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A Generalized Skew Information and Uncertainty Relation

Kenjiro Yanagi, Member, IEEE, Shigeru Furuichi, Member, IEEE,
and Ken Kuriyama

Abstract—A generalized skew information is defined and a generalized
uncertainty relation is established with the help of a trace inequality which
was recently proven by Fujii. In addition, we prove the trace inequality
conjectured by Luo and Zhang. Finally, we point out that Theorem 1 in S.
Luo and Q. Zhang, IEEE Trans. Inf. Theory, vol. 50, pp. 1778-1782, no. 8,
Aug. 2004 is incorrect in general, by giving a simple counter-example.

Index Terms—Skew information, trace inequalities and uncertainty
relation.

I. INTRODUCTION

As one of the mathematical studies on entropy, the skew entropy
[14], [15] and the problem of its concavity are famous. The concavity
problem for the skew entropy generalized by Dyson, was solved by
Lieb in [9]. It is also known that the skew entropy represents the de-
gree of noncommutativity between a certain quantum state represented
by the density matrix p (which is a positive semidefinite matrix with
unit trace) and an observable represented by the selfadjoint matrix X.
Quite recently, S. Luo and Q. Zhang studied the relation between skew
information (which is equal to the opposite signed skew entropy) and
the uncertainty relation in [10]. Inspired by their interesting work, we
define a generalized skew information and then study the relationship
between it and the uncertainty relation. In addition, we prove the trace
inequality conjectured in [11].

II. PRELIMINARIES

Let f and g be functions on the domain D C R.(f, g) is called a
monotonic pair if (f(a)—f(0))(g(a)—g(b))>0foralla,b€D. (f,g)
is also called an antimonotonic pairif (f(a)— f(b))(g(a)—g(b)) <0
for all a,b € D.

In what follows we consider selfadjoint matrices whose spectra are
included in D so that functional calculus makes sense.

Lemma I.1 ([1], [2]): For any selfadjoint matrices A and X, we
have the following trace inequalities.

1) If (f,¢) is a monotonic pair, then
Tr(f(A)Xg(A)X) < Tr(f(A)g(AX).
2) If (f,g) is an antimonotonic pair, then
Tr(f(A)Xg(A)X) > Tr(f(A)g(A)X?).
From this lemma, we can obtain the following lemma.
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Lemma II.2: For any selfadjoint matrices A and B, and any matrix
X, we have the following trace inequalities.

1) If (f,g) is a monotonic pair, then

Tr(f(A)X"g(B)X + f(B)Xg(4)X")
< Tr(f(A)g(A)X*X + F(B)g(B)XX™).

2) If (f,g) is an antimonotonic pair, then

Tr(f(A)X"g(B)X + f(B)Xg(A)X")
> Te(f(A)g(A)X"X + f(B)g(B)XX").

Proof: Define on H & H

. (A0 . (0 Xx*
=0 n) =)

where A} B and X act on a finite-dimensional Hilbert space /. Then
A and X are selfadjoint. Therefore, one may apply Lemma II.1 to get

Tr(f(A) X g(B)X + f(B)Xg(A)X™)
:Tr<<f(A) 0 >(0 X)

0 fB)\x o
g(4) 0 0 X*
(" ) (3 5))
()%

(x W) (x 0))

= Te(f(A)g(A)X X + f(B)g(B)XX")
which is (1). Inequality (2) is proven in a similar way. O

III. GENERALIZED UNCERTAINTY RELATION

For a density matrix (quantum state) p and arbitrary matrices X and
Y acting on H, we denote X=X —Tr(pX)I and Y=Y —Tr(pY)I,
where I represents the identity matrix. Then we define the covariance
by Cov,(X,Y) = Tr(pXY). Each variance is defined by V,(X) =
Cov,(X, X)and V,(Y) = Cov,(Y,Y).

The famous Heisenberg’s uncertainty relation [6], [12] can be easily
proven by the application of the Schwarz inequality and it was gener-
alized by Schrodinger as follows:

Propostion I11.1 (Schrodinger [13]): For any density matrix p and
any two selfadjoint matrices A and B, we have the uncertainty relation

V,(A)V,(B) — |Re(Cov,(A, B))|” > i|TI'(p[A, B )

where [X,Y] = XY - Y X.

Definition 111.2: For arbitrary matrices X and Y, we define

L(p;X,Y) = Te(pXY) — Tr (p%sz%*Y)
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where p € [1, +o0] and with p™ such that ]l) + L = 1.If A is selfad-

D

joint, the Wigner-Yanase-Dyson information is defined by

1 1
L(p; A) = I,(p; A, A) = Tr(pA®) — Tr(pr Apr™ A)
a

1 1
= — 3 Te([p?, Allp?". A]).

We use the parameters p and p*, since many papers [3]-[5], [7] in
this field use such notations. The Wigner—Yanase skew information is

I(p; A) = L(p; A) = Te(pA?) = Te(p? Ap* 4)
= —%Tr('[p%,fl]z).
An interpretation of skew information as a measure of quantum

uncertainty is given in [10]. They claimed the following uncertainty
relation

I(p, HI(p, B) — [Re(Corr, (A, B)|* > Z|Tr(p[4, BD[* ()

W | =

for two selfadjoint matrices A and B, and density matrix p, where their
correlation measure was defined by

Corr,(A, B) = Tr(pAB) — Tr(p'/*Ap'* B).

However, we show (2) does not hold in general. We give a counterex-
ample for (2) in Section IV.

We define the generalized skew correlation and the generalized skew
information as follows.

Definition I11.3: For arbitrary X and Y, p € [1,4oc] with p* such
that%—l— p% =1lande > 0, set

. / - * - ]- = < ]- < >
Pp,=(p; X, Y) = 2Cov, (X7, Y) + A% X~ Y)+ 3 1e (s Y, X*).

If A and B are selfadjoint, the generalized skew correlation is defined
by

Corrp (p; A, B) = ¢p,-(p; A, B).
The generalized skew information is defined by
Ipe(p; A) = Corrp e (p; A, A) = 2V, (A) + L (p; 4)
so that
Lo(ps A) = L(ps A) = V,(4) = Te(p7 Ap7™ A).

Then we have the following theorem.

Theorem II1.4: For any two selfadjoint matrices A and B, any den-
sity matrix p, any p € [1, +oc] with p* such that ]; + L =1and

P
e > 0, we have a generalized uncertainty relation

L <(ps )L, < (3 B)=|Re(Corr, < (3 A, B)[* 2 - [Te(ol A, B,
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Proof: By Lemma I1.2, ¢, -(p; X, X) > 0. Furthermore it is
clear that ¢,, - (p; X, V) is sesquilinear and Hermitian. Then we have

6p.2(p: X.Y)? < 6pc(pr X, X )b (p3 Y, Y)
by the Schwarz inequality. It follows that
|Corry - (p; 4, B)[* < Corry «(p; A, A)Corry - (p; B, B)
for any two selfadjoint matrices A and B. Then
|Corrp,<(p: A, B)* < Lo (ps A)Ip o (p; B). 3)
Simple calculations imply
Corry.(p; A, B)—=Corry. o (pi B. A) =<Te(p[ A, B]) ==Tr(p[A, B])
“
Corrp . (p; A, B)+Corrp . (p; B, A)=2Re(Corr, . (p; A, B)). (5)
Summing both sides in the above two equalities, we have
2Corr, (p; A, B) = eTr(p[A, B]) + 2Re(Corr, (p; A, B)). (6)

Since [A, B] is skew-adjoint, Tr(p[A, B]) is a purely imaginary
number, we have

2
2 € o .
|Corry.(pi 4, B) = I Ta(plA, B)*+ [Re(Corr, . (p; A, B))I".
)
Thus the proof of the theorem is completed by the use of (3) and (7).
O

We are interested in the relationship between the left-hand sides in
Proposition III.1 and Theorem II1.4. The following proposition gives
the relationship.

Proposition II1.5: For any two selfadjoint matrices A and B, any
density matrix p, any p € [1, +oc] with p* such that 1; + 771_* = 1land
= > 0, we have

I (p; AT, (p; B) — [Re(Corr,, - (p; A, B))|”
> =V, (A)V,(B) — =*|Re(Cov, (A4, B))|".

Proof: From Proposition III.1, we have
V,(A)V,(B) > |Re(Cov, (4, B))[?

that is,
[Re(Tr(pAB))[* < Tr(pA*)Tr(pB?). ®)

By putting ¢ = 0 in (3), we have

|Corry o(p: A, B)* < T,.0(ps A)T,0(p; B).
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It follows from (4) and (5) that
Corrp,o(p; A, B) = Re(Corrpo(p; A, B)).

Thus,
[Re(Corrp.o(p; A B))* < Lo(p: )polpi B).  (9)
Using (8), (9) and direct calculations, we get

L.H.S. - R.HS.
= =Te(pA*) I, 0(p; B) + =Tr(pB*) I, 0(p; A)
— 2:Re(Tr(pAB))Re(Corrp o (p; A, B))
+ Ipo(p; A)1,0(p; B) — {Re(Corry 0(p; A, B))}Y
> =Tr(pA®) Iy 0(p; B) + e Tr(pB? ), 0(p; A)
— 2eRe(Tr(pAB))Re(Corrp o(p; A, B))
> =Te(pA®) L o(p: B) + =Ta(pB* )1, o(p: A)

Tr(pA2)Tr(pB2)\/Tp.0(p: ALy 0(p: B)

= <\ Te(pA2) Lo (p: B) = \/Te(pB?) Lo(p: A) Y
> 0. O

— 2¢

Remark 111.6: Theorem I11.4 can be also proven by Proposition III.1
and Proposition IIL.5.

IV. AN INEQUALITY RELATED TO THE UNCERTAINTY RELATION

The trace inequality

V,(A)V,(B) — |Re(Cov, (4, B))[*
> Lo(p; A)I2,0(p; B) — |Re(Corrao(p; A, B))[.

was conjectured in [11] and proven in [10]. As a generalization of
[10, Theorem 2], we prove a one-parameter extention of the above in-
equality.

Proposition 1V.1: For any two selfadjoint matrices A and B, any

density matrix p and any p € [1, +oc] with p* such that 1; + ,JT =1,
we have

V,(A)V,(B) — |Re(Cov, (A4, B))|?
> Io(p; A)p0(p; B) — |Re(Corrpo(p; A, B))|?.

,

10)

Proof: Let {¢; } be a complete orthonormal basis composed by
eigenvectors of p. Then we calculate

~ 1 o~ 1 1
Aprm A) =D NN aijay;
0,7

o=

Tr(p

where a;; = (Ag;|p;) and aj; = a;;. Thus, we get
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where b;; = (Byi|e;) and b;; = b;;. In a similar way, we obtain

Re(Corrpo(p; A, B)) = Re(Cov, (A, B))

1 1L
-5 D OAIA] Re(aisbji)
7
1 14
-5 D AN Re(bijaji).

7ot

In order to prove the present proposition, we have only to show the
inequality £ > 7, where

1 P\ PT
E=V(A)Y AN bighji + Vo(B) Y NN aijagi
(]

7
Lo Lo
— [ Do APAT aijag | | DO APA bijbyi |
1,7 t,J

1 1
n = Re(Cov,(A, B)) > AP AP Re(ai;bji)

2,7 A %
+ Re(Cov,(A, B)) Z AP AT Re(bijaze)
ij
2
1 1L 1oL
v (Z APAT Re(abyi) + Z/\;’ AP Ro(bijaji)> )
1,9 i
Since
~e 1
V,(A) = Tr(pA®) = > Z (Ni 4+ Xj)aijaji
7
. -, 1
Vo(B) = Te(pB?) = 55 (M + A))bishyi
g
and
1L i L 11 1 1
N F2ADNLAT 4+ i+ M)A AU 20NN >0

we calculate

1
5:12

1,5kl

11
o

1 1
{(Ai FADAEATT 4 (A ADAP AT

J

} (asjajibribix + bijbjiarian)

v
DO =

1 1 1
{()\Z + Aj))‘lf )\lp” + ()\k + )\])Aip A
1

i,5,k,

1 1
—2APAPNEAS } |ai;bjil|aribis)|. (11)

Since Re(briair) = Re(biwarr) = Re(bwar) =
Re(b;ja;;) = Re(aq;bji), we calculate

"':%,Z

1,5kl

Re(aribix),

1

1o
+ Ak +ADAP AP

1
¥

1
{(&4—/\]’))\5)\1

1 1

i 1 1 _1
—2>\,.P A‘P* A,f )\lpx } Re(ai]'bﬁ)l'{e(a“blk).

J
Thus, we conclude £ > 7, since

[aisbjillaribie| > [Re(ai;byi)Re(aribi)]- O
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Inequality (10) was independently proven in [8]. Our proof is simpler
than Kosaki’s one.

As a concluding remark, we point out that [10, Theorem 1] is incor-
rect in general.

Remark IV.2: Reference [10, Theorem 1] is not true in general. A
counterexample is given as follows. Let

1/3 0 0 i 0 1
=7 , A= , B= ]
’ 4<0 1)’ <—i 0)’ <1 o>
Then we have, I(p, A)I(p, B) — |Re(Corr,(A4, B))[* = =% and
|Tr(p[A, B])|? = 1. These imply

1. )1, B) = [Re(Corry(4, B < {[Tr(pl4, BF.
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