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Abstract

The mathematical foundation of the gauge theory is built up systematically. ‘The H-
valued differential form bundle is constructed on the Hilbert manifold and the exterior covariant
differentiation is defined on the H-valued differential form bundle. The connection form and
the curvature form are introduced by means of the exterior covariant differentiation. The
structure equation and the Bianchi identity are derived.

§1. Introduction

In his attempt [2] to unify the gravitational field and the electromagnetic field,
Weyl developed the concept of the gauge transformation. After that, using the Dirac
theory of electron, in [3] he succeeded to formulate the theory which unifies the gravi-
tational field, the electromagnetic field and the wave field of the electron, and this is
the initiation of the gauge theory. Utiyama noticed that the gravitational field, and
also the electromagnetic field, are represented in connection fields, and evolved a
general gauge theory in this viewpoint. In particular, in [7] he showed that, in in-
troducing the gauge field connection, the Lagrangian is still invariant even when the
global transformation group is replaced by the local transformation group. After
Utiyama, Kibble [8] constructed a theory which unified the gravity and torsion fields
by formulating the equation of motion of the gauge field torsions. These works
strongly suggests that four kinds of forces, electromagnetic, weak, strong, gravity,
may be treated within a common framework of the gauge theory.

In the gauge theory, the gauge field is a connection in the covariant derivation of
the matter fields, and it is introduced by replacing the global symmetry by the local
symmetry. Matter fields space has representations: as fibre bundles whose fibres are
the representation spaces of transformation groups of vector fields, tensor fields, spinor
fields etc., where the representation spaces are finite or infinite dimensional Hilbert spaces.

In such standpoint, we consider a Hilbert manifold M and construct an attaching
bundle whose fibres are Hilbert spaces H_(M) deﬁned at each point = of M and have
the same structures with a Hilbert space H, and the attachmg bundle keeps the local
symmetry. The transformation group is GL(H). We also construct the H(M)-valued
differential form which corresponds to a matter field. This form is expressed in terms
of the moving frame b(») on M.

The H(M)-valued differential form of class C™ on M is defined with the help of
the H-valued differential form of class C™ on M. We investigate the H-valued differ-
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ential forms, and generalize the definitions of the exterior multiplication and the ex-
terior differentiation. We obtain analogous results with the case of real valued differ-
ential forms on differentiable manifolds. The set QMW(M, H(M)) of all H(M)-valued
differential forms of class C on M is a C™(M, R)-module. The exterior differential
of Q,eQ{"(M, H(M)) with respect to b(») is defined with the help of the exterior
differential of the H-valued differential form and we obtain familiar properties of the
exterior differentiation.

The exterior covariant differentiation is a linear continuous map Dy: Q0 (M,
H(M))-Q=)(M, H(M)) such that Dy(w, A Q,)=dw A Q,+(—1)1w,ADyQ, for
w, € QP(M, R), Q,e Q0(M, H(M)). The connection form wy of H-type with
respect to b(») is defined by Dyb(=)=b(<)wy(=), and the covariant derivation 7, the
connection I are introduced. The curvature form Ry is defined by Db(=) =b(=)Ry(=).
The Lagrangian determining the motion equation of the gauge field I' is constituted
form Ry. The structure equation Ry=dwy+wyAwy and the Bianchi identity is
derived. ‘

Throughout this paper it is assumed that Hilbert spaces are separable. By a base
of Hilbert space we mean the base de=(Ae,,..., Ae,,...) which is made by an ortho-
normal base e and an invertible bounded linear operator A.
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§2. Differential forms on the Hilbert manifold

1. C™-diffeomorphisms v , ‘
Let E, F be two Banach spaces over the real field R. We denote the set of all
p-linear continuous mappings
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fiEx--xE—F

N
p-times

and the set of all p-linear alternating continuous mappings

fiEx-XxE—F
\__.___.\/__J
p-times

by 2 (E, F) and & (E, F) respectively. In particular, £ (E, F)=(E, F) is the set
of all continuous mappings f: E-F and % (E, F)=«/(E, F)is the set of all linear
continuous mappings f: E-»F. In what follows #,(E, F) is denoted by Z(E, F).
These sets are all vector spaces and form Banach spaces over the real field R with the
norms defined by the usual manner. As example, the norm of an arbitrary vector
fe o (E, F) is given by '

I£l=sup If (x1,..., Xl 5

lxdl£1,..,lIxpllS1

where X4,..., x, € E.

Let V be an open not empty set of E and consider a mapping f:V-F. Now, we
say that a mapping f is differentiable at the point z€ V if the following conditions are
satisfied: (1) fis continuous at the point , (2) there exists a linear continuous map-
ping f'(=) € £(E, F) such that

hm ” f(‘”) _f(”) _f’ (cv)(w —a) “ =0,

xra T @

(w¥a)

that is, f(2) —f(«)=f"() (== @)+ 0(|=—<])-

A mapping f'(<) € Z(E, F) is called the derivative of the mapping f at the point
z€V.

By the differentiability of a mapping f: V—>F in ¥V we shall mean a differentiable
mapping f at every point of V. We say that a mapping f: V—F is of class C™V in V
if f is differentiable in ¥ and if the derived mapping f': V- Z(E, F) is continuous in V.

Furthermore, a mapping f: V—F is said to be twice differentiable in V if the
mapping f and the mapping f": V- %(E, F) are differentiable in V. The derivative
of f' at the point » € V is denoted by f"(=) and we see f"(z)e Z,(E, F). We say that
a mapping f : V—F is of class C® in Vif the mapping f is twice differentiable in V' and if
the mapping f”: V—%,(E, F) is continuous in V.

In general, by induction, a mapping f: V-F is said to be of class C™ in Vif the
mapping f is n times differentiable in V and if the mapping f: V-2 ,(E, F) is con-
tinuous in V. , L

Now we shall give the definition of C("-diffeomorphism.

Definition. - -

Let E, F be two Banach spaces and let ¥, W be open sets of E, F respectively.
Then we say that a mapping f: V- W is C™-diffeomorphism if the following conditions
are satisfied: : - ‘ :
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(1) fis a bijection of V onto W,

(2) the mappings f, f~! are of class C(™.

In what follows, by the base of the Hilbert space E we shall mean the base Ade=
(4ey,..., Ae,,...) where e=(e,,..., e,,...) is an orthonormal base of E and the mapping
A: E—E is a bounded linear operator which has the bounded inverse operator A1,

Now, let e=(ey, e,,..., ¢,,...) and ¢’ =(¢}, ¢},..., e,,...) be two bases of E, and let
B, C be bounded linear operators on E. We expand a vector X of E in terms of two
bases e and ¢’ in the form

B blbt\ (el chech
B b3bE | | ol cheec?
. b

are the matrix representations of B, C with respect to a base e respectively. It is easy
to show that, when a transformation from a base e to a base ¢’ is given by

e,l a% a%...a'l'... 31
¢y | _|a} a3--al 1)
N i i . N
e';' a.'ll a.'zl...a.:... en

Xl a% a:lz...atli... X’l
X%\ _|a} a3--a? X2

: - : : . 4
X" a'll ag...a.z... X’"

and furthermore we have

Bx=3 {3 bixi}e,
. i=1  j=1
o0

(BC)X= 3 (5 b5 clxv)e,

=1 j
=2 {2 (X blch)x¥)e,.
i=1 k=1 j=1

Henceforth the above results shall be used without reference in case of necessity.
Subsequently, we shall introduce the partial derivatives of the function. Let V
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Be an open set of a Hilbert space E and let e=(e;, ¢5,..., e,,...) be a base of E. Then,
for each point =€ ¥, we have == 3 »'¢;, Considering a function f: V—R, we shall

define the partial derivatives of f lasl follows: a function f: V=R is said to have the
pattial derivative with respect to ' at a point = € V' if the function g(t)=f(=+te¢;): R>R
is differentiable at t=0. '

We denote the partial derivative with respect to »* at a point =€V by 0;f(=) or
0f(2)/0=".

Furthermore, we can define the partial derivatives of higher order of a function
f: V—-R, in analogy to what is defined for the ordinary function.

In what follows, we assume that E, F are Hilbert spaces. Let e=(ey,..., Cppeet)
and f=(f,..., fn»..-) be bases of E and F respectively. Giving a mapping f: E-F, we
expand this mapping f in terms of a base f as follows.

fle)= 2 fi(=)f;, for each point =€ E

Now we shall investigate the relation between the derivative of a mapping f+E—-F
and the derivatives of the functions f: E»R (i=1, 2,...).

Proposition 1.

Let V be an open set of E. Suppose that a function f: V>R is of class C™ in V.
Then f has the partial derivatives 0;--0;, f(=) (m<n; ji,.r jm=1, 2,...) which are
continuous in V, and we have, for each point =€V and for any vectors y,,..., yn € E,

SO i )= 2 OO S @Ay (1.1)
where = 2 y{eja--'s Ym= 2 y,’;&j
j=1 Jj=1
0"f(=
and Ojy+ 0 f (=)= 73;1'_1{.(7,),7;" :

Proof. We prove this proposition by induction on m.

First, we shall show that f has 8;f(=) (j=1, 2,...) which are continuous in V and
(1.1) is held in case m=1.

Since fis of class C( in V, there exists f'(=) € Z(E, R) at each point =€ V such that

| f(e+ 42) —f(2) = f'(2) 4=l = o([| 4=]) - , (1.2)
Setting f'i(«) =f"(2)¢;, we see

S @y= 3, F=y

where y= i yle;. Especially, in case do=te;, we have f'(e)d==f'(=)t. Thus (1.2)
o
becomes ’
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If(e+1te))—f(e)—fi()t] =o(l1]).
This show that f has 9,f(=) at =€ V and f{(«)=0,f(2). Therefore we get

f(@)y= J; 91 f(2)y/. ' (1.3)
Now, in order to see that 8.,.f («) (j=1, 2,...) are continuous in V, we start with
1f'(@+d2)—f'(=)ll = Sup, {f'(e+4=)~f"(=)} ¥l .

By (1.3), we have

1 e+ de)=f'@l= up | 3 (0,f (o A4)= 0, ().

riis1

Furthermore, by the continuity of f'(=) in V, we get, for ye E such that |yl £1,
lim | ¥ {0;f(e+42)—0,f(=)}yi|=0.
Az=0 j=1

Especially, setting y=e,/|l¢,||, we infer

Namely, 0;f(=) (j=1, 2,...) are continuous in V.

Next, suppose that f has 05,°0;, f(2) (m<n; ji,ny j=1,2,...) which are con-
tinuousin Vand (1.1)is held. Our purpose is to show that there exist 0j,++0;,. 0. . f(2)
(Jtseees Jms Jm+1=1, 2,...), moreover these are continuous in ¥ and (1.1) is also held.

Since f is of class C™ in V, there exists f m*1)(z) € &1 1(E, R) at each point - V
such that

S ot 8) =)= F D) de] = o ),
that is, |

sup - [{f e+ de) = () = f " (@) A} (91, )l =0(|4=])), (1.4)

Iyl 21, llymll£1

where y,,...,y,,€ E. Writing §’:‘.t}3n“(¢)=f('"“)($)(ejl,..., ¢ s
we have ;

Q0 . .
FOO@) D1ses Ve )= 2 g @y yin, (1.5)
Jiseees Jm+1=1
0 . 0 i
where yi= 2 yilejp""ym'Fl:. 2 ymiite .
i1=1 1

J1= Jm+1=
By hypothesis of induction, (1.4) becomes

sup | X {ajl---0jmf(m+Am)—-(9j1---6jmf(w)

”.Vl”.s.lr--~’“ym”§1 Jiseees Jm=1
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o0 . . .
= 5 fD e @daim eyl yip=o(idel, (19

where 4= i dzimrre; . Now, especially setting in (1.6)

Jm+1=1
do=1e;,, 0 yi=ep0l1¢5 e yu=esfles, )1
we obtain
‘6.1.1“ 'ajmf(w-i_ tej»11+ 1) - a.ll o .a]‘mf(w) _~f5':1t~1131'1m(w)tl = 0(|tl) M
This show that there exists d;,,, 0;,-0;,f(=) and fimt 2)=0;,.,, ;0 f(2)
Therefore, from (1.5), we obtain ]
F@) (Piseess Yms 1) = ; Z 1 ajl'fv_"aj,,”if(ﬁ)J’{""J’;J;;"Hl- 1.7)
e
Successively, to see the continuity of 8;,++:9;,.,,f(@) (Jis--s Jm+1=1, 2,...) in ¥, we start
with |
If D (o + ) — f ()|
= sup {f O Do+ A2) = " D(@)} (V1505 Ymt D

Iyl S1, 0 llym+illS1

By (1.7), we have
| f ™+ Do+ A2) —f D) |

= sup | by {ajl"'ajm+1f($+Ax)—a’jf"ajm-uf(@)}y{l“'yy{;ﬁ;‘ .

fpill St llym+d|S1 Jiseesim+1=1

Furthermore, by the continuity of f™"*1)(z) in V, we get,

lim | > {5j,"‘ajm+,f(w+A¢)"51'1"'ajm“f(w)}y{"“yr{.’f'ﬁl =0

Az—=0  Ji,e. ,im+l=l

where ||y, | £1,..., |¥m+1] 1. Especially, putting
y1=ej1/”ej1”""$ ym+1 zejm+1/|lejm+1”
in above formula, we infer

i 16,4030 ot Ae)= 0305 ()| =0

Namely, 6;,---0;,,, .f(=) is continuous in V.

Lemma.

Let E, F and H be three Hilbert spaces. For each point » of an open set Vof H,
let us consider a mapping f(=) € Z(E, F) which is represented in terms of a base =
(f1, T25++e» fws---) Of F in the form ' ‘ ' P

f@= . Fi@
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i.e., for any y e E,
fe:9)= 3 it
where  f(=: y)=f(2)y, fi(=: y)=f!(=)y.

Then, there exist constants C? such that

Iff@ISCIf@I (=1, 2,..).

Proof.
Let e=(ey, e,,..., e,,...) be an orthonormal base of F. Using this base, we express
f(=) as follows '

f@)= 5, Fi@e.

Then we have

/(@)= sup NEACE Y)Il‘lshlp {Z Fite: P2,

Now, there exists a bounded linear operator A for a base f such that its inverse
operator A1 is bounded and f;=4e; (i=1, 2,...). Moreover we see

fie: y)=§1 A;vf‘j(m: y)

where A1 =(e;, A7le;> (by the notation < , >, we express the inner product of the
Hilbert space). Applying the Schwarz’s inequality to the above formula, we get

FACE J/)|<{2 |47 1'|2} {2 |Fi(a: y)|2}%
and therefore we have

I fi=)l = Sup, [fi(=: Y

1471 sup (£ 17 »E

lyll=1

SONVVECLTOT

_S.{

u'M 8

I

Since A™! is a bounded operator, we see
@ A
{Z 147} <.
| =1
Thus, we have accomplished our purpose.

Proposition 2.
Let E, F be Hilbert spaces and V be an arbitrary open set of E. Suppose that a
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map f: V—F is represented in terms of a base f=(f, F25.-+» Tw--.) Of F in the form

f@= & '@

Then, if a map f is of class C™ in V, every function fi: V-R is also of class Ct™
in V and we have ‘

f@= 3 f1 @ @)
i.e.,

SO 31> Vareoos Y= 2 TP @ W1 Yoo Y

where Vi, Y25--s Ym€E, 1Sm=n.

Proof. We shall prove this proposition by induction on m.

First, we verify that fi(=) (i=1, 2,...) have the continuous derivatives of the first
order in V and (1.8) is held in case m=1. ,

Since a map f is of class C™ in V, there exists f'(=) € Z(E, F) at each point € V
such that

1f (o do) —f (&) = (@) Aol =0(o1)

Using an expression f'(=)= f‘, gi(=)f;, the above relation becomes
i=1

15, (7 (ot 4e) =FH) ~ )4}l = o el
where gi(=) € Z(E, R). From this, we have

|fi(e+d2)—fi(@)— gl (@)l =0(l4=l),  (i=1,2,...).

This show that every function f¥(») has the derivative f (2) and f¥(2)=g=). Thus
we get

f@=E S @

Furthermore, every derivative fi'(=) is continuous in V. In fact, there exist the con-
stants C* by lemma such that

¥ (e+ da)—f (@) £ CH| f'(e+ =) —f ()] -

From '
A{il_?o I f'(2+ 42)—f"(2)] =0,

we see

lim I f¥(e+ 42)—f¥' ()] =0.
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Next, we assume that every function fi(») has the continuous derivative of order
m and (1.8) is held in the case of m.

Since f is of class C™ in V, there exists f("*1)(,) e & n+1(E, F) at each point =€ V
such that '

1/ e+ Aw) = M (a) = F () A = 0| Ao

By hypothesis of induction and using an expression f m+1)(p) = fj g'(=)f;, we have
- =l

|2 157 ot A= 1 (0) = ) A}l = o A
where gi(=) € Z,,,(E, R). - From this, we have

1/ @+ d2) = £ (@)~ gi(e) Aol =o(| o)), (i=1, 2,.. )

Thus, every function fi(=) has the derivative of order m+1 and g‘(z)— 1 0(L).
Hence we have

SmO@)= 3 IO,

Finally, the continuity of f1*"*"(2) (i=1, 2,...) can be proved in the same manner
as in the case of f#'(2). :
As an immediate consequence from Proposition 1 and 2, we have the following:

Proposition 3.
Suppose that a map f: V—F is expanded in terms of a base f=(f,, f,,..., f,...)
of F in the form

ﬂa=§f%m,

Then, if a map f is of class C™ in V, we have

f@@Ome=§{ S 0,0y, Sy,

jls---;.lm=1

where, y, = 2 Vieho i Y= Vmej are m vectors of E and e=(ey, e,,..., ¢,,...) is a
Jj=1 Jj=1
base of E.

2. Tangent spaces

Let M be a Hausdorff space and E be a Hilbert space. By the atlas of class C(™
on M we mean a set of pairs (U,, ¢,) (« € I) which satisfies the following conditions:
(1) each U, is an open set of M and \U U,=M,

ael

(2) eachg,isa homeomorphlsm of U, onto an open subset ¢, (U,) of E,

(3) the map @ =¢p0;!: o (U,n Up =@ (U, nUp) is a C™- ~diffeomorphism
for each pair of indices a, f.

Each pair (U, ¢,) is called a chart or a local coordinate system of the atlas. If
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a point » € M lies in U,, then we say that (U,, ¢,) is a chart at » and ¢, is a local co-
ordinate system at .
Let e=(¢q, €5,..., €...) DE a base of E. Expressed the image z,=@,(=) of =€ U,

in terms of e in the form 2y = .Z =4¢;, its components (xL, x2,..., x1,...) are called the

coordinates of », with respect to e.

Suppose that an open subset U of M and a homeomorphism ¢: U—V onto an
open subset V of E are given. We say that a pair (U, ¢) is compatible with the atlas
{(Uy @oyer} if every map @007 ! is a C(-diffeomorphism. Two atlases are said to be
compatible if every chart of one atlas i is compatible with an another atlas. It is verified
immediately that the relation of compatibility between atlases is an equivalence re-
lation. An equivalence class of atlases of class C™ on M is said to define a structure
of C-manifold on M. Then we say that M is a Hilbert manifold of class C™ or a
C-Hilbert manifold and E is a base space of M. In what follows, we shall assume
that the base space of a Hilbert manifold M is the Hilbert space E.

From now on, we shall introduce the definition of tangent space. Let M be a
Hilbert manifold of class C™ and let {(U,, ©,)}.; be the atlas of class C™ on M. By
I we shall denote the index set of all charts at =€ M. Considering a product set
E x I, we denote by X, an element (X, «) of E x I, and moreover, for a bounded linear
operator A e Z(E, E), we define AX, by (4X, a)e ExL,.

We say that two elements X,, Y, of E x I, are equivalent if and only if there exists
a C-diffeomorphism ¢g, such that Ys=@p,(=,)X, where Ppo(2g) = Ppa(@(2)) € Z(E,
E) is the derivative of 4, @at «,=@,(=) € E and henceforth this derivative @jp,(=,) is said
to be the derivative of ¢g, at a point = of M. Since @, is a CM-diffeomorphism and
@ (wg) = Oy p(ep)>Ppol2q), We infer readily that the equivalence thus defined satisfies
the axiom of equivalence relation.

By a tangent vector X at = € M we mean an equivalence class {X,} of elements of
ExI,.

Moreover we introduce the addition of two tangent vectors ¥={X,} and 9 ={Y,}
at », and the multiplication of a scalar A€ R to a tangent vector X={X,} at = as follows:

E+9={(X+Y)}, AX={(X),}.

Tt can be seen easily that these addition and multiplication thus defined are irrelevant
to the representatives of equivalence classes.

Thus, the set of all tangent vectors X at »€ M which has the above introduced
addition and multiplication, is clearly a vector space over the real field R.

This vector space is said to be the tangent space of M at =€ M and we denote this
tangent space by T (M). '

Next, our purpose is to make the tangent space T (M) to a Hllbert space which is
isomorphic to the Hilbert space E. o

Given an index a e, and a tangent vector X € T (M), then there exists a unique
vector X e E such that X,=(X, o)e X. From now on, we shall identify a representative
X, of X with this unique vector X € E. Thus we can consider a map O z): X> X, of
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the tangent space T (M) into the Hilbert space E.
Now we define an inner product (X, 9> of two tangent vectors X, VeT (M) as
follows:

(X, D) ={¢ue(=) (), $o() (D),

where «, is an arbitrary fixed index belonging to I,. We infer readily that the inner
product thus defined satisfies the axiom of inner product. Of course, the norm 1]
of a tangent vector X is given by ./(X, X). Moreover, it is seen easily that the tangent
space T_(M) is complete with respect to the above norm. Consequently, we get a
Hilbert space T(M). In what follows, the tangent spaces is assumed to be the Hilbert
space.

Roughly speaking, the tangent space T,(M) at e M is the Hilbert space E at-
tached to a point = of M. As a matter fact, we have

Proposition.

Let M be a Hilbert manifold of class C™ and T_(M) be the tangent space at a
point = of M.

Then a map ¢,(=): T, (M)—E given by X a0 =Pao(=) (X) for an arbitrary tangent
vector X of T_(M), is an isomorphism of the tangent space T.(M) onto the Hilbert
space E where X, is the representative of X identified with a vector of E and a, is an
arbitrary fixed index belonging to 1.

Proof. Let X, 9 be two arbitrary tangent vectors at a point = of M. To prove
this Proposition it suffices to show that a map ®yo(=) is linear, injective and surjective,
because we have

<xa ‘D> = <¢¢o(‘”) (x)’ ¢ao(z) (‘D)> .

We see immediately from definitions of addition and multiplications in the tangent
space T (M) that

Pao@) (X + D) =X+ Yoo = hy() (X) + (=) (D),
Pao(@) (AX) = 1X 1, = A () (%),

where X,,=d,(2) (X), Y, =0,,(=) (V) and 1 is an arbitrary real number. Thus Oyo()
is linear.

Now it is easy to see that ¢, (=) is injective. Suppose that ?y(2) (X)=0 for an
tangent vector Xe T(M). Then X, =0 and since Pgao(e) € L(E, E) we have X,=
Prao(@) X4y =0 for every index aeI,. Hence X=0-and therefore ®4(=) s injective.

Next, we prove that ¢, (=) is surjective. In fact, given an arbitrary element X € E,
we infer easily that there exists X={X,} e T (M) maked by X,=¢,, (=) X for every
index a€l,. Then we have @, (<)(X)=X. Thus ¢,.(=) is surjective.

Henceforth we shall denote by X or X_, instead of X, the tangent vector at a
point =, if there is no possibility of confusion.

Let X,, X; be two representatives of a tangent vector X at a point = of M. Then
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it is known already that we have a relation X,;=¢p,(=,)X,. Here we investigate a
coordinate representation of the above transformation law.

Letting e=(ey, €5,..., ¢,,...) be a base of the Hilbert space E, we expand a relation
2p=Pg(,), the above two representatives X, and X in terms of e respectively in the
following form ' '

o0 a0
wg = .21 wﬁ%(ﬁa)eb Xa= .21 X;ei s
i= i=
@© .
XB= z X&ei.
i=1

Then, in virtue of Proposition 3 in §2.1, we have

Ohuled X £ {5, SHoxtfe,

and therefore we get, from X ;= 0},(e) X,

Xi= i a‘”ﬂ

Jj= 10%

(¢¢) X ]

Thus, as a coordinate representation of the transformation law

Xﬂ = go’ﬂa(‘”a)Xa ’

we obtain in the matrix form

dob  Osh  Ba)
X},\ o | [
0.2 02 03
2 b b...... b_... 2
M=o e el || X @.1)
3 0ol Oeh b
X}’ a@; azg ...... awol; X.I

where we omit @ge

We denote for simplicity the matrix obtained above by (0=}/0=]) and we call it
the matrix of coordinates transformation zﬁ—(pﬁa(wa) with respect to a base e=(e,,
€350ees €pse..) Of E.

Here we give a remark on the matrix of coordinate transformation. Let (U“, 0,
(Ug, @p) be two charts at a point =€ M and let be @a=0(2), z3=Pp(=). Then we have
two coordinate transformations =, = (Paﬁ(wﬂ) and == @g,(=,) Which are inverse with each
other, where @, =,005" and @g,=@gop;*.

Hence we get immediately @,p005,= @g,0@,5=identity. Thus, by using the rule for the
derivative of a compound map, we see

Pep(@p)°Ppal=) =1,  Ppal@a)°Papleg) =1 22
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where 1 is the identity operator on E. Moreover, letting (0=}/0=}) and (9=}/0=1) be
respectively the matrices of coordinate transformations w,=@.u(=p) and ep=@s(=,)
with respect to a base e=(e, e,,..., ¢,,...) of E, then we have from (2.2)

© dul . Bak, .
kgl Toz‘ (@ﬂ) Ki(‘z’a) - 51‘,
v o sk (2.3)
& ot ) o) =0

where &} is the Kronecker’s symbol. This shows that matrices (0!/0=}) and (0=5/0=4)
is mutually reciprocal.

We conclude this paragraph with representing the tangent vector as the derivation
in analogy to the differential geometry.. Let M be a Hilbert manifold of class C(" as
it has been and U be an open set of M. Giving a chart (U,, ¢,) at an arbitrary point
= of U, we denote by C™(U, R) a set of all functions f: U—R such that the function
fo=fo07;1: o (UNnU,)—R is of class C™ at .. We say that a function fe C™(U, R)
is of class C on an open set U of M. Since, in case of another chart (U, ¢;) at a
point » of U, we have a relation fz=f,°¢,,, the above definition is clearly independent
of charts at ze U.

Now, for an arbitrary real number 1€ R and arbitrary two functions f, g € C"(U,
R), we introduce its addition and multiplication as usual by the following manner;

(AN (@)=1f(=), (f+9)(=)=f(=)+9(=),
(f9) () =f(=)g(=),

where = is an arbitrary point of U. Obviously Af, f+g and fg belong to C"(U, R).
Therefore C(™(U, R) is an algebra over the real field R.

We shall go here to express the tangent vector by the derivation. Let (U,, ¢,)
be a chart at a point = of M and X, be a representative of an arbitrary tangent vector
X eT,(M). Moreover,let U be an open set containing the point =. By X(f) or X_(f)
we shall mean the real value as follows:

X(f)=f =X, 24

where f is an arbitrary function of C"(U, R), f,=fo¢;! and o,=@,(=). This definition
is independent of the choice of representative X,. In fact, let X, be another represen-
tative of X. We have fy=f,c0,; and therefore fp(ep)=fr(@)°@rs(=p). By using the
transformation law

Xaz = ¢;ﬂ(zﬂ)Xp ’
we see immediately
X(f)=faledX.=f4(=p)Xp. | 2.5)

Thus we may denote by f'(<)X, instead of f,(=,)X,, in the above definition (2.4).
We can infer easily that X_(f) satisfies the following properties:
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X(f+9)=X()+X(9),
X(2N)=2X(f), (2.6)

where f, g are any functions of C™(U, R) and A is an arbitrary real number. Further-
more, in virtue of f,(=,) € Z(E, R), we have clearly

X+(N)=X(NH+TY(),
AX)(f)=MX(f))-

Next, let e=(e,, €,,..., ¢,,...) be a base of E and let X, X}, %, =5 be respectively
components of X,, X;, x,, xs with respect to the base e. Then, by applying Propo-
sition 1 of §2.1 to the formulas (2.5) and (2.7), we obtain

Q.7)

xn=§ ndx i 2 (o),

JeES ARINERED B g{j; @+ 3 idre) @9

n[vjs

i X)L @o=1 3, X5 0.
i=1

6

These facts show that a tangent vector X may be expressed by X = 2 Xi
Z X ( o ) and that X +Y, AX may be executed as follows:

0 i a 0 ; a _oo ; ; a
ZX gt R V=L X+ Y5
< ia _oo i
LB xgr=f o o

With the aid of the transformation law (2.1), we get from (2.8)

Z xi gf.: (”a)=i§1X oo 0@5 (z“) afﬂ (@ﬁ)_

i
In particular, putting (X{,..., Xi,...)=(0,..., 0, 1, 0,...) in the above formula, we have

Lro=F g re, 2.9)

and moreover taking f= @k in the above equality (2.9) where ¢¥ is a coordinate function
mapping a point = to k-coordinate =¥ of wa-—‘:(pa(@), we get

P ‘7“’« (o)) 22 () =5t

E
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This is a formula (2.3) obtained formerly and the relation (2.9) gives a differential rule
for the transformation of variables, namely,

o = 0uf

T =Z o (wa) a% (2.10)
Now let e*=(e%, ¢4,..., ¢4,...) and ef = =(ef, eb,.. ...) be two bases of E such
that they are binded by a transformauon law as follows
; (%)e (2.11)

Comparing (2.10) with (2.11), we see that 6/6%:(6/6@;, 0/0%,..., 0/0=,...) obey the
same transformation law as the base e*=(e{, ¢4,..., e:,...)‘. '

. ‘ :
Consequently, we may identify a tangent vector X= 3 X'e; with a corresponding
i=1
derivation 2 X ‘56— and henceforth we write a tangent vector X in the form
i=1

0

x=3 Xigr. | (2.12)

uMs

Finally, we shall define the vector field of class cm and derive the Jacobi’s identity.
Consider the tangent space Tw(M) at each point » of a C(”)-Hllbert manifold M
and put T(M)= \J T (M). ‘

Definition.

By a vector field on M we mean a map X: M— T(M) such that X (=) belongs to the
tangent space T (M) for each point =€ M. Let », be an arbitrary point of 'M and U
be an open set of M containing a point =o,. Then, by a vector field of class C™ on M
we mean a vector field X .on M such that a map G4o(X)::U—E given by ¢, (X): a—
Gu(2) (X(2)) € E, belongs to C™M(U, E) where ¢, (=) is the isomorphism of T(M)
onto E given in Proposition of §2.2. /

In what follows we write

x=F x0().

By X(® (M) we denote a set of all vector fields of class C™ on M. Clearly X("W(M) is a
C™(M, R)-module.

Next, letting X and Y be in %‘")(M), we shall introduce the bracket [X, Y]. For
th1s purpose, choose a base e=(e,, ¢,,..., ,,, ..) of E and set X(o)=d, (=) (X(=))=
Z Xi (‘z)el, similarly, Y(o)= ¢ao($)(Y(w)) Z Yi(-)e, where we omit «, for sim-

ph(nty Then we deﬁne the bracket [X Y] as a map from C(")(M R) 1nto C("‘Z)(M
R) as follows: ‘ )

[X, Y] f ) X(Y(f )= Y(X(f ))
We shall show that [X, Y] is a vector ﬁeld of class C™~2 on M. In fact, by the law
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for the derivative of a product and Proposition 1, 3 in § 2.1, we have
[X, YI(f(e)={f"(=)( Y()} (X (=)~ {f (=) (X (w))}'(Y(w))
=1"() (Y (=), X())+f (=) {7 (=) (X(=))} |
— () (X(@), Y(2)—f (=) {X (=) (V(=))}
=f"(2) {Y'(2) (X(2)) — X'(=) (Y(=))}
S5 00 27O i) 0 1 o

Jj=1

where, since f"(=) € Z5(E, R), the two terms involving f"(=) cancel - This expression
for [X, Y](f) show that [X, Y] is a vector field.

Finally, let X, Y, Z be in X(™ (M), then it is easy to prove that the above bracket
satisfies the following identities: .

¥, X]=-[X, Y],
[X, [Y, Z]]+1Y, [Z, X]11+[Z, [X, Y]]=0.
(Jacobi’s identity)

3. The dlﬂerentlal of functions of class C ™

Let U be an open nelghborhood of an arbitrary point » of M and f be a function
of class C(™ defined on U. By the differential of f at » we mean a map df(=) of T (M)
into R given by d f(2)X = X(f) where X is an arbitrary tangent vector of M at .

We infer readily that the differential df(=) is a linear continuous mapping, since
we have

ldf(wj(X—Y)I=|f’(w)(X—Y)I§Ilf'(%)ll |IX=Y], for X,YeT,(M).

Thus the differential d f(2) of a function f is a linear continuous functional on the

tangent space T_(M).
Moreover, we conclude 1mmed1ately from (2 6) of §2.2 that for X e T (M) and

f,geC™(U,R),
d(f+9) (w)X=df(w)X+dg(«;)X,
d(Lf) (@)X = Hdf (X)), @3.1)
d(f9) (@)X =(df()X)g(=)+1(=) (dg@X),

where A is an arbitrary real number.

Now, let (U, ¢) be a chart at a point =, of M and (2, 2%,..., 2",...) be the co-
ordinates of a point » of U with respect to a base e of E. Then we have the following
expression: ’ '

=3 HLodic), G2
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where the right-hand side of this expression means that,

{£ L endeier} = § Lo det(en) ),

for Xe T, (M), and d=' are the differential of coordinate functions ¢*: U—R given by
=0'(=).
To prove this it suffices to show that

0

(=0) X)=X(f).

Letting X = i X "(wo)Fa—i—, we have the following relation from the definition of the
i=1 @
differential d f (=),

df(eo) £ Xw0) 30 ) = £ X1(e0) L (oo,
in particular, we see
df(ed) o =L (a0).
Taking up a coordinate function ¢/ as function f in this equality, we have
e (o) 5 = 220 (o) =61 (3.3)
By (3.3) and the continuity of the differential, we get
{ae' o £ X e 7))
0

= 5 5 @o{E, X0 det ) 527}

PILYERICAIEN) ORI

=

=3 @)X ()
=X(f).

In what follows we conventionally write the differential of f at » in the form
, ‘ . v
df=3 0;fdz'.
i=1

4. H-valued differential forms

Let M be a Hilbert manifold of class C™ as one has been and H be a Hilbert spa(;e.
We denote U & (T(M), H) by o ,(T(M), H) where & ,(T,(M), H) is the set of all
@xeM

p-linear alternating continuous mappings of T_(M) into H.
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Definition.

By a H-valued differential p-form on M we shall mean a map Q, of M into
o (T(M), H) such that, for each point » of M, Q,(=) belongs to & ,(T (M), H).
Moreover, let U be an open neighborhood of an arbitrary point =, of M. Then, by a
H-valued differential p-form of class C™ on M we shall mean a H-valued differential
p-form ©, on M such that, for any p vector fields X,..., X ,eX("(M), a map Q,(X,,...,
X,) of U into H given by Q,(X,,..., X,) () =2,(=) (X ((2),..., X (=) for an arbitrary
point = of U belongs to C™(U, H). Here C™(U, H) is a set of all mappings of U
into H of class C™.

For simplicity we write Q,(=: X,..., X,) for Q,()(X(2),..., X (=)). We denote
by Q(M, H) a set of all H-valued differential p-forms of class C™ on M. This
9},")(M , H) is clearly a real vector space under the natural addition and scalar multi-
plication. Moreover we define the multiplication of fe C"(M, R) and Q, € Q™(M, H)
by (f2,)(«)=f(2)2,(=) for each point = of M. Thus a vector space Q{"(M, H) be-
comes a C™W(M, R)-module.

Now let y=(9;, 95,..., D,...) be a base of H. Then a H-valued differential
p-form Q,, of class C™ on M is uniquely represented in terms of 9 in the following form:

Qp(:z: Xl"“’ XP)=i§1 wll,(x: Xl""’ Xp)l)i’ (4.1)

where X y,..., X, € X("(M).

It is clear that o}, (i=1, 2,...) are the real valued differential p-forms on M. By Propo-
sition 2 of §2.1, we see readily that w! (i=1, 2,...) are of class C™. For simplicity
we write (4.1) in the form

2,e)= 3 ol (42)

Thus we have the following proposition:

Proposition.
Let y=(94, Y2,..., Dp»...) be a base of H. Then, a H-valued differential p-form
Q, of class C™ on M is uniquely represented in terms of vy as follows:

Q)= 3 ofen,

where wi (i=1, 2,...) are the real valued differential p-forms of class C™™ on M.:

As particular case, a H-valued differential O-form is none other than a H-valued
function, namely, Q(M, H)=C™(M, H), and a H-valued differential 1-form is a map
Q, such that Q,(=) € Z(T (M), H).

5. Exterior multiplication ,

Let H,, H, be Hilbert spaces and H,®H, be the direct product of H, and H,
(see [19], Chapter II). We put H=H,®H,. It is well known that (1) H is also a
Hilbert space, (2) the direct product is continuous with respect to each factor and (3)
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{051’®n§2’},, 1,2... 1 a base of H where nW=(y{V, piV,..., y{V,...), @ =(»{?, p,
9P, are the bases of H 1, H, respectively.

Next, let U be an open set of a Hilbert manifold M of class C™ and cons1der a
map f of U into H such that (=) =f,(=)® f,(=) for an arbitrary point » of U where f,, f,
are the mappings of U into H,, H; respectively. Then it is easy to show that we have
the law for the derivative of a product, namely, '

F@y=Fi@y®f 1) +f1(Bf )y NER)

where y is an arbitrary vector of the base space E of M.
Now we shall define the exterior multiplication in the following manner,

Definition. .

Let @,, ¥, be respectively a H,-valued differential p-form and a H,-valued differ-
ential g-form on M. By the exterior product of two differential forms @, and ¥,
denoted by @,A ¥,, we shall mean a H-valued differential (p+ g)-form such that, for
an arbitrary point = of M and any (p+q) vector fields X,,..., X, of X"(M),

(Qp/\ Tq)(w: Xl"“’ Xp+q)

= ; E(O')Qp(w: Xa(l,)"'_" Xa.(p))® 'I’q(w: Xa(p+ 1)sees Xa'(p+q))

where the summation is done over all permutations ¢ of {1, 2,..., p+q} satisfying
o(1)<--<o(p) and o(p+1)<---<0o(p+q), and

+1, for even permutation o,

&(o)=

—1, for odd permutation o.

Now suppose that @,, ¥, are two differential forms of class C(™ on M, then the
exterior product $,A ¥, is also of class C on M. In fact, letting U be an open set
of an arbitrary point = of M and X,,..., X, be vector fields of X(")(M), we have a
mapping (P,(Xi,..., Xp), Y (Xp415--» Xp4+g) of U into a product space H, x H, of
class C™, because ®,(X,..., X,) is a mapping of U into H; of class C and
Y (Xps15---5 Xptg) is @a mapping of U into H, of class C™. Moreover, since ®,A ¥,
is a bilinear continuous mapping of H,; x H, into H=H,;®H,, this mapping ¢,A ¥,
is of class C®). Thus a mapping (®,A ¥ )(Xy,..., X,+,) of U into H is of class
cm,

Next, let us consider two differential forms &@,e Q{"(M, H,), ¥, € Q{™(M, H,)
which are represented by

w s
D2 Xqyeon, X)) = i§1 Pie: Xipeos X0V,

'Pq(‘”: Xp+19‘° s p+q) Z V/q(-"” P11+ Xp+q)1)g2) .

where ¢} € QY”(M, R), Y} e Q(M, R) for i=1, 2,... and yW=({?, ni,..., piV,...).
D=, v?,..., p?,...) are bases of H,, H, respectively.
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Since the direct product is continuous with respect to each factor, we obtain
(@, AP (= X5 Xpiy) ,‘
= Z S(J)d)p(:z: Xa'(l)""’ Xcr(p))® 'Ijq(w' a(p+1)r s Xo‘(p+q))
aq

= g 8(0'){2.1 (P;(¢5 Xo(1yseees Xa'(p))r)ll)}®{ 2 '// (m L s(p+1)°° Xd(p'l'q))r)S'Z)}

i
TTMS
nMS

{Z8(G)(Pp(w o(1)r**? Xa(p))‘!/{;(ﬁ: Xcr(p-!—il)""’ Xa(p+q))}1);1)®l)(2)

( \IJ )(‘”: Xl""’ Xp_;.-q)l)gl)@I.)S_Z)‘»

]

1l
Ms
?Ms

Thus we get

Proposition. R
For two d:fferentzalforms ®,eQ(M, Hy) and ¥, e QW(M, H,) represented in

the forms

O ye)= 3 ol

V(=)= Z Yiemi?,

their exterior product ®,A ¥, is represented by
CHN FIOEDWNCAR IO PP, 52

where n( =i, yiP,..., niV,...), p@ =P, yP,...,nP,...) are respectively the bases
of Hy, H,.

As a particular case of the above proposition, con51der1ng two differential forms
@,€QM(M, R) and ¥, eQ(")(M H) we have

( A Y’q)(w) Z (%MP )(w)t)l,
where
()= 3 Vi
i=1

and ny=(1y, Dzs.--» Dps...) is @ base of H.

Now we shall define the exterior product of the differentials of coordinate functions.
Let (U, @) be a chart at a point = of M and do'1,..., d='» be the differentials of coordi-
nate functions ¢',..., @i» respectively. - Then the exterior product dzit A -+ A dai" of
the differentials d=',..., d=i» is defined by

(doit Ao A detn) (X 15eens X'l)_;_— Z‘ B(O')dwil(Xa(l))-.-d@i"(X?(n))
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where the sum Y is to be extended over all permutations of {1, 2,..., n} and X,,..., X,

ag
are any n vector fields of class C™ on M.
Since the differentials d.i,..., doi» are n linear continuous functionals on the

tangent space and we have dzia—67=5j~, we get

(dzil A A da:i")(Xl,..., X”)

Xi1 Xix ...... X,i,‘

where

— P xi 0
X, =3 Xioor.

Finally we conclude this paragraph with remark on a property of exterior multi-
plication. Now let ¢,e Q"(M, R), Y, e QU(M, R) be two real valued differential
forms, then it is well known that we have

(Pp/\ lﬁq:(—l)pqwq/\ (pp'

This property is called that the exterior multiplication of differential forms is anticom-
mutative (see [13], Chapter 1, 1.5). However, the exterior multiplication of two
differential forms is generally no anticommutative. To preserve this anticommutative
property, we introduce the symmetric exterior multiplication. Let &,e Q"(M, H,)
and ¥,e Q{"(M, H,) be two differential forms on M. By the symmetric exterior

product ¢p7\ ¥, of &,, ¥, we mean a H; @ H,-valued differential form on M given by
@AY (@)= 3 3 (0) AU (V@D

i=1 j=1

where
ye)= 2 D, W)= F i

and 0@y =2y +yP@y(V).
Now we have
DAY, =(—1pe¥, R o,.

Indeed, by using that the exterior multiplication of real valued diﬂ'ere;itial forms is
S S
anticommutative and 9{VQ@nP =9P v, we see
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5 (AU @I OYP

(@p ;\ qjq) (m) = 4

o0

i=1j

=1 % 5 WinopEnPent?

=('— 1)pq(‘Pq 7\ Qp) (”) .

6. Exterior differentiation

At once we shall begin by defining the exterior differentiation.

Definition 1.
The exterior differential dQ, of a H-valued differential p—-form @, of class C™
on M is defined by the following formula:

pt+1 /‘ —
dQ(0: X iy Xpr )= 2 (=D (1 Xysenos Ry X0 ) (X))
i=1

6.1)
+ Y (- [X, X1 X Rieos Kooy Xpi 1)
1gi<jsSp+1

where X4,..., X,+1 are p+1 vector fields of class C™ on M and the symbol ~ means
that the term is omitted and further X; means X ()= @uy(=) (Xi(=))- Henceforth we
shall omit the symbol .

We see immediately that the exterior differential d<, is of class C*~1) and that
dQ,(=) is a (p+1)-linear mapping of XM(M) x -+ x ¥M(M) (p+1 times) into H.

To examine some properties of the exterior differential we introduce the Lie deriva-
tive and the interior product.

Definition 2.

Let Q, be a H-valued differential p-form of class C™ on M and X be a vector field
of class C™ on M.

The Lie derivative LxQ, of Q, with respect to X is defined by

Lxgp(w: Xl"“’ Xp)-——'Q;,(w: Xl""’ Xp)(X)

(6.2)
p
—g,l Qe: Xy, [X, Xisens X,).
The interior product ixQ, of X and @, is defined by
ixQy(=: Xipeoos Xpo )=y X, Xipeeor Xp1)- ‘ 6.3)

Here X ,..., X, are any p vector fields of class C™ on M.
We have the following proposition:

Proposition 1.
Let ®,eQM(M, Hy), ¥, QP(M, H) be two differential forms on M. Then
we have
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Ly(®, A Y)= (.LX Q)N VY +P,A(Ly )., 6.4)
iX(Qp A YIq) = (IXQp) A g’q +(— l)P@p A (qujq) s
where H, H, are two Hilbert s“p'acels.

Proof. Firstly, we prove the first formula of (6.4). By the definition of exterior
product, we have

@A ¥ ) (e Xrerns Xprg) -
= Z« &0)Py(e: X,(1),..es Xom)®¥ (=1 Xyt 1)5e-ns Xotpta):
where *X,,..., X, 1. & E0(M),
Applying Ly to the above formula, we get
IS0 AICHD. CHND. 18] ,
=2 80){ Dy Xoiyprss Xyp)@ ¥l Xoips 1ypen Xpor0)} (X)
~Ze(0) {é By Xo(tyrns [Xy Xoplroror Xogpy)
| ®§l’q(c:X,(,,ﬂ),...,}X,(ﬁq)) | ., e
£ 3 Bt Xy Xo)® ¥, Xy 1o [X, Xopsndos Xogrra)h.
Moredver, by épplying the law for the derivative of a product to the first term in the
right-hand side of the above equality, we obtain 25
L@, AP ) (e Xy, X,piy)
=2 80) (e Xowpo Xep)(X)= £ Byfet Kyqiyonn [X, Xodoeos o)}
®ot Xugriys Xogrg)
+ Zo‘, &(0)P (= Xo(iysenes Xop)
Dot Xotor1yees Xapin) 0= T ¥,e? Xy syess [X Xy plhoons X))

where we used that the direct product is linear with respect to each factor.
By the definitions of Lie derivative and exterior product, consequently we get
Ly @A ¥) (o2 Xy X,0) | |
LA EL) ! Ky Xe)OV ot Koy Xugra)
O Xottyeos Xoip®U ¥ (o2 X1 Xopin)
={LxP)A ¥, + D, A Lx¥? )} (=: X ,..., Xpig)-

Next we proceed to the proof of the second formula of (6.4). From the definitions
of the interior product and the exterior product, we have
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lX(¢ Aq’)(@ Xla Xp+q 1)
=(P,A ) (= X, Xl,...,Xp+q 1)

SOLCLYCE S e a(,-l))® ¥ (ot Ko Xetgras)
+(=1y 2 oDy’ Kegtyrros Xe) @ ¥ylo: X, Xt(p;;;,.--, Xp+g-1)

= %3(0')(1'1(‘15,,) (@ Xo(1yse> Xa(p—l))®q]q(“’: Xa'(p)"" Xa(vp+qvv—1$)\‘ ‘. |
+( 1)? 28(“3)‘1j (z: X 1(1)a . t(p))@(l'XlIIq)(“’ w(p+ 1);:--; X1(3+%-1)?v‘ |

"{(lx@p)/\q’ +( 1)pq> A(lX q)}(“’ X15 Xp+q—1)5

where the sum 2' is to be extended over all permutations of {1, 2,..., p+¢—1} such that
o()<---<o(p— 1) and o(p)<---<a(p+4q—1), while the sum Z is to be extended over

those which satisfy (1)< ---<7(p) and ©(p+ 1)<+ <®(p+q— ])
Now, among the Lie derivative, the exterior differential and the interior product
defined above, therc exist the relations as follows:.

Proposition 2 :
Let Q, be an arbitrary H-valued differential p-form of class C(") on M and X, Y
be any two vector fields of class C™ on M. Then we have -

ixdQ,+diyQ,=LxQ,, ‘ (6.5)
J Lyiy®, — iyLxQ,=itx,112p>
Ly 2= LyLx@p=Lox, Y]Q,,, (6.6)
ILXdQ —dLy@,=0. -

~ Proof. Let X,,..., X, be any p+1 vector fields of class C™ on M. From the
deﬁmtlons of the interior product and the exterior differential, we see

(iX.de)(@: XZa-", >p+ 1) '
=d‘Qp($: Xy, X29-'-’=Xp+1‘) ‘ - ‘
p+1 ey ‘
= lz=:1("—‘1)l lgp(ﬁ: X1’“°’ Xia-'“s Xp-l-l)(Xi)
+ S (—D)Q e [X X1 Xiseens Koo Ripees Xpi1) -
18i<jsp+l :

On the other ha-nd, we have
d(iXIQp)(z: X23'--9 Xp+ 1)

=’2: (= Di(ix,@,) (@2 Xaperes Ripeeor Xpr 1) (X))
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+ 2 (-1)i+j-2(iX19p)(": [Xis Xj], XZ’---s Xb---, st---, Xp+1)

25i<jsp+1

p+1 L
= .-% (—D'Q(e: Xy, Xgperry Xpperny Xpi 1) (X))

t o2 (GG [X, X)), Xy, X, Ry, R, X,1)-

25i<jsp+1
Hence we get

{ix,dQ,+diy Q,} (@ Xpyeo0s X1 y)

pt+1 .
=Q;)(°’: XZ"-" Xp+1)(X1)_ J;z(__l)'l‘gp(“’: [Xl, Xj]: X2)"'9 Xj,---’ Xp+1)

’

‘ p+1
=Q;(@: Xz,..., ‘Xp'l'l)(Xl)_ng Qp(az Xz,..., [Xl’ Xj]""’ Xp+1)‘

Therefore we have
(ix,d2, + i, Q,) (o2 X300 X4 )
=(Lx,2,) (@ Xgpeey Xpiq).

This completes our proof of (6.5).

We omit the proofs of (6.6), since those are merely straightforward calculations
(see [12], Chapter III). We shall only give as a remark here that the justification of
(6.6) depends on the definition of bracket [ , ] and Jacobi’s identity.

From now on, we derive from the above propositions some results concerning the
property of the exterior differential.

Propeosition 3.
Let Q, be a H-valued differential p-form of class C™ on M. Then its exterior
differential dQ, is a H-valued differential (p+ 1)-form of class C»V on M.

Proof. As we mentioned after the definition of exterior differential, dQ,(=) is a
(p+1)-linear mapping of class C"*~1) from XO(M) x -+ x XW(M) (p+1 times) into H.
Thus it is sufficient for our purpose to show that dQ,(=) is an alternating mapping, that
is,

dgp(w: Xl""’ Xp+ 1)=0

whenever X;=X for ix j (1<i, jSp+1), where Xiseons Xpiq €X(M).
We prove by induction on p. In case p=1, from the definition of the exterior
differential, we have

dQ(=: X4, X3)=0Q{(e: X)(X)—-Qi(e: X)(X,)
—2(e: [X4, X,]).

Clearly this show that dQ, is an alternating map.
Next, by (6.5) of Proposition 2, we have
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dgp(w: Xl""’ Xp_l.l):'(ixldgp)(w: Xz,..., Xp+1)
=(LX19p)y(”: XZ’-"a Xp+1)—d(iX;‘Qp)(‘”: XZ:'"’ Xp+1)’

where X ,..., X4+, € XW(M). As can be seen immediately from the definition of the
Lie derivative, (Ly,®,) (=) is an alternating map with respect to X,,..., Xp+1. More-
over by hypothesis of induction, d(ix,©2,)(=) is also an alternating map with respect to
X3y Xp4q. Hence dQy(e) is an alternating map with respect to Xj,..., Xp41-
Therefore it suffices to prove that, if X, =X,, we have

(Lxlgp) (:z‘: Xz,-.., Xp+v1) =d(ilep) (w: Xz,..., XP"' 1) ’
Now, from the definition of the Lie derivative, we get

(szgp)(‘”: XZs“-’ Xp+ 1)=Q;7(¢: XZ""’ XP"' 1)(X2)

p+1

— i§3 Qp(:v: Xz,--., [Xz, Xi]""? Xp+1)

p+1
=(inQp)’(‘”: XS’---9 Xp+’1)(X2)— ;3 (inQp)(‘”: X3s'--, [XZ" Xi]""a Xp+1)

=(Ly,ix,2,) (@ X3pee0s Xp11)-
Applying (6.5) of Propositidn 2 to the right-hand side of the above equality, we see
(L, @,) (o1 Xaevos Xpy ) ={dlin,1,2p) + i, dix, 2} (o2 Xpeeer X 1) -
Since iy,iy,2,=0 by the alternating property of Q,, consequently we get
(Lx,2)) (@2 Xg5eees Xpi 1) =d(ix,2p) (@2 X25:-05 X,p41)-

This completes our proof of Proposition 3.

Proposition 4.
Let ¢,€ Qi"(M, Hy) and ¥, € Q{(M, Hy) be two differential forms of class cm
on M. Then we have

(D A P )=(dD)A Y, +(—1PP,AAY)), - (6.7)
where H,, H, are Hilbert spaces.

Proof. We prove this proposition by induction on p+g. In case p+4g=0, the
above formula is none other than the law for the derivative of the direct product.

Suppose that Proposition 4 has already been proved for p+g=<r—1. We begin
with an equality

d(@l,/\ Wq)(w: Xl""’ Xp+q+ 1)= {iX1d.(¢pA Tq)} (w: .Xz,..., Xp+q+1) .
Using Proposition 1 and (6.5) of Proposition 2, we get
i, d(®,A¥)=Ly(PyA¥)— d{ix,(P,A ¥ )}
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=Ly PNV A D A (Ly, P
= d{(in, @) A Y~ (= DPA{B,A iy, ¥,)}
Here, by hypothesis of induction, we have
A, @A PG =dix,B) A Pyt (— P iy, 0) A ¥, o
B, A iy, ¥ )b =d D, A (ix, ¥ ) +(— 1P, A d(ix, ¥,). 9
Inserting (6.8) in the right-hand éidé of the 'éibo’i/ebequal'ity‘, we ob’tbaih’
iy, d(@, A V)= {Ly,@,~ d(iy,®,)} A P,
+ @, A {Ly,¥,—d(ix,¥)} | |
+(=DPH(AP,) A (ix, Vo) + (= DP(ix, @) A (dP,).
Moreover, by (6.5) and the second formula of (6.4), consequently we get
ix, d(Pp A ¥ ) =(ix,dDp) A ¥+ (— 1P 1(dD,) A (ig, P,)
+®,A (igldtpq)+(— DP(ix, @) A (dP,)
=ix (A0, A Wb+ (= DPiy, (@A (0¥}
=ix {dP,A Y +(— 10D, A(dP,)}.
Therefore we have (6.7). As the particuiar case of Proposition 4 we have

Proposition 5.
Let f be a function of class C™ and Q, be a H-valued differential p-form. Then
we have

d(fQ)=df AQ,+ fdQ,.

- Proposition 6. '
Let Q, be an arbztrary H-valued differential p form of class C™ (nz22) on M.
Then we have

ddQ,=0.

Proof. We prove by induction oh p. In case p=0, for an arbltrary H-valued
function Q, eC(")(M H), we see by the definition of the exterior differential the fol-
lowmg formula:

{ddQo()} (X1, X3)={dQ0(=)X 2} (X ) — {dQo(=)X 1 }'(X ;)
 —dQ(e)([X 1, X)) |
={€20(=) (X2)}'(X1) —{20() (X 1)} (X 2)
= Q=) [X 1 X,D)5-
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where X, X, € ¥m(M). By the definition of bracket [ X, X,], we have
{ddQo(=)} (X1, X2)=0.

Next, suppose that Proposition 6 has already been proved for p=r—1. We
start with the following formula: ‘ :

(dd‘Qp)(@:Xlz“ p+2) (IXIdde)(x XZ’ 23 p+2)9'

where  Xi,..., X 12 € XM(M).
Using (6.5) of Proposition 2 successively, we get

ix,ddQ, =Ly, dQ,—diy,dQ,
=Ly, dQ,—dLy Q,+ddix Q,.

In view of the last formula of (6.6) of Proposition 2 and by hypothesis of induction, we
have

ix,ddQ,=0,
and therefore

(ddgp) (“’ Xl’ p+2) 0.

Finally we are led to the following proposition, as can be seen 1mmed1ately by
using the definition of exterior differentiation and Proposition 2 of §2.1.

Proposition 7.
Suppose that Q, is a H-valued differential p-form of class C™ on M expressed
in the form

Qp(z) = i‘é’l w;;($)l)t .
Then the exterior differential dQ, of Q, is given by
dQ(2)= i; dwi(=)y; .

7. Canonical forms

Let M beam d1mens1onal dlfferentlal manifold of class C™, (U, ¢) be a chart at
an arbitrary point =, of M and (2!, 2%,..., 2™) be the coordinates of e U. Then it is
well known that an arbitrary real Valued differential p-form Q, of class C on M may
be written in the form ' :

‘Qp(”)= Z 11 Jp (z)dw“/\ /\d$jp,

18j1<""<jpSm

and its exterior differential dQ, is expressed by

dgp(w)’—' Z dow: -(z)/\dwjl/\"'/\d¢jp.

Leos
1Shi<<jpsm UIP
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Now the question arises: in case M is a Hilbert manifold of class C™, under what
conditions do we see the same situation as the above?
As the answer we have firstly the following:

Proposition 1.

Let Q, be a H-valued differential p-form of class C™ on M and (U, @) be a chart
at an arbitrary point =, of M. Then this differential p-form Q, may be represented
in the form

8

Q=)= % 2 O (@bl A Adalry,,

i=115j1<-<jp<

where da',..., d2",... are the differentials of coordinate functions ¢1,..., ©",... respec-

tively and y=(vy,..., V,,...) is a base of H, and furthermore the sum
1§j‘<--~<jp<00
means lim
N-w® 15j1< <JpSN

Proof. By Proposition of § 2.4, we have
Qe Xy,..., X)= ;21 wj(=: Xq,..., Xy, for X,,..., X, € X(M(M)

where w}eQ((M, R) for i=1, 2, 3,....

Inserting
0 _ 2 yj. 0
JIZIX azjl PREET) Xp'—jpz=1X p 6@]},
in wj(z: X4,..., X,), we get
i . 0
a)p(aa. Xl’ p) COP(@ 1%1—{:?0 1121 X1 a Tioeees
lim ¥ x50
P
Novw Jo=1 Oa'v

and furthermore, in view of w}(=) € & (T ,(M), R) and by the definition of the exterior
product of the differentials of coordinate functions, we obtain

N . ] '
oi(e: Xipooy Xp)=lim 3 X{n-..xgpw;,<a,;_ﬁ_ _‘L)

N-w ji,.5p=1 071272 O

=lim '2_ (a, s ,JP)
N-©15j1<<j, <N

(det A - Ad2ir)(Xy,..., X))
= > {0},..j,(@)d=It A oo AdT?} (X 4,00, X))

15j1<<jp<w

where @}, (2)=wi(e: 0;,,..., ;).
Thus we see
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O Xipon X)= 2 B {0h @t A A} (K X

11 j1<~<jp<o

For the sake of simplicity we write formally

Qp(w) = > Wj,...ip (cc)dw“ A Ndai? (7.1)

1S j1<<jp<
for

QP(‘D):; SJ:<..Z<jp<oo J1.. Jp(")d@“/\ Ad@j”)i’
where we put w;, ; (2)= Z o}, ., (=)y; formally. The right-hand side in (7.1) is

said to be the canonical form of a H-valued differential p-form Q, with reference to a
chart (U, ¢).
To obtain

dQ (=)= > dwj, (@ Ade/t A A dol»,

15 j1< < jp<®
we propose the following definition:

Definition.

Let Q, 1, Q,.25-0 Qpms--es 2 DE H-valued differential p-forms of class C™ on M
and U be an open set of M. T hen we say that a sequence {Q,,,,} of differential p-forms
Q15 Q5,250+ Qp s cONVErgESs uniformly to Q, on U if, given ¢>0, there exists a
sufficiently large integer N >0 such that

”Qp.m(w:Xl,...,Xp)—'Qp(w:Xl,...,Xp)”<8 for m>N, €U

where the symbol | || means the norm in a Hilbert space H and X,,..., X » € XM(M).
Consider a canonical form of Q,

Q=)= > wjl...jp(w)dwj‘ A ANdale,

1§j1<---<jp<00

and let (9, QU ..., Q%),,... be the derivatives of order k of the H-valued differential
p-forms Q, ,, 2, p+15+++> 2p,ms--- Of Class C( given by
Qp (=) = 2 @j,...jp(@)d=T A - Adai®, (mZp).

1£j1<<jpSm

A canonical form given above is said to be a uniformly convergent canonical form of
degree 1 if each sequence {Q%), Q%) ,,,..., Q¥),,...} converges uniformly to Q¥ on U
for k=0, 1,...,1—1 (I<n), and a sequence {QY,, QW) ,..., Q),...} converges uni-
formly to an element of &,+(E, H) on U where Q¥ is the derivative of order k of Q,.

Here, by a uniformly convergent sequence {5, Q,‘,"},H, , Q%) ...} we mean that a

sequence {2V 1seees Vi)s Q8% r1(V1reees Yidseres QMY 1sees Y-} of H-valued differ-
ential p-forms converges uniformly on U where y,..., yx € E.

Lemma 1.
Let fy(=), fo(@),-++> fu(2),... be H-valued functions of class C™ defined on U.

Suppose that a sequence {f,(e)} converges uniformly to a H-valued function f(x)
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on U and a sequence {f,(=)} of the derivatives of f,(), fo(<),..., Ju(@),... converges
uniformly to g(=) € £(E, H) on U. Then f(=) is differentiable on U and we have

f'@)=1lm f'(z) for =eU,
namely, for an arbitréry vector XeE,

Tlim || f"(2)X ~f ()X [|=0.

Proof. Let (U,, ¢,) be a chart at an arbitrary point = of U. We consider

f;x(‘”a + A$a¢) _fa(“’a) - gzz(@x)A@w for A‘”ot ek s

where f,=fo0;!, 2,=@,() and ;Y (o, +42)cUnU,. Omitting the symbol o for
simplicity, we have

1f(e+4e)=f(=) = g(=)da| < | f(o+ 42) — (o + 42)|
+ [l ful@) —f @ + 1| fru(2) 4 — g(=) 4=
+ | fule+ 42) = fr(@) —f (=)A= -

For the sake of uniformly convergence on U of sequences { Jm(=)} and { fm(z) ¥ gwen
¢>0, there exists a sufficiently large integer N >0 such that

|/ @@+ de) = fule+ da) | <,
[fne) =f @l <

|fle)de—g()dal| <,

for m>N, 2€U.

Moreover, since f,(=) is the derivative of f,(=), there exists a sufficiently small number
6>0 for m> N such that

| fuleo+ Ae) = folw) = [}l <, for [ de] <.
Consequently, we have
If(e+42)—f(=)— g(=)4=| <&, for 4=l <o
This completes our proof of Lemma 1.

Lemma 2, -

Let Qp1, Q5 550e0s Qpmy---s @, be H-valued differential p-forms. Suppose that a
sequence {Q, .} converges umformly to £, on an open set U of M and that a sequence
{Q,, .} converges uniformly to an element of Z,.,(E, H) on U where Q, n is the
derlvative of Q,, for m=1,2,.... Then we have
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40,(=)= lim A2, (=),
namely, for any p+1 vector fields Xy,..., X4, € X("(M),
im [[{d2,(e) =A%)} (X150, X )] =0
Proof. From the definition of the exterior differential, we have
dQp (= Xise-ns p+1)_ ( 1)H1Q) (ot Xgpeees Xiperos Xpa ) (X))

Y (DR e [ Xy XL X oo R Kjpooes Xpi1) -

1g8i<jsp+1
By the above Lemma 1, we get

1imd9p,m(a,:xl,.., ,,H)_ z( 1)‘“11mQ @t X pyeees Kipeeos Xpi 1) (X))

m-—>ao

X

ise Jores Xp+1)

12i<jsSpt+1

(__1)i+j'}li_1;rgogp,m(‘”: [Xia Xj]: Xla'", X

p+1 . ,
= iz—‘:l (_ 1)’+1Qp(¢: Xl"--a Xis"-, Xp+1)(Xi)

. + . Z (_1)i+j[2p(w: [Xi, X]]’ Xl""’Xi""’ Xj""’ Xp+1)
. 185i<jsp+1 ‘
=de(w: Xl""’ Xp+1) .
Thus Lemma 2 has been proved.
Now, consider a uniformly convergent canonlcal form of one degree

Q = ®: dzItA - Adzir.
p(z) 1_S_j1<"2-<jp<00 11...11,(“’) @ @

A sequence {Q,,} (m=p, p+1,...) given by

Qu@= L o, @deltA e Adsis, for m=p, p+l,..,

1Sj1<<jpsm

converges uniformly to £, on U and a sequence {€, ,} converges uniformly to an
element of £, ((E, H) on U. Thus, using Proposition 4, 5, 6, 7 of §2.6, we get

daQ p,m(w) = Z dw

1gj1<<jpsm

.Il Jp(w)/\dw“/\ Adlr.

By Lemma 2, we see

de(a:)— llm de m(‘”) = 2 dwj1...jp("‘”) A d@jl A Adolr,

1=2j1<<jp<®
Thus we are derived to the following conclusion:
Proposition 2.

Consider a uniformly convergent canonical form of one degree of a H-valued
differential form Q,:
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Q = W;: det A oo Adair .
p(f”) 1§fl<"z'<jp<oo Jx...JP(fv) @ >

Then we have
A= 5 doy, D Adali A ndos,
15 j1< < jp<m
i.e.,

d2,=3 T dob, () Aded A A daiey,.

i=1 1§j1<"'<jp<°°

§3. Connection form and curvature form

1. H(M)-valued vector fields

In this paragraph, we shall construct ‘‘H(M)-valued vector fields” in the similar
manner to the construction of vector fields on a Hilbert manifold.

For this purpose, we must start by considering a transformation group of bases
of a Hilbert space. Let H be a Hilbert space and M be a Hilbert manifold of class
C™. By an isomorphism on H we mean a one-to-one linear continuous mapping of
H onto itself. We denote by GL(H) a set of all isomorphisms on H. Since the inverse
mapping A~! of an isomorphism A on H is also an isomorphism on H, it follows that
a set GL(H) is a group under the familiar multiplication of mappings and becomes a
Banach space by introducing the norm in a well-known way: for an arbitrary isomor-
phism A € GL(H),

| 4] =sup {J’ll%’l’l_”_ . hed, hﬂ;O} .

Next we shall attach the group GL(H) to each point on M. Let U, ¢,) be a
chart at an arbitrary point =, of M. We consider a set 2, of all mappings A4, of U,
into a Banach space GL(H) such that two mappings A,, 47! are of class C™ in U,
where A,! is a mapping which corresponds to each point » of U, the inverse isomor-
phism A;'(=) of isomorphism A,(=) e GL(H). By T, We denote a family of all pairs
(Ua, A4,) such that 4,eU,, ael,, where I, is the index set of all charts at »,. Since
a pair (U,, A4) belongs to the above family 8, for an arbitrary isomorphism 4 € GL(H),
we see that the group GL(H) is attached to a point =, of M where we denoted by the
same notation 4 a mapping of U, into GL(H) such that A(>)=A for =€ U,.

Now, in order to construct ‘‘spaces” corresponding to tangent vector spaces, we
begin by discussing the transformation of ““moving frames” of a Hilbert space H.
Let (U,, ¢,), (U, @p) be two charts at a point =, of M. For two mappings A,€l,
and Ay € Uy, we define their multiplication as a mapping of U, n U, into GL(H) given by

(Aot Aﬁ) (w)=Aa(ap)Aﬁ(m), for =€ Ua n Uﬂ .

We may infer in the same manner as the proof for the derivative of the usual product
of two functions that a product A, Ay is also of class C™ in U, n Uy and that the follow-
ing Leibniz’s formula is held:



Gauge Theory on the Hilbert Manifold 465

(4, A= F () AT D@ AP(),
where A7 (2)4(=) (=0, 1,..., m) are elements of £,(E, GL(H)) defined by

{Agzm—i)(”)A}(?i)(”)} (yl:"'7 ym) =A§m—i)(¢) (yl EARES] ym—i)A)(?i)("") (ym—i+ EERERS] ym) H
for yi., Ym€E.

Hereafter, we denote by A, the product A,4z" of A,el, and Az'ell,. Obviously
A,z is a mapping of U, N Uy into GL(H) of class C™ and we have

Aﬁa(m) = A;pl(w), for =€ Ua n Uﬁ ’ )
(1.1
A?a(w) = Avﬂ(¢)Aﬁa(¢)’ fOl‘ @€ Ua n UB n U), .

Let =(1y, V35..., Yp»---) bC @ base of H and = be an arbitrary point of M, and further
let (Uygs Aa)s (U 4,) be two elements of a family §, where o, is an arbitrary fixed
index belonging to I,. We consider a base (4y,o(=)D15--+5 Ay {#))ys-..) of H and write
YAy, (@) =(Aeoa(@)V15-+» Az @)Vps--.).  Moreover we define

{0 Aou(@)} Aup(@) = (Aee@) {Aug(@)91 - Aud@) {Aug(@)Wu}s)  (1.2)
and for brevity we write
by()=(0%(=);-.., Bi(=);---)
where  b%(o)=Aypu(«)0; (i=1, 2,...).
Then we have
by(2)=9,
b(=) =Dy(=)Aup(=) -

In fact, the first relation is clearly satisfied, since A, wo(@) =Ag(@)A;(z)=1 where 1
denote a unit operator on H. By using the second relation of (1.1) and by the Definition
(1.2), the second formula of (1.3) is derived as follows:

b(2)A4p() = {D4o(2) Auge(®)} Aup(=)
=D,,(@) {Aaga(@) 4ap(=)}
=By (@) Agop()
=by().

Thus we are let to the following interpretation: a base b,(=) of H is a moving frame of
H-type on a Hilbert manifold M and the second relation of (1.3) show the transfor-
mation law of these moving frames on M.

From now on, we shall construct spaces corresponding to tangent spaces on M.
Considering a product set HxI,, we denote by Z, an element (Z, o) of Hx I, and
moreover, for an isomorphism A€ GL(H), we define AZ, by (A4Z,0)e HxI,. We

(1.3)
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say that two elements Z,, Z, of H.x I, are equivalent if and only if there exist two
pairs (U,, 4,), (U, 4;) of a family §, such that Zy=Ay(2)Z, For the sake of re-
lations (1.1), we see readily that the equivalence thus defined satisfies the axiom of
equivalence relation. By a fibre element 3 at a point = of M we mean an equivalence
class {Z,} of elements of H xI,. - Moreover, for two fibre elements 3:1={Z),}, 3,=
{(Z,),} at ceM and a scalar A€ R, we introduce the addition and multiplication as
follows:

31+3:=(Z:+2), 23,={02Z)),).

Of course, as is easily seen, these addition and multiplication are independent to the
representative of equivalence classes. Thus, a set of all fibre elements 3 at a point »
of M which has the addition and multiplication introduced above, is clearly a vector
space over the real field R.

Definition 1.

A vector space constructed above is said to be a fibre space of H-type at a point
= of M or a H-fibre space at = € M for simplicity. We denote by H_(M) this vector
space. '

Especially, in case a group GL(H) is a group GL(E) which consists of the derivatives
@pa=) of all C™-diffeomorphisms ®p=) discussed in §2.2, a E-fibre space at o€ M
seems to be a tangent space T (M) at » € M.

Since, for an index ael, and a fibre element 3 € H (M), there exists a unique
vector Ze H such that Z,=(Z, «) e 3, we identify a representative Z, of 3 with this
unique vector Z of H. Therefore we can consider a mapping of the fibre space H_(M)
into the Hilbert space H given by

Pfe): 3— Z,.

Moreover we define an inner product (31‘, 32> of two fibre elements 3,, 3, € H (M)
and a norm | 3| of a fibre element 3 € H_(M) by S

<31a 32) =<¢ag(") (31): 455(0(@) (32)) 5
131=v<3, 35,

where a, is an arbitrary fixed index belonging I.. We infer readily that the inner
product thus defined satisfies the axiom of inner product and the fibre space H_(M) is
complete with respect to the above norm. Consequently we obtain a fibre space H_(M)
which has the same structure as the Hilbert space H. We have the following propo-
sition which corresponds to Proposition of §2.2.

Proposition 1. , o

Let M be a Hilbert manifold of class C™ and H_(M) be the fibre space at a point
= of M. Then a mapping @, (=): H (M)~H given by Za0¥¢ao(w) (3) for 3 e H (M),
is an isomorphism of the fibre space H_ (M) onto the Hilbert space H where Z,, is the
representative of 3 identified with a vector of H and «, is an arbitrary fixed index
belonging to I,,. . : ' :
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Since this proposition can be verified in the same manner as in the proof of Propo-
sition of §2.2, we omit it. - '

In what follows, the fibre space is assumed to be the Hilbert space which has the
same structure as the Hilbert space H, and we denote by Z or Z,, the fibre element J
at =€ M. -

Next, we shall go on to investigate the expression of a fibre element Z e H_(M)
in terms of a moving frame on M which corresponds to express the tangent vector
X e T (M) as the derivation. For this aim, we search the matrix representation of the
following relations with respect to a base b,(=) of H: the equivalence relation for two
representatives Z,, Z, of a fibre element Z ¢ H_ (M)

= A, 04

and the transformation law of moving frames

() =) Aggle) (1.5)
We assume that two matrices
abar aéa,zf"”a}za,n”‘ alsy alpralpn
alzm,r a%a,Z“'a%a,n"' aﬁﬁ,r agﬂ,2"'a§ﬂ,n”'
: : R : : :
ag‘a’z,lvaz?,Zuk'az?,n‘.“ a:{’,l ag.ﬁ,Z'”agfi,n"'

are the matrix representations of A,,a(w) A,p(2) with respect to a base b, (=) =1, 92,
Y,,...) of H where A,,a(m) A,p(<) are the isomorphisms on H of class C( and we om1t
» for matrix elements. As was mentioned in § 2.1, we obtain the matrix representations
~of (1.4), (1 5) in the form

Zj Ahayt Bho2 e\ [ Za
Z2 a2 az . -az RS B Z2 L
B Ba,1 “Ba,2 Ba.j a
: = : : : : s (1-6)
Z Thot Bha,2" " Cha,i" Kzi

(btli(”% bg(@)s--': bf(‘”)s)
a;ﬂ,l a;ﬂ’z...aiﬁ,i...
G2y alg @l
— (59(s), B3(e), .., DE(a),...) | ot G2 (1.7)
J . . -

P DR B
A;p,1 Qap,2" " Aap,i

where Zy= Z Zy;, Z,= Z Z;ni
Moreover we get from a relatlon Aup(@)Ap2)=1
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k;l aiﬂ,k a’ﬁa,j=5‘ii . (1.8)

Here, for a representative Z, of a fibre element Z € H_(M) and a moving frame
b,(=) on M, we consider a vector of H which is denoted by b(=)Z,:

b.()Z,= 3 Zibi(e) (L9)
where  b,(2) =(b%(=), b3(=),..., b%(=),...).
Then we see
bﬂ(@)Zﬁ = Ba(ﬁ)Za (1 . 10)

where Z; is another representative of a fibre element Z and by(=) =(b4(=), b5(=), ...,
b(<)s...). In fact, by using (1.6), (1.7) and (1.8), we get

Z

2

Z

By(e) Zp=(04(=), BJ(2),-., B(e),.) |
Z}

a;ﬂ,l a;ﬁ’z...a;ﬁ,i.-.

2 2 g2 ...
= (B5(e)s B3(e),..., E(a),..) | ot o2

Qup,1 Qop,2" " Agp,i

Bha,t Qa2 @hait z
al%a,l al%a,z"'a;%a,i"' Zg
ai. ai. ...ai. cose Z.i
Ba,1 “Ba,2 Pa,i a
z
z;
=(b%(‘”)3 B%(“’),-'-’ b?(@)’)
z
=ba(a:)Za.

This formula (1.10) shows that a vector b(=)Z, of H is irrelevant to the representatives
of a fibre element Z e H_(M), and therefore that we may identify a fibre element Z
with a vector b(=)Z, of H. Henceforth we write for a fibre element Z in the following

form which corresponds to the expression [(2.12) of § 2.2] of a tangent vector X e T (M)
by the derivation, :
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Z= ?:;1 Z'b(=). (1.11)

Furthermore the above calculation derived (1.10), shows that it is allowed to operate
formally in the following manner: by using (1.4), (1.5) and a relation A,4(2)44(=)=1,

bp(2)Zp=Dby(=)Aap(=)Apu()Za
= ba(w)za .

In particular, we have
? () (Z)= 2 Ziy, for ZeH (M). (1.12)

Finally, we shall give the definition of H(M)-valued vector fields. By the fibre
bundle of H-type we mean a set H(M)= UMHw(M).
@€

Definition 2.
Let U be an arbitrary open set of M. A mapping Z of U into H(M) given by

Z(z)e H (M), for €U,

is said to be a H(M)-valued vector field on M.
A H(M)-valued vector field Z on M is said to be of class C™ on M if and only if
a mapping @,,°Z of U into H given by

(@aOOZ) (”) = dsao(“’) (Z(“’))’ fOT @€ U ’

is of class C™ in U.
In what follows, we assume that the H(M)-valued vector field is of class C™ on
M, and we write

Z(2)= El Zi(2)b(=). (1.13)
We conclude this paragraph with remark on the vector field Z(») given by
2= ¥ 2.

Since there exists a bounded linear operator A(=) belonging to GL(H) such that

;= A(=)by(=) (1.14)
and hence we have
Z(w) el A(z)Z(w) .

Obviously Z(=) is a H-valued vector field on M. Moreover it is easy to show that
Z() is of class C™ on M. In fact we have, from (1.10), (1.12) and (1.14),
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($.°2) ()= z Zi (=

FACE)

i
uMS

8

= ; (A~ =)y,

=47 @ (E 2w,

and hence we get )
Z(2)= A=) (9,,°Z) ().

Thus, since A(=) is of class C™ on M, Z(z) is also of class C™ on-M. - We obtain the

following conclusion:

Proposition 2.
Let Z(=) be a H(M)-valued vector field of class C'™ on M given in the fqrm \

Z)= 3 Zi=)(e).
Then the vector field Z(m) deﬁned by
Z(w)— Z A (z)l),,
is the H-valued vector field of class C™ on M.

2. H(M)-valued differential forms A o .

We discussed about H-valued differential forms in §2.4. In this paragraph, we
shall attempt to construct the corresponding theory concerning H(M)-valued differ-
ential forms. First, we start by defining the H(M)-valued differential form. As one
has been, by o (T.(M), H,(M)) we mean a set of all p-linear alternating continuous
mappings of the tangent space T,(M) into the fibre space H_(M). Moreover, by the
differential p-form bundle of H-type on M we mean a set o/ AT(M), HM))= U oL,

(T(M), H,(M)).

Definition 1.
Let U be an arbltrary open set of M. A mappmg Q, of U mto X4 p(T (M), H(M))
given by

Q) et (T (M) M), for =eU,

is said to be a H(M)-valued differential p-form on M. For brevity we denote Qp(w)
(Xg5ee0s Xp) by Q,(2: X4, X,) where X,,..., X e T (M).

A H(M)-Valued dlfferentlal p-form Q, on M is said to be of class. C™ on M if
and only if a mapping (®,,°Q,) (X, X,) of U into H given by . iy
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(¢ °Qp)(X1> p)($)=(pao(‘”)(gp(w" Xl’ Xp)) ’ fOT "‘”EU;

is of class C™ in U, namely (15%09 eQ(")(M H) where X, 1---» X, are any p vector
fields of class C™ on M.

In what follows we assume Q to be a H(M)-valued dlﬂ’erenUal p-form of class C
on M and denote by Q{”(M, H (M)) a set of all H(M)-valued differential p-forms Q,
on M. A set QW(M, H(M)) becomes a real vector space under the natural add1t10n
and scalar multiplication, and further is a C™(M, R)-module under the following
multiplication: for fe Ct™(M, R) and Q, e Q"(M, H(M)), '

(f2) () =f (@) (=), for «eU.

In fact, we see evidently @,o(fQ,)=f(P,,°Q2,) and hence we have &,(fQ,)€
QM(M, H). o .
" Now let b(2)=(04(2), b5(2),..:, b(<),-..) be a moving frame on M. Then a H(M)-
valued differential p-form 2, is uniquely expressed in terms of b(z) in the form

Qfe: Xy X)) = g Wit Xppeeor X&), 0 (Q21)

where X y,..., X, € X(O(M). It is obvious that each component ), is the real valued
differential pform of class C™ on M. For Slmpllczty we write (2 1) in the following
form: :

Q)= %, w;,(g)b,.(w). | QY

Next we proceed to the definition of exterior multii)lication. Let H!, H? be two
Hilbert spaces and HL(M), H2(M) be fibre spaces of H 1., H2-type at a point = of M
respectively We shall denote by H (M) = HL(M)® H2(M) the direct product of Hilbert
‘spaces HL(M), H2 (M) This direct product H (M) is a fibre space of H'® H?>-type
at =€ M. An isomorphism @ao(w) of H (M) onto H=H'®H? is introduced as-fol-
lows:. : «

®,.(«) (Z) = (=) (Z)® P2 () (ZD), for Z=Z'®ZeH (M)

where @} (=), @2,(=) are the isomorphisms of HL(M), H2(M) onto H!, H? respectively.
Let H'(M), HX(M) and H(M) be the fibre bundles of H'-, H?- and H-type on M
respectively.

Definition 2.

Let Qf, Q2 be respectively a H 1(M) -valued differential p-form and a H*(M)-valued
d1fferent1al q-form on M. By the exterior product of two differential forms Q} and
QZ, denoted by QLA Q2 we mean a H(M)-valued differential (p+q) -form on M such
that for an arbltrary point = of M and any (p+4) vector fields X ,..., X1, € X(”)(M)

QLA Q) (03 Xyses Xpag)

=§ 8(0‘)9},(¢Z Xﬂ'(l)"“’ Xa(p))®9(21'(5”: Xa(p+1)""’ Xcr(p+q))
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where the sum 3 is to be extended over all permutations of {1, 2,..., p+q} satisfying
o(1)<---<a(p) and 6(p+1)<---<a(p+q), and

+1, for even permutation o,

&(0)=

—1, for odd permutation o.

A mapping &,,o(QL A Q2)(X,,..., X p+q) Of U into H is defined by
P25 A QD (X 150y X i) (@)
= ; 8(0') (¢;°°Q;) (a:I Xﬂ'(l)"' . XG(P))

®(¢§°°Q§) (z: Xa'(p+ 1)ses Xo'(p+q))’ for x € U,

where U is an arbitrary open set of M. By the introduction of this mapping &, , the
H(M)-valued differential (p + q)-form Q1 A Q2 becomes of class C™ on M.

Now, let us consider two differential forms Qle Q(M, H\(M)), Q2e Q"(M,
H2(M)) which are expressed in the forms

Qi=)= 3 wf @bl
2.3)
()=, 0f'(Ib3),
where (bi(), bi(2),..., bl(=),...), (b2(2), b3(2),..., b2(2),...) are the moving frames on

M which are the bases of HL(M), H%(M) respectively. Then, as was mentioned in
§2.5, their exterior product Q1 A Q2 is expressed by

@A @= 5 5 (ff n o) (bl ObH) (2.4)
where (bi(=)®b%(=)) (i, j=1, 2,...) is a moving frame on M which is a base of H_(M).

As a particular case of the exterior product defined above, for w,e Q”(M, R)
and Q, e Q" (M, H(M)) expressed in the form

‘Qq(‘”)= iZ——:l w;(”)bi(”) ’
their exterior product w, A, is given by
(0,A Q) (=)= iz=:1 (@, A 0}) ()1 ®b(=),

where 1 denotes a base of R and b(2)=(b4(=), by(2),..., by(=),...) is a moving frame on
M which is a base of H_(M). By identifying 1®b/(=) with by=), we get

(@, A Q) (=)= .21 (@, A 01 (2)b=).

Thus w, A Q, is a H(M)-valued differential (p+ q)-form,
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From now, we shall discuss the exterior differential of H(M)-valued differential
form with respect to a moving frame on M. Letting Q, be the H(M)-valued differential
p-form on M written in the form

Q=)= i§1 i(2)by(=),
we consider the differential form & (=) given by
O(=)= igl 0(2)Y; »

which is a H-valued differential p-form of class C™ on M in virtue of Proposition 2 in
§3.1. By Proposition 7 in § 2.6, the exterior differential d@, of @, is given in the form

dﬁp(w) = 21 dw;(w)t), .

Since there exists a bounded linear operator A(=) of class C(" belonging to GL(H)
such that by(=)=A(=)y; (i=1, 2,...), we see

(4d8,) ()= 3 doi(=)b(=),

where we mean by a notation (4 dﬁ,,) () that
(Adﬁp)(‘”) (Xla'“a Xp+ 1)=A(“’)d§p(”: Xla"-’ Xp+1)’
for Xi,..., X, € XM(M).

Obviously this differential form Adﬁ,, is a H(M)-valued differential (p+ 1)-form of
class C»~D on M. Thus we attain to the following definition:

Definition 3.
Let Q, be a H(M)-valued differential p-form expressed in terms of a moving
frame b(2)=(b(2), b5(2)s-.., By(2),...) on M as follows:

Q=)= iz=‘,1 wi(2)bf(=) .
Then the exterior differential dQ, of 2, with respect to b(=) is defined by
de(w) = igl dwpf(w)bl(w) N

As has been defined above, the exterior differential of H(M)-valued differential
form with respect to a moving frame on M is determined by the exterior differential of
real valued differential form. Therefore the following proposition is derived im-
mediately from Proposition 4, 5, 6 in §2.6.

Proposition 1.
The exterior differential of H(M)-valued differential form with respect to a
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moving frame on M h‘a‘s the following properties:
| d(FQ)=df A Q,+fdQ,,
d(QL A Q2)=(dQ )/\ Q2 +( 172 A (dm),
ddQ,=0,
where fe C™(M, R), @, Q0"(M, H(M)) and
Qe Qi(M, HY(M)), Q2e QP(M, HX(M)).

Finally we shall mention to the canonical form of H(M)-valued differential form.
For a H(M)-Valued differential p-form Q, written in the form

Q)= ¥ oh@bie),

we consider the H-valued differential p-form Q‘, given by
Fya)= 3 ol

The canonical form of Qp with réspéct"to a chart (U, ¢) is the following:

Q)= _ T o el A Adalr,
= P
ie.,
(w)—' i=1 ISJ1<Z<_; .iil-..ip(”)dwjll\ "'Ad‘”jpl)i’
P
where w}, ; (2)=wi(e: 0;,,...,0; ) and the sum > means lim .,
? 1Sj1<+<jp<e N-o 12/,<7<jp, SN
namely,

{Cl)g-lmjp(w)dzjl VANEEXIVAN d@jp} (Xl’“" Xp)

1S j1< < jp<o0

= lim > Al (@delt A Ad 2ie} (X, X)),

N-® 15j1<""<jp<N

for X,,..., X,e X"(M). ‘
By the canonical form of @, with respect to a chart (U, ¢) we mean AQ,, namely,

(Agp) (”) = A(z)ﬁp(“) .

J1dp

= D By, o T A A deob )
=11% 11< < j p<oo
where A(m) is a bounded linear operator of class cm belongmg to GL(H) such that
b()=A(=)y; (i=1, 2,...). For simplicity we write for this canonical form formally,
if there is no possibility of confusion,

Q ()= dadt A oo Adoin .
(D= B e e,
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where we put w;, ; (2)= Z %, ; (2)by(=) formally.

Here we give a remark on coefficients w;, ; (=) of the canonical form: according
to whether Q, is a H-valued or H(M)-valued differential p-form, the coefficients

;,...;,(=) of the canonical form are given in the form
El b (@)W for Q,eQP(M, H),
wj1...jp(¢)= -
Zﬁ %, .., (@)bi=), for Q,eQM(M, HM)).

From now, we denote by Qp a H-valued differential p-form A7'Q, for a H(M)-
valued differential p-form Qp. ,
Let Q, 1, 2,205 Qpmse-e» 2 b H(M)-valued differential p-forms and U be an

p,1°
open set of M. Then we say that a sequence {Qp m} of Qp 15 Q,, 23000s 2pmse .- CONVEFGES
uniformly to Q, on U if a sequence {Qp m onp 15 2525 Q . converges umformly
to Q on U.

Moreover a canonical form of Q, is said to be a uniformly convergent canonical
form of degree l if a canonical form of @, is a uniformly convergent canonical form of
degree l.

Proposition 2.
Suppose that a canonical form of Q, written in the form

Qp(“’)= Z WDji...ip (z)dm“ Ao Adalr ’

15j1<7< jp<eo

i.e.,

Q)= 3

i=1185j1<<jp<

(m)dw'“ VANEERIVAN dwj"bi(a:) .

.Il Jp

is a uniformly convergent canonical form of degree l.
Then the exterior differential dQ, of Q, with respect to a moving frame b(=) is
given by

dgp(w)= Z do ;.. Jp(a:)/\dm“/\ /\dwjp,

15j1<<jp<w

i.e.,

(m) A dm‘il FANRERIVAN dwj"bi(m) .

J1edp

Q=)= 3. Y dol

This proposition is readily proved by using the definition of the exterior differential
dQ, of Q, with respect to a moving frame b(=) and Proposition 2 in §2.7.

3. Exterior covariant differentiation

Definition 1.
The exterior covariant differentiation of H-type is a linear mapping Dy over the
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real field R of the C(M, R)-module Q{”(M, H(M)) into the C*~1(M, R)-module
Qi (M, H(M)) satisfying the following requirements: for each p,
(A1) a mapping Yy of the fibre space H (M) of H-type at » into itself given by

qIH: Qp(m: Xl""’ Xp) — (DHQP)(Q: Xl""’ XP+1)’
for Q,eQW(M, HM)),

is continuous,

(43) Dy(wyAQp)=dw, A Q,+(—1)w, A DyQ,,

for @, eQMP(M,R) and Q,eQ(M, H(M)),

(A3) DyC=0, for constant CeR,
where = is a point of M and X,,..., Xp+1 are any (p+1) vector fields belonging to
QE(n)(M).

In what follows if there is no possibility of confusion, we omit the symbol of type
of the exterior covariant differentiation and denote it by D merely.

Definition 2.
Let H', H? be two Hilbert spaces. The exterior covariant differentiation Dyign2
of H'® H?-type is defined by the following formula:
Dyigux(Q A Q) =D Q) A Q2+(—1)PQL A (DaQ2),
_ 3.1)
for QLeQW(M, H{(M)) and Q2 e QW (M, HA(M)).

Proposition.
We see

Drl=0 and Drow,=dw, for 1€Q{(M,R) and o,eQM(M, R),
where 1 denotes a base of R.
Proof. By using (3.1), we have
Drgr(w, A 1)=(Drwp) A 14+(—1)Pw, A (Dgl).
From R®R=R, w,A 1=, and (Dgw,) A 1=Dyw,, we get
@, A (Dgl)=0.

Thus we see Dg1=0.
Next, by using (4,), we have

Dy(@,A D)=dw, A 1+(—1)Pw, A (Dgl).

From Dg1=0, we see Drw,=dw,. ‘
Finally we shall give a remark concerning to apply the exterior covariant differ-
entiation to a H(M)-valued differential p-form Q, expressed in the form

Q)= 3, wlfelble).
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From b,(=)=1®b;(=)=1Ab(=), we see

Q=)= ?:il }()1 A bz)

121 i(=) Aby(s).

Applying the exterior covariant differentiation D to the above formula, in virtue of
(4,) and (4,), we have

(D2, ()= % dooy(e) Aba)+(~ 10 3. wi(=) A Dba).
Consequently we get
(DQ,) (=)= 21 doi()b(e) + (= 1)? g }() A Dbz). (3.2)

4. Connection forms

In this paragraph, we shall introduce the connection form and dual connection
form by means of the exterior covariant differentiation. Moreover we shall investigate
the transformation law of connection forms.

Let Q, be a H(M)-valued differential 0-form expressed in the form

Q@)= 3 0i()bi),
where wi € Q{(M, R). Applying Dy to the above formula, we get from (3.2)
(D40 (@)= X, dobf@lbie)+ 3 olf=)Dyb(=)- C8Y
In virtue of (4,), we have
Dybie)= &, hlbi(e), (42)

where w};; € Q{"(M, R) and the matrix

0hi(e: X) ohy(e: X)ooeee ohi(z: X)--

is a bounded linear operator on fibre space H_(M). Inserting (4.2) into the right-hand
side of (4.1), we obtain

(Duf0) @)= 5 {dol(@)+ 3, ol ()of(=)b(). (43)

We use for simplicity the matrix notations as follows:
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2
da)oz d.a)o N DHB=(DH[_)1! DHB2,..., DHbi!"') N

dw}
w L. wl
H1 H2 Hi
2 2
w Wy Why e o
H™ .

Then the formulas (4.1), (4.2), (4.3) are written in the following forms:

Dy(2) («) =b(e)d(e) + Dyb()o(w), (4.4)
Digb()=b(=)op(=), | 4.5)
(DuQ) («)=b(2) {dwg(a) + 0p(2)o(x)},  (46)

where Qy(2) =b(z)wy(=).
Now, since dwj € Q{"~V(M, R) and wj; € Q{"" (M, R), these are represented in
terms of the differentials d=* of coordinate functions as follows:

dol(=)= 3. doi(e)da*,
. wbl(w) =k§1 F}.{jk(w)dwk ’ ’ ‘ (4.7)

where I';;, € C""D(M, R). Inserting the above two formulas into (4.3), we obtain
by a straightforward calculation

(Puf)o: X)= 5, {dwh(e: X)+ 3 0l (o X)od(@)b(e)

=3 3 Vi@uibe),

=1j

-~

where

\'5;},.(@)=k§1 deMX) O30+ Thju(=),  for XeXW(M).  (48)

By using the matrix notation

Hl Hl Hl
Vi ViV
" g s g2 g2
Vx= V.XI V'Xz """ V.X_, .
H H H
3 1
V_Xl VXz """ fo,
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we have
(Do) (o X)=b(x)V x(e)0e() (49)
Definition 1.

We say that wy, I'y, YI; ¢ are respectively the connection form, the connection,
the covariant derivation in the direction of X of H-type with respect to a moving frame
b(=) on M where =l jie=1,2,..-

Henceforth if there is no possibility of confusion, we shall omit the symbol of type.

As can be seen easily from (4.8) and the definition of the differential of functions,
we have

Proposition 1.
Let X, Ye XO(M) and let Qf, Q3 € Q§"(M, H(M)) which are expressed in the

forms

Qi) = &, dh(=)bie),

23(e) = 3, D=)bi)-
Then we have
1 1 1
V x+y0o =V x®¢ + V y®q ,
Vx((bo +‘f’o) = Vxé’o + Vx0230 >
(4.10)
VZX&)O'_—A’VX(})O? for ).ER,

V(fdo)=f V xtbo+ X(f)dg, for feCW(M, R),

where
w} &3
1 (})(2) 2 (%,(2)
Wo= » W=
wh o

In the above formulas, we omitted the symbol .

Next we shall proceed to.the discussion of-dual connection forms. Since the
fibre space H,(M) of H-type at = € M is a Hilbert space, we may consider the dual space
H*(M) of H,(M) which is said to be the dual fibre ‘space of H_(M) or the fibre space
of H*-type at =, and furthermore we have the dual fibre bundle H*(M)=\U H%(M)
of H(M) (or the fibre bundle of H*-type on M). By Q(M, H*(M)) we mean a set
of all H*(M)-valued differential p-forms of class C™ on M. For any two elements
X e H_(M) and X* e H¥(M), we denote the value of the bounded linear functional X*
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at X by {X*|X) according to the Dirac’s notation. Moreover we denote by Q,.»(M,
H(M)) a set of all exterior products Q¥ A Q, of any two differential forms Qe QM(M,
H*(M)) and 2, e Q{"(M, H(M)).

Definition 2.
The contraction C is a mapping of Q .M, H(M)) into C™(M, R) given by

C(Q:/\Qq)(w:Xl,-.., Xp+q)
=<‘Q;1k(w Xl’-"a Xp)lgq(‘”: Xp+1='"9 Xp+q)> s
for 2eM and Xisees Xprg € XM(M).

Now, we set up the following requirement :
(Ry) the exterior covariant differentiation commute with the contraction.
The above requirement leads us to the following conclusion

Proposition 2.
Let b*(=) =(b(=), b*(2),..., b"(=),...) be the dual moving frame of a moving frame
b(=)=(b,(), by(2),..., By(2),...), namely

(B(e) [B()) =3,
Assume that
Dpb(=)=b(«)wp(=) and Dpb*(e)=b*()wg(=).
Them we have
" () + 0g(a) =0 (4.11)
Proof. From the definition of the contraction, we have immediately
CH () A b () = <BH) | B,()> =3 .
In virtue of the requirements (R;) and (4,), we get
CDipga(B() A b (=) = DipegonC(bi() A b (=)
=Dgud’
=0.
On the other hand, for the sake of (3.1), we see
CDiegn('(e) A b () = C(Dpsbi(e) A () +b(w) A Db ()

| =CUE, Ond@B @A @)+ A {F, 0l (e

= 2, 0nk(e) BH@) > + 3 0f (=) <BI(2) [ (o))

= wH¢5(w) + w%j(z) .
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Consequently, we have
wH*§(¢) + a)}“(m) = 0 .

Definition 3.
Let wy be a connection form of H-type. Then the connection form wg. of H*-
type satisfying the relation

wH*_l_wH:Os (4.12)

is said to be the dual connection form of wy.

Before we proceed to the investigation of the transformation law of connection
forms, we shall give the formal discussion about “matrix differential forms”. By a
matrix differential p-form we shall mean a matrix such that its all elements are real
valued differential p-forms, and by the exterior differential of the matrix differential
form we shall mean the exterior differential of all elements of this matrix differential
form. Moreover the exterior multiplication of two matrix differential forms is defined
in the same manner as in the familiar matrix multiplication, but the product of matrix
elements must be replaced by the exterior product. In particular, the exterior multi-
plication of two matrix differential o-forms and the exterior multiplication of a matrix
differential o-form with a matrix differential 1-form, is the usual matrix multiplication.

Let A, be a matrix differential p-form and A, be a matrix differential g-form.

Then it is easy to see that

d(A, A A)=(dA) A Ag+ (=14, A (d4,). (4.13)

In fact, we have formally

d(E, 04N k(@)= Z, dhu)A 0}, 1(=))

8

=5 ) (e) A 0 (@) + (1P T 0f 4N el (o),

where ), ;, o} ; are (i, j) elements of A,, A, respectively.

From now on, we begin to discuss the transformation law of connection forms.
As was mentioned in §3.1, there exists the following relation between two moving
frames b,(=), by(=) of the same type:

by(=) =bo(=)Aup(=) s (4.14)

where A,4(=) is an isomorphism on H of class C™. We get immediately from (4.5)
that '

Dby(e) =By (=),
Db,(«) =b(=)0(=) (4.15)

where w?, »f are connection forms of H-type with respect to the moving frames b, (=),
by(=) respectively. On the other hand, applying D to both sides of (4.14), we get



482 Manabu IyaNAGA

Dby(=) =D(by(=)A (<)) ,

i.e., for each component,
Dbf(2) = D(A,4(=)b%(=)),

and further by using the matrix representation of A.p(=), we obtain from (1.7), (3.2),
4.2),

DO () =D(3. aly, (=)b3(=)

= ng daa’;ﬂ, i(z)b?(a&) -+ ng a{;ﬂ, i(@)Db;(@)

]21 daiﬁ, i(¢)b;(¢) + _121 ki::1 w“,{(m)a:ﬁﬁ’ i(m)bjg(w) s

where we used that w*(=: X) is a bounded linear operator on fibre space H_(M) for
X eX("(M). Consequently, in terms of matrix notation, we have

Dby(2) =by(2)d A,4(=) + b(2)0(2) A, 4(=) . (4.16)
Form (4.14), the first formula of (4.15) and (4.16), we get
ba(w)Auﬂ($)wﬁ(w) = ba(“’)dAaﬂ(¢) + ba(”)a)a(“’)AaB(‘”) ]
and hence
0P(2) = Agy()d A (=) + A pe(2)0%(2) Ayp() . 4.17)
Thus we come to the following conclusion:

Proposition 3.
Suppose that b,(=), by(=) are two moving frames of H-type which satisfy a relation

by(=) =Dy(=) Aup(=)

and that ®®, wf are the connection forms of H-type with respect to b (=), by(=) respec-
tively.

Then the transformation law of connection forms is given by (4.17) where A p(=)
is an isomorphism on H of class C(™. '

In a particular case of

0o Oof  Oa)
I S B N
0o} 0o}  Oad

Ay (o) =| Tl 022 0ol

deh  Oeh O
\ 3ol B2 L
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by using wi(e: 8/0s%)=T% 3 0= 5‘3 —, we obtain from (4.17) by a
i=1 @ Xy
straightforward calculation ’ ’
Iiy(=)= el Oeb Oz 1 o, : 8
Jk( ) l,m,zn=1 amﬂ 6¢5 5% n( )+l=21 amljgaxﬂ 55&

where I'= (F )y, F (F ,) are connections with respect to b (=)=(0/0=}, 0/027,...),
by(=)=(0/0=}, 0[0=f,...) respectively. This is the generalization of the transformation
law of affine connections.

We conclude this paragraph with a slight mention on the exterior covariant differ-
entiation of (H®H*)-type. Let Q, be a (HQH*)(M)-valued differential p-form ex-
pressed in the form

Q)= 3. @b, (I0(I®D/)

where b*(>) =(b1(2), b%(2),..., 0"(=),...) is the dual moving frame of b(z)=(b,(=), bs(=),
wosy b,(2),...). Applying Dygys to both sides of the above formula, we get easily in
virtue of (3.1), (3.2), (4.11),

Dugneye) = 3 {dor, (o) + 3 0fn(e)A %,
— 3 0l(e) A 0} k(I BB(). (“.18)

5. Parallelism

By a differentiable curve of class C™ (or a smooth curve) on M we shall mean a
differentiable mapping y==(t) of class C™ of a closed interval [a, b] of R into M: for
an arbitrary point te(a, b) and for each chart (U, ¢) at ()eM, a mapping ¢@eoy of
an open interval I;=(t—4, t+0) into E is a differentiable mapping of class C™ on
I, where & is a positive number. We shall denote the derivative (poy) € £(Is, E) by
a notation . The vector #(f) belongs to T=(z)(M) and hence can be expressed in the
form

=% 3 '(t)(—r) . (5.1)

Definition.
A H(M)-valued differential p-form @, is said to be parallel along a smooth curve
y=4(f) on M, if the equation '

(DR,) (o(0): 3(2),..., (1) =0

(pt+1)—factors

is satified everywhere on the curve y=2(f).
Now we consider the uniformly convergent canonical form of degree 1 of 2,
with respect to a chart (U, ¢) as follows:
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uMs

Q=)= > @il @)t A - A dadrby(e)

115j1<+<jp<w

In virtue of (4,) and (4,), we get

(Dgp) (”) = i;il {d( Z .11 Jp (w)dwll Ao A d@jpbi(w)

1Sj1< < jp<o

+(— l)p( Z (D.il-l"_jp(w)dwjl A v A dzjl’) AN Dbl(a) .

1Sj1<<jp<w
Since the real valued p-form

. . w§1...jp(w)d$“ Ao Adair
1£j1<-<jp<ow

is a canonical form of degree 1, we apply Proposition 2 of §2.7 to the first term in the
right-hand side of the above formula and we use (4.2) for Db(=) of the second term.
Hence we have

PQ@=5 {3 (@), ,@+(-17 F oi)-

1 1Sji<im<jp<
% i @) AdeItA - A daiP}bya).
Thus we obtain by using (5.1)
(D‘Qp) (""(t): “"(t)’-“: “z(t))

{_ X d(@5,...,(=(0): 2(1)) (5.2

1 1Sji<<jp<o

Ms

12

+(=1y Z wk(‘”(t) HDW],...;, (D)) (1) -2 r(£)}b((2)) .

In case p=0: Qy(=)= Z 0§(=)b (=), the formula (5.2) becomes
i=1

(D) ((0): ()= 5 {deol(e(t): (1) + 5, ok(el): S(D)obD)}BLa(0).

Moreover we see by using (3.2) of §2.3 and (4.7)

(D2)(e(): 5®)= 5, {42ED) 1§ $ 1ty (o) 4O 000 bute(®)
In the special case where Q, is a T(M)-valued differential o-form :
2@)=% #0(52)_

d’(t)

we obtain

(DQO)(w(t:w'(t))=,§{ ,Zz(’)+2 z I (=(0)) "(t)w’(’)}< )

i=1 =(t )
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Consequently we have the equation of the parallel translation of T(M)-valued differ-
ential o-form along a smooth curve y=2(f) as follows: ‘

di;;(’) n ,21 é I (@(0)s*(0)= () =0.

This is the generalization of the equation which determine a geodesic in the usual

differential geometry.

6. Curvature forms and structure equation

We shall now define the curvature form by means of the exterior covariant differ-
entiation.

Definition.
By the curvature form with respect to a moving frame b(~) we shall mean the
matrix differential 2-form R such that

D(Db(=))=b(=)R(=).

In case Db(») =b(=)w(=), the curvature form R is said to be the curvature form of

the connection form w.
It goes without saying in the above definition that the curvature form has the
same type as the exterior covariant differentiation.

Theorem 1 (Structure equation).
Let o be a connection form and R its curvature form. Then we have

R=do+oro.
Proof. In virtue of (4,) and (4,), we get
D(Db(=)) = D(b(=)(=))
=b(=)dw(=) +(Db(=)) A (=)
=b(=)dw(e) +b(=)0() A (=)
=b() (dox(=) + (=) A (=) -
Therefore we have
R(z)=da(=) + (=) A o) -

Lemma 1.
Let 0! (i, j=1, 2,...) be real valued differential 1-forms of class C(™ such that

Ms

0t X)2 <0, 3 [wi(e: X)P<c, for =eU and XeXM(M),
=1

It

1

where U is an open set of M. Then we have
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(k;l (=) A 0¥(2)) = k2=:1 (0} (2) A 0¥(2) + 0}(2) A 0% (2)) -
Lemma 2.
Under the same conditions as in Lemma 1, we have

d( 3 ol(e)r ol = £ dol=) A o).

The proof of Lemma 1, 2 is a straightforward calculation. Tt will therefore be
omitted. , '
Now, let b*(2) =(b!(2), b%(=), .., b"(=),...) be the dual moving frame of b(=) and
R be the (i, j)-element of curvature form R with respect to b(=). Here we set a con-
dition for R such that

2

t,J

1

IRi(e: X1, X,)IP<o0, for =eU and X, X,eX™(M).
Then the differential form Q(=) given by
)= 3 RIb(@D(),

is a (H® H*)(M)-valued differential 2-form of class C(»~2),

Theorem 2 (Bianchi’s identity).
Under the above condition, we have

DQ=0.

Proof. By using (4.18), we see readily
DO()= 3 {dR}(e)+ £ wi(e)A RYC)
= £ oA RGO,
In virtue of structure equation and Lemma 2, we get
ARY=)+ 3 0le) A Ri)= 5 0be) A Ri()
=d{dl(e) + 3 ol A o))
+ Z 0l M o) + 5, o) 0l()
~ 5 o) {dal@) + ¥ ol wl(e)}

= 3 doj() A ok=)— 3 i) A dok()
k=1 k=1
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0 00
+ kZ wi(2) A do¥(=)— X o¥(=)A dwi(2)
=1 k=1

0l A o) A 2}()

-+
k

8

k

8

10)’_;(x) A (Di(m)([) A k(m) d

Now, 1st and 4th terms, 2nd and 3rd terms, 5th and 6th terms in the right-hand side of
the above formula, cancel respectively where we used that w(=-: X) is a bounded linear
operator on H,(M). Thus we have

dR'(=)+ kgl wi(«) A R¥(2) — k2=:1 ¥(=) A Ri(=)=0. (6.1)
This completes our proof of Theorem 2.

7. Examples

Let M be the 4-dimensional differentiable manifold which has the Minkowski
space as the base space and H be the isotopic spin space (the 2-dimensional Euclidean

space):
Yl proton :
l//=( >=( >, for YyeH.
Y2 neutron

Furthermore, let be GL(H)=SU(2). Throughout this paragraph we use the convention
that the sum is to be performed with respect to this index, whenever the same index
appears twice in a term of a formula.

Now, we consider an infinitesimal transformation of A(=) e SU(2):

A(z)=1+¢e%(2)7,, is the unit matrix),

where 7, are the generators of SU(2) (the isotopic spin matrices):

0 i 0 1 i 0
‘[1= ) ‘L'2= . 13=
i O -1 0 0 —i

with the commutation relations
[Ta’ Tb] =fgbtc s (71)

where ; ‘ _ , .
—2, for even permutation (g, b, ¢) of {1, 2, 3},

fep= 2, for odd permutation (a, b, ¢) of {1, 2,3},
0, for else.

Then the transformation law (4.17) of connection forms reduces to
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[ @'(=) = (=) + 60(=), a2

00(e) =&%(=) [w(=), T,] + de*(o)T, .

This result shows that (=) may be chosen to be linear combinations of the generators
Tyt
CO(w) =Ba(w)1'a =B§(m)dwj’ta . (7.3)

The fields BY(=) (a=1, 2, 3) are called the Yang-Mills potential and it satisfies the fol-
lowing transformation law obtained from (7.1), (7.2), (7.3):

B_ch(ca) = Bs(:z) + 5B§(w) Py
0BS(2)= —f5pe%(@)B%(=) + 0,;6() .
From (4.6) and (4.9), we get

V x(e) = dy(=) (X) + o=t X)Y(a). (7.4)
By setting X =0; in the above formula and by using w(=: 0 ;) =B%=)1,, we have
Vo, ¥(=) = 0yY(2) + BY(=)T,(=). (7.5)

This gives the covariant derivative of ().
Next we see immediately from (7.3)

dox(=)=0,B3(=)d* A o,
@) A 0(2) = Bi() BY(=)d’ A dett,T4,
and hence
daX(: 0, 0) =(0;Bi(=) — 0, BH=))7,,
(@A @) (et 8;, ) =Bw)BY) [1a» T3]

= L f5BYBE() - BB

Thus we get from the structure equation
R(¢: aj, ak)=R.‘;k($)Ta (7.6)
with

Riu(=)=0;BE(«) ~ OuBY(e) + 5 [ 8 (BY)BY(=) ~ BY@)B}(=)).  (1.7)

The fields R%(=) (a=1, 2, 3) are called the Yang-Milles field. Next it is seen easily
from (6.1) that the Bianchi’s identity is written by the matrix differential forms in the
following form:

dR(2)+ 0(=) A R(2) = R(=) A (=) =0. (1.8)
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From (7.3) and (7.6), we obtain
dR(z: 0}, 0, 0)=2(0;Rf)(=) + ORj(=) + O1R%(2))T,s
() A R() (3, O 0) =2(BYU=)R} () + BY(=)R} (=) + B («)R}x(=))TaTs »
R(=) A (=) (0}, 1 0)=2(R3%(=)B} (=) + R (=) B}(=) + R (=) Bi(=))TTs
where we used R% (=)= —R%;(=). Thus we have from (7.8) the following equation:
8,RE () + R (=) + OiR () + [ §(BY(=)RG (=) + Bi(«)Ri (=) + Bi()R}i(=) =0,

where we used (7.1). This equation is called the Yang-Milles equation.

As the simplest example, we consider the case of GL(H)=SU(1) where H is the
state space of the charged particle, for instance, the spinor space describing the state of
electrons. Since the generator of this group SU(1) is obviously the unit matrix, hence-
forth we omit it.

For A(»)=e*@ e SU(1), the transformation law (4.17) of connection forms re-
duces to

@' (2) = 0(2)+idA(2) .
This result shows that w(=) may be chosen as follows:
o(z) =14 (2)d=’ .
Moreover, the fields 4 (=) (j=1, 2, 3, 4) satisfy the transformation law
Ayfe) = Af) + M) (7.9

These facts suggest that the fields 4(=) are the electromagnetic potential and that the
transformation law (7.9) gives the gauge transformation. The covariant derivatives
of (=) become to

Vo (=) =0(=) +idp(=).

This gives the electromagnetic interaction of the electron in quantum mechanics.
Next, we have immediately from the structure equation

Ryf2)=0;A(=)— 0 A[(=) .

The fields R (=) are the electromagnetic field. Since the generator of SU(1) is the unit
matrix and R(z) is the differential 2-form, we have

(D(ax) A R(w) - R(w) A (D(w) =0,
Thus we obtain from the Bianchi’s identity
6]'Rkl($) -+ aleJ(w) + 61Rjk(z) = 0 .

This equation gives the second group of Maxwell equations.
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