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ELEMENTARY PROOF OF CLARKSON’S
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Clarkson’s inequalities, which are related to functions in LP-spaces, are generalized. At
the same time, we propose a direct and elementary way of proofs of these inequalities. It
is also shown that estimates in these inequalities are best possible.
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1. INTRODUCTION

Clarkson showed the following inequalities
for functions in L? (1 < p < o) in order to
prove that LP-spaces are uniformly convex |1, 2].

Theorem (Clarkson’s inequalities [1])

Let (Q, ;1) be a measure space, 1 < p < oo
andp' =p/(p—1). Let u and v be in LrP(Q)). If
1< p<2, then

(1.1) ,
w4 v|? u—v|P (1 1 5
. < (Gl + 30l "
2 |, 2, = 2" gl
(1.2)
u+v||P Jlu—v]P _ 1
- 2 5Ullp + llvlB).
2 2 |, 2 L4 P
If 2 < p < oo, then
(1.3) ,
wdvlP fu— v p’> 1”, ”p+1“,”p %
2 |, ’T,,—(z“? 2”1’)’
(1.4)
u+ vlP u—vl|? 1
270 < Ziip P
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The key of proof by Clarkson is the inequal-
ity below,

pl

+

1-1¢

2

1+¢ 4 1 1 ;:
l.r —— < _ ._.p
(1.5) ' 2 *(2 2t) ’

where 1 <p<2and0<¢<1.

In order to prove this, he uses the general-
ized binomial theorem. However, this part of
the proof is not necessarily easy to understand.
In authors’ opinion it is better to use differen-
tiation, since in doing so we can obtain more
general results. Also, the proof of inequalities
(1.1) - (1.4) is not so straightforward (1]. In
this paper we shall give straightforward and el-
ementary proofs of a generalized version of in-
equalities (1.1) — (1.5).

In §2 equalities (2.2) and (2.3) related to
inequality (1.5) are proved. In §3 generalized
Clarkson’s inequalities (3.1) in the field C of
complex numbers are given by using equalities
(2.2) and (2.3). Theorem 3.4, in which the
Clarkson’s inequalities are extended to the case
of any 1 < p,g < oo, is the main theorem of
this paper. By using inequalities (3.1), we find
the maximum value of & and minimum value of
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4
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w+v q

4 N “u- v
2 2

q
< K(fjullp + lvliz)?

|

p

for u,v in LP(Q, ).

As an example of another proof of Clark-
son’s inequalities (1.2) and (1.4), there is a re-
sult of Hanner|[3] in interval Q=[0,1]. Hanner
uses convexity of a function in €2 to prove these.

Moreover, at the regular meeting of the Japanese

Mathematical Society in the spring of 1993, Chi-
nami WATARI (Touhokugakuin Univ.) proved
the inequality (1.5) by using Riesz-Thorin inter-
polation theorem, and pointed out that the in-
equality (1.5) coincides with Housdorfl-Young’s
inequality in the case of the group {0,1}.

2. MAXIMUM OF A KEY
FUNCTION

If1<p<2andyp =p/(p—1), then the
following inequality is obtained from inequality
(1.5),

(D74 (1= _ i
(14 t7)7 B

for 0 < t < 1, where we set ¢ = p/. Let us
introduce a function f(t) as follows:

(1407 + (1= 1)1}

(2.1) :
(1 +P)>

f{t) =

for 0 <t <1, where 1 <p<2and1<q<oc0.
To estimate the function f(t), we provide some
lemmas.

Lemma 2.1 Let 0< a,3< 1 and
q(t) =1—12 —apt*' + aptatl

for 0 < t < 1. Then there exists t, in the
interval (0,1) such that g1(t1) = 0, g1(¢) < 0
for 0 <t <ty, and gi(t) > 0 for iy <t <L

Proor. Differentiating g1 (t).
gi(t) = at® 2 (a + D)L — 2t 4 (1 - a)B}.
We set

h(t) = (o + 1)Bt2 — 2t 4 (1 - o).
Since h(t) = (1 - )8 > 0 (as t — +0), h(t) —
208-1)<0(ast — 1—0), and A'(t) = 2(a +
1)(Bt—1t*) < 0 in the interval (0, 1), there exists

0 < to < 1 such that h(ty) = 0,h(t) > 0 for 0 <
t < to, and h(t) < 0 for tg < ¢t < 1. Therefore
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gi(t) > 0 for 0 < t < ty and gi(t) < 0 for
ty <t < 1. We have g1(t) > 0 in [to, 1) because
gi(t) — 0 (as t — 1—0) and qi(f) is strictly
decreasing in [tg,1). From the fact gi(to) > 0
and g1(t) — —oo (as t — +0), it follows that
there exists 0 < 4, < {o such that gi1(t) = 0.
Since gy(t) is strictly increasing in (0, to], we
have g1(t) < 0 for 0 < ¢ < ¢ and g1(t) > 0 for
t; < t < tg. Therefore we find the desired t;.
This completes the proof. O

Lemma 2.2 Let 0 < o,0< 1 and

g2(t)
— log(l+t) + Blog(l—t*) — log(1 —¢)
—Blog(1 +t%)
for 0 < t < 1. Then the following hold:
(1) g2(t) — 0 (as t — +0) and g2(t) — o0 (as
t—1-0),
(2) there ezistes 0 < ty < 1 such that g2(t)

is strictly decreasing in the interval (0,12) and
strictly increasing in the interval (t,1).

ProoF. (1) From the fact that

(1—t)P 1-t*\? 1
- —
1—t (1—t> (1-t)1-8

o0

ast — 1 — 0, we can obtain go(t) — oo (as
t — 1 — 0) easily. It is obvious that ga(t) — 0
(as t — +0).

(2) Using the function gi(t) in Lemma 2.1, we

have ,
291(t)
1 2)(1 = 29)

By Lemma 2.1, there is 0 < tp < 1 such that
q1(t) < 0 for 0 < ¢ < to, and gi(t) > O for
to < ¢ < 1. Since (1 — t¥)(1 — {**) is positive
for 0 < t < 1, we have g5(t) < 0 for 0 < ¢ < ¢2,
and gh(t) > 0 for t; < t < 1. This completes
the proof. a

ga(t) = (

Lemma 2.3 Let 1< p<2, qg>2and
gs() = (L)1 (1=~ = (1= 1+ 771
for 0 < t < 1. Then there ezists 0 < {3 < 1

such that g3(t3) = 0, g3(t) < 0 for 0 <t < i3,
and g3(t) > 0 for iz <t < 1.

Proor. We remark that
(1+ )T — < (1= 1+
if and only if

log{(1 -+ H 1 - =1}
< logl(1— 01N (1+ 7N}
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So we set

94(t)
= (g~ 1)log(1+1¢) + log(1—tP~1)
—(q—1)log(1 - t) — log(1 + P71 |

and determine the sign of the function 94(t).
If weputa=p—1and 8=1/(q-1) in
Lemma 2.2, we have g4(t) = (1/8)g2(t). By
using Lemma 2.2, there is 0 < ¢, < 1 such that
94(1) is strictly decreasing in the interval (0, ¢,)
and strictly increasing in the interval (t2,1). As
94(t) = 0 (t — +0) from (1) of Lemma 2.2 and
9a(t) is strictly decreasing in the interval (0, t),
we get g4(f2) < 0. Since g4(t) — oo (t — I — 0)
from (1) of Lemma 2.2 and g4(t5) < 0, there is
0 < t3 < 1 such that g4(t3) = 0. By considering
the behavior of g4(t), it is evident that g4(¢) < 0
for 0 <t < t3and g4(t) > 0forts < ¢ < 1. This
completes the proof. i

Remark. g3(t) — 0 (as t — 1 — 0), although
94(t) — oo (as t — 1 — 0).

Lemma 2.4 Let1 < p<2andl < ¢ <2
except for p—=q = 2. Let
g93(t) = 1+ )7 (1=~ — (1 - )0 1 (14 77)

for 0 <t < 1. Then g3(t) < 0 for0<t < 1.

PROOF. Assume that 1 < p< 2 and 1 < g <2
From an inequality

l1+a 1—b<1
l—a 1406

for 0 < a < b, we have

14¢ 1— ¢!

— ———< 1.
1—-t 14 ¢p-1

Therefore
1+t /1—tP-1\ 1
1—¢\1+4 1

1+t 1—¢p=1 /1 - -1 71—1—1<1
1=t 141\ 15 1 '

So we have

(14 )11 — =)
(1—t)a=1(1 4 tr-1)

<1

for 0 <t < 1. From this inequality we get this
lemma. For other cases of p and g, it is easily
shown that g3(¢) < 0 for 0 < ¢ < 1. O

Under the knowledges about g3(t), we can
achieve the maximum value of f(t).

Theorem 2.5 Let 1 < p<2, ¢> 1 and

(L+ 00+ (1 - 1))
(1+t7)>

sy =1

for 0 <t < 1. Let C(p,q) be the mazimum
value of f(t). Then

(2.2)
Clp,q) = max{f(0), f(1)}
IS B
) 2

if L<qg<yp
PROOF. The derivative f(t) is as follows:

{(1+ )7+ (1 - )y
(1+7)*s

fi(t) = g93(t)

where g3(t) is the function in Lemma 2.3 and
Lemma 2.4. Noting that the sign of f/(¢) ac-
cords with the sign of g3(t), the following are
easily obtained:

(Difl<p<2and g > 2,

C(p, q) = max{f(0), f(1)}

from Lemma 2.3,

2)ifl < p<?2andl < g < 2 except for
p=q=2,C(p,q) = f(0) from Lemma 24,
3)if p=2and ¢ > 2, C(2,¢9) = f(1) from
gs(t) > 0,

(4) noting that f(t) is identical with constant
22 for p = ¢ = 2, it is trivial.

This completes the proof. O

Remark. If p > 2, we have opposite inequalities
corresponding to those in Lemma 2.1-Lemma
2.4 in the similar fashion.

The following are proved by the same method
used to prove Theorem 2.5.

Theorem 2.6 Let p > 2 and f(t) be the same
function as in Theorem 2.5. Let c(p,q) be the
manimum value of f(t) in [0,1]. Then

(2.3)
(;(;[)7 (/) = min{f(())./f(l)}
_ ol=7 if l<qg<y
2 if ¢>pf

3. GENERALIZATION OF
CLARKSON’S INEQUALITIES

In this section, we generalize Clarkson’s in-
equalities.
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The following lemma gives more detailed re-
sults than those obtained by setting ¢ = 2 in
Theorem 2.5 and Theorem 2.6.

Lemma 3.1 Letp> 1 and

wpy — LD
(1+t7)

L R NI

for 0 <t < 1. Then the following hold:
(1) if 1 < p <2, h(t) is decreasing,

(2) ifp=2, h(t) =1,

(3) if p > 2, h(t) is increasing.

Proo¥. Differentiating A(t),
1 .
T ?)E
2
(14 t9)7

(¢ —tP7h).

Let 1 < p < 2. Then A'(t) < 0, because ¢ —
P~ < 0for 0 < t < 1. If p> 2, similarly we
have h’(t) > 0. This completes the proof. a

Remark.

follows:
Let 1 <p, 1 <gqand

Lemma 3.1 is easily generalized as

(14 ¢9)
(14 tP)

h(t) =

LR I

for 0 <t < 1. Then h(t) is decreasing if p < g,
and h(t) is increasing if p > ¢. From this fact,
we have the following relations among [P-norms
in C2. If 1 < p < ¢, then

1 1
lzllg < llzll, < 2777 |lzllq

for z in C2.

Using Theorem 2.5, Theorem 2.6 and Lem-
ma 3.1, the following theorem is shown in the
similar fashion of Adams [1, Lemma 2.27].

Theorem 8.2 Let p,q > 1,

M(p,q) = max{2' 875 2179275}

and
m(p,q) = min{2' 7% 2179 275} .
Then )
(3.1) m(p,q) (|z|” + |w|P)?
z+wl?  |z—wl|?
< 5 5

< M(p,q) (|2 + lw|P)?

for z,w in C.

Vol.48 No.l (1997)

Ken KURIYAMA, Mitsuhiro MIYAGI,

Mari OKADA and Tetsuhiko MIYOSHI

PRrOOF. If z = 0 or w = 0, the inequalities
evidently hold. Let z # 0 and w # 0. We may
assume |z| > |w| > 0 without loss of generality.

If we set w/z = re?, then

zhw|? |z—wl|?
2 2
" ( 14 e 4 ‘1 — re®? q)
2 2 '

(2P + [wlP)? = 1217 (1 +17)7
Let g(0) be as follows:
g(0) = }1 n 7-<f‘i"|" | |1 - ',-e"‘",q
= (L+7%+2rcos 02
+(1 + 7% — 21 cos 9)%.
Since g(0 + ) = g(8) = g(w — 0), we consider
only in the interval {0, §]|. Since

g'() = —gqrsin@ {(1+7‘2+2r(’.050)%“1

—(1 4%~ 27*(:030)%‘1},
we have ¢/(0) = 0 if and only if 6 =0, 7.

We shall divide the proof of the inequalities
in some cases.

(1) Let 1 < p<2and 1 < ¢ < 2. Since q/2-

1 < 0, then ¢/(§) > 0 for 0 < ¢ < 7. Thus
g(0) < ¢g(0) < g(5). Therefore
o 14 7\¢  /1—r\1
(3.2) R R (il
2 2
1+ 'I’(f’io q 1— ,,,e'iG q
<
< |+

< 21 %),

From Lemma 3.1, we have

(3.3) (14 7% < (14 7).
Since the function f in Theorem 2.5 is decreas-
ing from the proof of Theorem 2.5,

1

{<1 + 7')(1 + (1 - 7")(1}% — f(l) > f(l) — 21—;.

(1+ 7‘1’)717
Hence
14 7\4 — 1\ 4
(3.4) lf“') (2T s 0mi 4o
2 2
From (3.2), (3.3) and (3.4), we have
_4q 4 L4 rei?e |1 —re |
2 1 -P <
LA < I 2 \ )
< 21791 4 P).
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We have m(p, q) = 27% and M(p,q) = 2179 by
simple calculation. Therefore inequalities (3.1)
are proved in this case.
(2) Let 1< p<2and2<gq. Sinceq/2—1> 0,
then ¢’(0) < 0 for 0 < 6 < 7- Thus g(%) <
9(0) < g(0). Therefore

(3.5)

q
21791 4723 <

q

1+ ret 1 — ret?
2 2

-\ ¢ —pr\ 4
< <1+7> 4 1—7 ‘
- 2 2

From Lemma 3.1,

(36)  (1+r)3 > 28514 2)7,

Let us put A(p,q) as
1
2175 if g>p
Alp.g) =< 4 L 9=r
24 if 2<q<y
From Theorem 2.5, we have

{47+ (1= )9}
(1+ rP)%

< A(p, 9).

Therefore
(3.7)

() (52 < (292 o

Calculating m(p, ¢) and M(p, q) in this case, it
follows from (3.5), (3.6) and (3.7) that inequal-
ities (3.1) hold.

Since inequlities (3.1) are proved similarly
for other cases, we omit the proof. O

Remark. 1t is easily shown that m(p, q) and
M (p, q) in inequalities (3.1) are the best possi-
ble estimations.

We note the following inequalities which are
well known and used in the proof of the next
theorem.

Lemma 3.3 Let p> 0. Then
c(a+b)P < aP + b < C(a+ b)P

for a,b > 0, where ¢ = min{1,2'"P} and C =
max{1,21-7},

Now we can get generalized Clarkson’s in-
equalities as follows.

Theorem 3.4 Let (Q,u) be a measure space
and p,q > 1. Let

K(p,q) = max{2l_2§, 21-q 2‘%}

and
k(p,q) = min{2'727 21-9, 2—§} '
Then
(38)  kp,q) (lullf + jv|p)?
< [ ey
p p

) g
< K(p.g) (ully + Jlvlfp)=

for w,v in LP(2).

PROOF. Inequalities (3.8) are proved similarly
to those in Adams [1.Theorem 2.28].
We remark that

(3.9)
|

|

q

U+ v 4

2

|

for u,v in LP(Q2).
(D Let1<p<2.

(i) Let 1 < ¢ < p. Combining equality (3.9).
Minkowski’s inequality with p/¢ > 1 and The-
orem 3.2, we have

u—v
2
q

P
w4 v

2

P

ol

uw— |9

2

4
q

u—+vl|? u—vl|?
2 llp 2y
u+vl|? Ju—wvl|?

2 2 I3
q
g
pr

v

{/Q m(p, (1)5(|u|1’ + I‘U|p)du($)}

-4 y "
> 275 (Jhullp + olip)”

where we used m(p,q) = 275 for 1 < p < 2,
I < ¢ < p. Therefore the left-hand side of in-
equalities (3.8) is proved. From Theorem 3.2
and Lemma 3.3, we have

u+vl|? u—vl?
2y 2 lp
u+ vl|P % u—vlP 1%
- 2 + 2
P P
4
< ol=%(|u + v ”+ uw—v|P\?
a 2 i 2
nl—g 4 2
< 270 M(pp)¢ (Il + lolz)?

i

21 ([l + lullz)
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Therefore the right-hand side of inequalities (3.8)
is proved.

(ii) Let p < g. Combining equality (3.9), re-
verse Minkowski’s inequality with p/q < 1 and
Theorem 3.2, we have

u+vl? uw—vl|?
2 2
utvl? |u—vl|?
- 2 2 P
q

9
< M(p, )(lullf + lloll5)>-

It is obvious M(p,q) = 2179 = K(p,q) for p <
¢<p. 1<p<2and M(pg) =277 = K(p,q)
for P < q, 1 < p < 2. Therefore the right-

hand side of inequalities (3.8) is proved. From
Theorem 3.2 and Lemma 3.3, we have

u+ vl|? u—vl?
2 lp 2 |y
4 3
- (’UIA*_IU p)p+<(u,_—lu p)q
2 lp 2 lp
P
S 21_§<u~2HJP+ uA_.U p)q
p 2 lp
9
P

v

514 g
2" m(p, )% (Jlullp + I}

24 =
= 27 (Jlullp + lIvlp) -

Since ¢(p,q) = 921723 for p<qgand 1 <p<2
the left-hand side of inequalities (3.8) is proved.
(2) Inequalities (3.8) can also be proved sim-
ilarly in the case 2 < p. Hence we omit the
proof. O

Corollary 8.5 Let (2, 11) be a measure space,
1< p<ooandp =p/(p—1). Let A(p) =
max{2-1,21°7}, a(p) = min{2-1, 2177}, B(p)

= max{21_2%,2_%}; and b(p) = min{21_2€77
2_%}. Then
a(p) (Jlullf + llvllp)
U+ v p+ w—
2 lp 2
A(p) (l[ullf + lI0lID),

p

p

IA
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b(p) (lull2 + olD)

/! /
n ,},, v P P

2

U=
2

y4
B(p) ([ullp + [[vl)¥

for u,v in LP().

p

IA

Remark. If a measure space (Q, ) is trivial, that
is, () is composed of one element and () = 1,
then LP(Q) is isomorphic to the field C of com-
plex numbers as Banach space. In this case,
inequalities (3.8) are not necessarily the best
possible estimation from Theorem 3.1. But if
(Q, ) is a "usual” measure space, that is, there
are measurable sets A, B of (2 satisfying ANB =
¢ and 0 < p(A),u(B) < oo, then inequali-
ties (3.8) are the best possible estimations. To

show this, noting k(p,¢q) = 22 for 1 < p <
2 and 2 < ¢, we set

WA)F ifzeA
wx)=<{ B v ifzeB
0 otherwise
' u(A)—% ifeeA
v(z) = < —u(B)_% ifze B
\ 0 otherwise .

Then the equality below holds:

q q

‘U/+IU
2

u—v

2% (Jully + loli)? = .

P p

We can also show similarly that inequalities (3.8)
are the best possible estimations in other caces.
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