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A Generalized Skew Information and Uncertainty Relation
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Abstract—A generalized skew information is defined and a generalized
uncertainty relation is established with the help of a trace inequality which
was recently proven by Fujii. In addition, we prove the trace inequality
conjectured by Luo and Zhang. Finally, we point out that Theorem 1 in S.
Luo and Q. Zhang, IEEE Trans. Inf. Theory, vol. 50, pp. 1778–1782, no. 8,
Aug. 2004 is incorrect in general, by giving a simple counter-example.

Index Terms—Skew information, trace inequalities and uncertainty
relation.

I. INTRODUCTION

As one of the mathematical studies on entropy, the skew entropy
[14], [15] and the problem of its concavity are famous. The concavity
problem for the skew entropy generalized by Dyson, was solved by
Lieb in [9]. It is also known that the skew entropy represents the de-
gree of noncommutativity between a certain quantum state represented
by the density matrix � (which is a positive semidefinite matrix with
unit trace) and an observable represented by the selfadjoint matrix X .
Quite recently, S. Luo and Q. Zhang studied the relation between skew
information (which is equal to the opposite signed skew entropy) and
the uncertainty relation in [10]. Inspired by their interesting work, we
define a generalized skew information and then study the relationship
between it and the uncertainty relation. In addition, we prove the trace
inequality conjectured in [11].

II. PRELIMINARIES

Let f and g be functions on the domain D � RRR:(f; g) is called a
monotonic pair if (f(a)�f(b))(g(a)�g(b))�0 for all a; b2D: (f; g)
is also called an antimonotonic pair if (f(a)�f(b))(g(a)�g(b)) � 0
for all a; b 2 D.

In what follows we consider selfadjoint matrices whose spectra are
included in D so that functional calculus makes sense.

Lemma II.1 ([1], [2]): For any selfadjoint matrices A and X , we
have the following trace inequalities.

1) If (f; g) is a monotonic pair, then

Tr(f(A)Xg(A)X) � Tr(f(A)g(A)X2):

2) If (f; g) is an antimonotonic pair, then

Tr(f(A)Xg(A)X) � Tr(f(A)g(A)X2):

From this lemma, we can obtain the following lemma.
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Lemma II.2: For any selfadjoint matrices A and B, and any matrix
X , we have the following trace inequalities.

1) If (f; g) is a monotonic pair, then

Tr(f(A)X�

g(B)X + f(B)Xg(A)X�)

� Tr(f(A)g(A)X�

X + f(B)g(B)XX
�):

2) If (f; g) is an antimonotonic pair, then

Tr(f(A)X�

g(B)X + f(B)Xg(A)X�)

� Tr(f(A)g(A)X�

X + f(B)g(B)XX
�):

Proof: Define on H � H

Â =
A 0

0 B
; X̂ =

0 X�

X 0

where A;B and X act on a finite-dimensional Hilbert space H. Then
Â and X̂ are selfadjoint. Therefore, one may apply Lemma II.1 to get

Tr(f(A)X�

g(B)X + f(B)Xg(A)X�)

= Tr
f(A) 0

0 f(B)

0 X�

X 0

g(A) 0

0 g(B)

0 X�

X 0

= Tr(f(Â)X̂g(Â)X̂)

� Tr(f(Â)g(Â)X̂2)

= Tr
f(A) 0

0 f(B)

g(A) 0

0 g(B)

0 X�

X 0

0 X�

X 0

= Tr(f(A)g(A)X�

X + f(B)g(B)XX
�)

which is (1). Inequality (2) is proven in a similar way.

III. GENERALIZED UNCERTAINTY RELATION

For a density matrix (quantum state) � and arbitrary matrices X and
Y acting onH, we denote ~X � X�Tr(�X)I and ~Y � Y �Tr(�Y )I ,
where I represents the identity matrix. Then we define the covariance
by Cov�(X;Y ) = Tr(� ~X ~Y ). Each variance is defined by V�(X) �
Cov�(X;X) and V�(Y ) � Cov�(Y; Y ).

The famous Heisenberg’s uncertainty relation [6], [12] can be easily
proven by the application of the Schwarz inequality and it was gener-
alized by Schrödinger as follows:

Propostion III.1 (Schrödinger [13]): For any density matrix � and
any two selfadjoint matrices A and B, we have the uncertainty relation

V�(A)V�(B)� jRe(Cov�(A;B))j2 �
1

4
jTr(�[A;B])j2 (1)

where [X; Y ] � XY � Y X .

Definition III.2: For arbitrary matrices X and Y , we define

Ip(�;X;Y ) � Tr(�XY )� Tr � X� Y

where p 2 [1;+1] and with p� such that 1

p
+ 1

p
= 1. If A is selfad-

joint, the Wigner-Yanase-Dyson information is defined by

Ip(�;A) � Ip(�;A;A) = Tr(�A2)� Tr(� A� A)

= �
1

2
Tr([� ; A][� ; A]):

We use the parameters p and p�, since many papers [3]–[5], [7] in
this field use such notations. The Wigner–Yanase skew information is

I(�;A) � I2(�;A) = Tr(�A2)� Tr(� A� A)

= �
1

2
Tr([� ; A]2):

An interpretation of skew information as a measure of quantum
uncertainty is given in [10]. They claimed the following uncertainty
relation

I(�; A)I(�; B)� jRe(Corr�(A;B))j2 �
1

4
jTr(�[A;B])j2 (2)

for two selfadjoint matricesA andB, and density matrix �, where their
correlation measure was defined by

Corr�(A;B) � Tr(�AB)� Tr(�1=2A�1=2B):

However, we show (2) does not hold in general. We give a counterex-
ample for (2) in Section IV.

We define the generalized skew correlation and the generalized skew
information as follows.

Definition III.3: For arbitrary X and Y; p 2 [1;+1] with p� such
that 1

p
+ 1

p
= 1 and " � 0, set

�p;"(�;X;Y ) � "Cov�(X
�

; Y )+
1

2
Ip(�; ~X�; ~Y )+

1

2
Ip(�; ~Y ; ~X�):

If A and B are selfadjoint, the generalized skew correlation is defined
by

Corrp;"(�;A;B) � �p;"(�;A;B):

The generalized skew information is defined by

Ip;"(�;A) � Corrp;"(�;A;A) = "V�(A) + Ip(�; ~A)

so that

Ip;0(�;A) = Ip(�; ~A) = V�(A)� Tr(� ~A� ~A):

Then we have the following theorem.

Theorem III.4: For any two selfadjoint matrices A and B, any den-
sity matrix �, any p 2 [1;+1] with p� such that 1

p
+ 1

p
= 1 and

" � 0, we have a generalized uncertainty relation

Ip;"(�;A)Ip;"(�;B)�jRe(Corrp;"(�;A;B))j2 �
"2

4
jTr(�[A;B])j2:
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Proof: By Lemma II.2, �p;"(�;X;X) � 0. Furthermore it is
clear that �p;"(�;X;Y ) is sesquilinear and Hermitian. Then we have

j�p;"(�;X;Y )2 � �p;"(�;X;X)�p;"(�;Y; Y )

by the Schwarz inequality. It follows that

jCorrp;"(�;A;B)j2 � Corrp;"(�;A;A)Corrp;"(�;B;B)

for any two selfadjoint matrices A and B. Then

jCorrp;"(�;A;B)j2 � Ip;"(�;A)Ip;"(�;B): (3)

Simple calculations imply

Corrp;"(�;A;B)�Corrp;"(�;B;A)="Tr(�[ ~A; ~B])="Tr(�[A;B])

(4)

Corrp;"(�;A;B)+Corrp;"(�;B;A)=2Re(Corrp;"(�;A;B)): (5)

Summing both sides in the above two equalities, we have

2Corrp;"(�;A;B) = "Tr(�[A;B]) + 2Re(Corrp;"(�;A;B)): (6)

Since [A; B] is skew-adjoint, Tr(�[A;B]) is a purely imaginary
number, we have

jCorrp;"(�;A;B)j2 =
"2

4
jTr(�[A;B])j2+ jRe(Corrp;"(�;A;B))j2:

(7)
Thus the proof of the theorem is completed by the use of (3) and (7).

We are interested in the relationship between the left-hand sides in
Proposition III.1 and Theorem III.4. The following proposition gives
the relationship.

Proposition III.5: For any two selfadjoint matrices A and B, any
density matrix �, any p 2 [1;+1] with p� such that 1

p
+ 1

p
= 1 and

" � 0, we have

Ip;"(�;A)Ip;"(�;B)� jRe(Corrp;"(�;A;B))j2

� "
2
V�(A)V�(B)� "

2jRe(Cov�(A;B))j2:

Proof: From Proposition III.1, we have

V�(A)V�(B) � jRe(Cov�(A;B))j2

that is,

jRe(Tr(� ~A ~B))j2 � Tr(� ~A2)Tr(� ~B2): (8)

By putting " = 0 in (3), we have

jCorrp;0(�;A;B)j2 � Ip;0(�;A)Ip;0(�;B):

It follows from (4) and (5) that

Corrp;0(�;A;B) = Re(Corrp;0(�;A;B)):

Thus,

jRe(Corrp;0(�;A;B))j2 � Ip;0(�;A)Ip;0(�;B): (9)

Using (8), (9) and direct calculations, we get

L:H:S:�R:H:S:

= "Tr(� ~A2)Ip;0(�;B) + "Tr(� ~B2)Ip;0(�;A)

� 2"Re(Tr(� ~A ~B))Re(Corrp;0(�;A;B))

+ Ip;0(�;A)Ip;0(�;B)� fRe(Corrp;0(�;A;B))g2

� "Tr(� ~A2)Ip;0(�;B) + "Tr(� ~B2)Ip;0(�;A)

� 2"Re(Tr(� ~A ~B))Re(Corrp;0(�;A;B))

� "Tr(� ~A2)Ip;0(�;B) + "Tr(� ~B2)Ip;0(�;A)

� 2" Tr(� ~A2)Tr(� ~B2) Ip;0(�;A)Ip;0(�;B)

= "f Tr(� ~A2)Ip;0(�;B)� Tr(� ~B2)Ip;0(�;A)g
2

� 0:

Remark III.6: Theorem III.4 can be also proven by Proposition III.1
and Proposition III.5.

IV. AN INEQUALITY RELATED TO THE UNCERTAINTY RELATION

The trace inequality

V�(A)V�(B)� jRe(Cov�(A;B))j2

� I2;0(�;A)I2;0(�;B)� jRe(Corr2;0(�;A;B))j2:

was conjectured in [11] and proven in [10]. As a generalization of
[10, Theorem 2], we prove a one-parameter extention of the above in-
equality.

Proposition IV.1: For any two selfadjoint matrices A and B, any
density matrix � and any p 2 [1;+1] with p� such that 1

p
+ 1

p
= 1,

we have

V�(A)V�(B)� jRe(Cov�(A;B))j2

� Ip;0(�;A)Ip;0(�;B)� jRe(Corrp;0(�;A;B))j2: (10)

Proof: Let f'ig be a complete orthonormal basis composed by
eigenvectors of �. Then we calculate

Tr(� ~A� ~A) =
i;j

�i �j aijaji

where aij � h ~A'ij'ji and aji � aij . Thus, we get

Ip;0(�;A) = V�(A)�
i;j

�i �j aijaji

Ip;0(�;B) = V�(B)�
i;j

�i �j bijbji
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where bij � h ~B'ij'ji and bji � bij . In a similar way, we obtain

Re(Corrp;0(�;A;B)) = Re(Cov�(A;B))

�
1

2
i;j

�i �j Re(aijbji)

�
1

2
j;i

�i �j Re(bijaji):

In order to prove the present proposition, we have only to show the
inequality � � �, where

� � V�(A)
i;j

�i �j bijbji + V�(B)
i;j

�i �j aijaji

�
i;j

�i �j aijaji
i;j

�i �j bijbji ;

� � Re(Cov�(A;B))
i;j

�i �j Re(aijbji)

+ Re(Cov�(A;B))
i;j

�i �j Re(bijaji)

�
1

4
i;j

�i �j Re(aijbji) +
i;j

�i �j Re(bijaji)

2

:

Since

V�(A) = Tr(� ~A2) =
1

2
i;j

(�i + �j)aijaji

V�(B) = Tr(� ~B2) =
1

2
i;j

(�i + �j)bijbji

and

(�i + �j)�k �l + (�k + �l)�i �j � 2�i �j �k �l � 0

we calculate

� =
1

4
i;j;k;l

(�i + �j)�k �l + (�k + �l)�i �j

�2�i �j �k �l (aijajibklblk + bijbjiaklalk)

�
1

2
i;j;k;l

(�i + �j)�k �l + (�k + �l)�i �j

�2�i �j �k �l jaijbjijjaklblkj: (11)

Since Re(bklalk) = Re(blkakl) = Re(blkakl) = Re(aklblk);
Re(bijaji) = Re(aijbji), we calculate

� =
1

2
i;j;k;l

(�i + �j)�k �l + (�k + �l)�i �j

�2�i �j �k �l Re(aijbji)Re(aklblk):

Thus, we conclude � � �, since

jaijbjijjaklblkj � jRe(aijbji)Re(aklblk)j:

Inequality (10) was independently proven in [8]. Our proof is simpler
than Kosaki’s one.

As a concluding remark, we point out that [10, Theorem 1] is incor-
rect in general.

Remark IV.2: Reference [10, Theorem 1] is not true in general. A
counterexample is given as follows. Let

� =
1

4

3 0

0 1
; A =

0 i

�i 0
; B =

0 1

1 0
:

Then we have, I(�; A)I(�; B)� jRe(Corr�(A;B))j2 = 7�4
p
3

4
and

jTr(�[A;B])j2 = 1. These imply

I(�; A)I(�; B)� jRe(Corr�(A;B))j2 <
1

4
jTr(�[A;B])j2:
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