tan ' {-2¢cx/(c*-x?)} = tan '[-tan(2 = +2 6 )]
=-Q2n+20).
It follows that

—;( E ) — e-i(2n+26) o e-ize

(23)

b

and

B({)=AL e 26 +K o -it20
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(onC'Cand BB'), (24)

which is smoothly continued at 6 = = vy onto the value
of B({ ) = B( o) given in equation(19).

In the complex ¢ - plane, where the mapping function,
w (), is expressed as in equation(11) or (12) in
accordance with the  area, it is understood that

B({)=A2cos2y +Acos A2y
(I g+ =1), 25
and
B({)=AL e (L)+AE *(L)
(1 (C+170)2 | >1). (26)

Thus, the final forms of 2 ¢ ({ ) and 2 x ({ ) will be
represented in a power series as

2¢(C)=iC§Ak[va)(§)/iC]“, (27)
k=1

2x(C)=iC§Bk(§)[v o (£ )iC1*, (28)
k=1

B{({)=AAre ({)+A e Q). (28a)

General distributions of the stresses in a domain of
interest may be expressed by substituting equation(27)
and (28) mto (7) and (8), with () given in
equation(11) or (12), as

O ¢ =Re;(Aklkv/2C)[{2-Ck( £)o6.1(¢)
k=1

-(1-29 8:1(8) 8 (D)} (v 0 (LHIC)*H],

29)

g4 =Re§(Aklkv/2C)[{2+Ck(C )61(8)
k=1

+H1-211) 61(L) 8 (O}(v o (LHC)* ], (30)

e e =Im 3 (Acdiv 2O[{ e £) 51()

k=1

H1-219 61(L) 8 (DN (v o (LHIC)*], (31)

where 6 (£), 61({)and e ) signify § () =
-0 (Y o(L), 01(L)=o'({)w'({)ande({) =
B({ )/Ax, respectively. Among the terms thus
expanded attention will be focused on the terms of a
dominant singularity in the following section.

4. DEFECT-TIP SINGULARITY AND 6 -
DEPENDENCE OF STRESSES

The amplitudes of stress singularities at a crack tip,
being termed as stress intensity factors, are a wide-
spread concept today. A general definition of them will
be given by

Ki-iKn =1m2¢'({ ) w'({)X

{—¢o

[e2n{w(L)w(L)}]"% (32)
where Ki and Kr are mode I and mode II stress-intensity
factor respectively, w ({ o) the location of the crack tip,
and 0 the relative angle of the normal vector of the
crack plane to the y-axis. The extention of the concept
to a general angled defect would define stress
singularity factors Ki and Kr for the defect, rewriting
Aias Aror A, in accordance with the loading mode,
as

Ki = Relim2 ¢ (£ Y/ w'(L )X
[Sad ]

[e P v{w(l)wn(L)}]"*, (33)
and

Ka=-Imlim2 ¢ '({ ) w'(L)X
{—fo

[e®nv{w({)o(L)}]"*" (33)

where 1- A1 and 1- A 1 denote strength of the mode I
and mode II stress singularity, respectively. It is to be
noted that a factor = v, which apperas in
equations(33) and (33a), is defined as

v =2x-28, (34)
andnot 2 7.

To examine defect tip singularities restrict attention to
the domain | £-i| << 1, where w(Z) can be
written as

o(g)=(GC/v)eT=DV[(L+1/0)/2]*. (35)
If we describe the z-plane by polar coordinates with
pole at the defect tip, { = i, and 6 the counter-
clockwise angle with the y-axis, then

z=w({)=ire'’ (36)

The stresses in the immediate vicinity of the defect tip
in polar coordinates can now be given as special cases
of the general expressions(29) to (31), with k = 1,
through the conversion formulae and writing 11 as 1,
as follows:
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36 (36)
For mode I loading, they are
o = (ReAr A v /2)[C/vr]""* X[(3- A )cos(1-1) 6
+(cos2 A y+2Acos2y)cos(1+1) 0], 37
o6 =(ReAr 1 v/2)[C/vr]"* X[(1+2)cos(1-1) 0
-(cos2 X y+Acos2y)cos(1+1) 0], (38)
tr0 = (ReA1 A v /2)[C/ v r]""* X[(1- A )sin(1- 1) 6
-(cos2 X y+Acos2y)sin(l1+1)01], (39)
and for mode II loading, they are
or = (ImAi1 A v/2)[C/vr]"* X[(3-2)sin(1-1) 0
+(cos2A y-Acos2y)sin(l+1) 0], (37a)
o6 =ImAi A v/2)[C/vr]"* X[(1+A)sin(1-1) 6
-(cos2 A y-Acos2y)sin(l+1) 0], (38a)
tr9 = (ImAL L v /2)[C/vr]"* X[(1-2 )cosl-bl )6
-(cos2 A y-Acos2y)cos(1+1)0]. (39a)

By applying the general definitions, equations(33)
and(33a), to 2 ¢ ( { ), equation(27), it is found that

Ki= ReAi A v [mc]*!, (40)

and

Ko=-ImAi A v[mc]"*E, (40a)
where we write the real and imaginary part of A: as
ReA, and ImA,, respectively. In a limiting case of a
crack, A1= A1 = 1/2, equations(37) to (40a) lead to
the conventional formulae.

5. CONCLUSIONS

Consecutively from previous work[1] the concept of
the stress intensity in a crack problem was extended to
an externally or internally cut sharp notch or defect with
an arbitrary tip angle. It is shown that exact solutions
for the general stress distributions and the stresses local
to the tip of the internal defect can be derived by an
effective use of the mapping function which composed
the complex potentials.
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APPENDIX Determination of C

By applying definition(1), w (1) = ctan § - ic, to
equation(5), we have

ctanB-ic =C JJAZ[ZY(Z>*-D]
or equivalently
ce i#2B)jcos B = Ce™i"n]

(AD)

where the integral | = f JdZ[Z?/(1-Z?" is found to
be given by the betha function as

1= [JdZ Z%(1-Z2)~
= (1/2)B[(14+2n)/2, 1-n]. (A2)

The last expression can be deformed in terms of the
gamma function, I'(s), as

(1/2)B[(1+2n)/2, 1-n]
= (1/)T'(1/2+n) I (1-n)/ T"(3/2)
= {T(1/2+n)/T(1/2) T )} * T (n) ' (1-n)
= {1/B(1/2, n)}( = /sin 7 n)
= {7 /B(1/2, n)}(1/cos B (A3)

Remembering that n = 1/2 - 8/ =, it follows that C in
equation(A1) is lead to

C=cB(1/2,n)/ =, (A4)
where it is assumed without loss of generality that C is
real.
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