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Abstract

A theoretical method of obtaining the nominal stress in the rim of a planet gear with both a thin
rim and the clearance between the rim and the gear shaft is shown by using an equivalent ring. In the
analysis, the boundary position between the region where the rim is in contact with the shaft and that
where they are out of contact with each other is assumed because the boundary position depends on
the tooth load and the clearance in the case of the constant rim thickness. Then after the bending
moment in the one region is compared with that in the other one at the assumed boundary position,
the true boundary position where the bending moment in the one region is equal to the other one is
determined. Using the true boundary position obtained, the bending moment and the circumferential
force in the rim are obtained in order to obtain the nominal bending and circumferential stresses in
the rim of the planet gear. Further, effects of tooth load and the clearance on the stress in the planet
gear are investigated by the method obtained.

1. Introduction

As planetary gears are compact and have great ability of power transmission, they are
widely used as mechanical reducer in many branches of industry. In planetary gears, the rim
of a planet gear becomes thinner and the radial clearance is made between the rim of a planet
gear and the gear shaft frequently both to distribute the equal load on each planet gear and
to decrease the inertia force of a planet gear. Fillet stress in the planet gear with a thin rim is
different from that in the gear with a thick rim because of the effect of the stress due to the
deformation of the rim. Consequently the fillet stress in the planet gear should be made clear
to estimate the bending strength of the planet gear. The fillet stress in the planet gear with a
thin rim seems to be composed of both the stress due to bending the tooth and that due to
bending the rim. Further each stress mentioned above seems to be obtained by multiplying
the nominal stress by the stress concentration factor. Whereas concerning the stress
concentration of the gear with a thin rim, an approximate equation has been obtained by
Chong, et al.V from the result of the finite element method. Moreover, the nominal stress due
to bending the tooth can be obtained easily. However as a region of the contact between the
rim and the gear shaft depends on both the tooth load and the clearance between the rim and
the gear shaft in the case of the planet gear with a thin rim, the shape of load distribution on
the inner surface of the planet gear depends on the tooth load and the clearance. Therefore
the nominal stress in the rim of the planet gear is unproportional to the tooth load in the case
of the constant clearance and depends on the clearance in the case of the constant tooth
load?®. Consequently it is no longer easy to obtain the nominal stress in the rim of the
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planet gear with a thin rim.

In this report, a theoretical equation of the nominal stress in the rim of the planet gear is
deduced approxim‘ately by using an equivalent ring® and the theory of thin ring. Further by
using the equation obtained, effects of the tooth load and the clearance on the stress in the
rim are investigated. ‘ '

Nomenclature

. Tooth load

. Circumferential component of the tooth load

. Radial component of the tooth load

. Moment acting in the rim due to the tooth load

h : Rim thickness of the planet gear

h, . Thickness of the equivalent ring of the planet gear

R

. Radius of curvature of the center line of the rim of planet gear

. - Radius of curvature of the center line of the equivalent ring

0 ;. Central angle showing the region where the rim is out of contact with the gear shaft

B : Central angle showing the position of tooth load

E : Longitudinal elastic modulus

I. : Moment of inertia of cross section of the equivalent ring

Ar. Radial clearance between the rim and the gear shaft

b : Face width

7 : Distance from the center line of equivalent ring to the intersection of line of action and
the center line of loaded tooth

0 - Displacement of the rim

1 . Angular displacement of the rim

o Stress

2. Nominal Bending Stress in the Rim of Planet Gear

2.1 Equivalent Model of Planet Gear with Thin Rim

As the form of the planet gear is complex, the planet gear which has the rim thickness k
and the radius of curvature of the center line of the rim 7 is replaced by the equivalent ring
which has the thickness &, and the radius of curvature of the center line 7, in the analysis of
the nominal stress in the rim as shown in Fig. 1. Further the tooth load acted on the planet
gear P, is resolved into the circumferential force P,,, the radial force P, and the moment M,
(=P, 7 ) acted on the center line of the equivalent ring as shown in Fig. 1. Where 7
denotes the distance from the intersection of the line of action and the center line of the
loaded tooth to the center line of the equivalent ring. Moreover a curved beam model which
central angle is 180° is used as shown in Fig. 2 because the tooth load sets are applied at the
points which are almost symmetry each other to the axe 0—0’ as shown in Fig. 1 and the
following boundary conditions are used . The section A is clamped rigidly and the section D
can move only radially as shown in Fig. 2. Further it is assumed that the contact region is in
the region B =¢ < 7, where the position of the tooth load is ¢ = f.
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Fig. 1 Schema of the planet gear and Fig. 2 Curved beam model
the equivalent ring used

2.2 Analytical Method
2.2.1 Outline of Analytical Method

Although the module, the number of teeth and the rim thickness are all constant, the
amount of contact region depends on both the tooth load and the radial clearance in the case
of the planet gear with a thin rim and the radial clearance. Further, the amount of contact
region affects the nominal stress in the rim. Therefore in order to obtain the nominal stress
in the rim, the amount of the contact region will be determined in the first place. In the
analysis of the amount of the contact region, it is assumed that the rim is in contact with the
gear shaft in the region #; =< ¢ < 7 as shown in Fig. 2 and then the analysis is done in two
regions which are the region 0; < ¢ < 7 and that 0= ¢ < @, where the rim is out of
contact with the gear shaft. Further, after the bending moment at the assumed position ¢ =
0 ; in each region is analyzed and compared with each other, the position where the bending
moment in the one region is equal to that in the other one is put as the true boundary
position. Then using the true boundary position¥ = #;, the bending moment and the
circumferential force in the rim are obtained and also the nominal stress is obtained.

2.2.2 Bending Moment in Contact Region
The bending moment M ( ¢ ) in the contact region #; < ¢ < 7 is constant as shown in
the next expression

1

1
M(¢) =EI, {m_r_e} ........................................................ (1)

where the bending moment which increases the curvature of the ring is put as plus. F and I,
are the longitudinal elastic modulus and the moment of inertia of the coss section of the
equivalent ring respectively and Ar is the radial clearance between the rim and the gear
shaft.
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2.2.3 Bending Moment in Uncontact Region

If the rim is in contact with the gear shaft in the region 6; < ¢ < 7 as mentioned above,
it may be reasonable to assume that the curved beam model is clamped at the section B on the
gear shaft as shown in Fig. 3(b) in the analysis of stress and deflection in the uncontact
region 0= ¢ < #,. When the model is clamped at the section B and free at the section D in
Fig. 2, the section D may move geometrically to D’ which is located i, in the angular
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_/ Fig. 3 Separation of the curved beam
model in the analysis
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displacement and 0 ,, in the displacement from the y—axe as shown in Fig. 3 (b). The
displacements 4, and ¢,, can be obtained geometrically in the next expressions.

i, = BT =00 e, 2)
r.— A7
_ . Ar(m— 6 ;) L
0, = (r,+ A7) sin {—__re—Ar | (3)

In case where the section D’ is located ¢, and ¢ ,, from y—axe, if the loads P,; and P,, and
the moment M, are applied at the section C where ¢ = £ and further the load P,, and the
moment M, are applied at the section D’ where ¢ = 0, the bending moment M (¢) at the
arbitrary position ¢ is determined as follows.

M (¢)=—M,— P,r, (CO— C5) V=g =Pp)
M (¢)=—M, — P,r, (CO —C5) -++(4)
+ M, + P, (1—Cl)— P,reSl (B,=¢=6)

Symbols eg. CO, C1 in Eq. (4) are shown in Table 1.
Elastic strain energy U in the region 0= ¢ < @, can be expressed in the next form by
using the bending moment M (¢) shown in Eq. (4).

7, i

U= 2EL OM(¢)2d¢ .............................................................. (5)




Theoretical Analysis of Nominal Stress in Rim of Planet Gear 381

Table 1 Symbols of trigonometrical functions

SO = sin 4, CO = cos 1,
S1=sin (B — ¢) Cl=cos (P — ¢)
S2 =sin(0; — ¢) C2=cos(8;— ¢)
S3 =sin(8; — B) C3=cos(8;— B)
S4 = sin (0; — i) C4 =cos(8;—1,)
S5 =sin (i, — ¢) C5 = cos (i, — ¢)
S6 = sin 6 C6 = cos 8,
S7 =sin B C7=cos B

Both the circumferential displacement ¢&,, and the angular displacement i, at the
section D must be zero in the planet gear. Therefore D’ in Fig. 3 (b) must be moved 1,
expressed in Eq. (2) and & ,, expressed in Eq. (3) respectively by the forces P, P, P,, and
the moments M,, M,. Using these condition, the relations among the strain energy U, the force
and the moment P,,, M, and the displacements ¢, 0, can be expressed as follows.

U . aU
0P, e (6)

6xo=

From Egs. (4), (5) and (6), P,, and M, are obtained as follows.

EL
Pto: 1’2] §— 0£K+7e (01C0—S4'—‘SO)Lf

_ EL ;i—aco+54+sox——qi (7)
Ma— 7e2] Te( i ) 2

S4-C4 . S0-CO
+—+

2 2 + 6,C0% — 254-C0—2S0-CO0) Ll

Symbols J, K and L in Eq. (7) are as shown in the next equation.

6% 6.,54-C4 6.5S0-CO

- — 2
J=—t— 5t (SO + S4)
Te 2 2
K=¢6,,+ TEI_( A More + agaPor,”  agaP,r,2) | rrereeeeeeeseeseesineieeine (8)
e
L= io + (allMc + alZPctre + aISPcrre)

El,

Coefficients a;, a; in Eq. (8) are shown in Table 2. The bending moment at the section B in
the uncontact region shown in Fig. 3 (b) is obtained in the next form by substituting the force
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Table 2 Coefficients in Eq. (8)

ax1 (C6—C7)S0 + (8, — B — S6+ S7) CO

ak2 {C6—(3/4)C7 + (1/2) (6, — B)S7 + (1/4) (S3-S6— C3-
C6)l SO+ {6, — B —S3—S6+(3/4)S7+ (1/2) (8;
— B)C7+ (1/4) (S3:C6— C3+S6)} CO

A3 {—(1/4)S7—(1/2) (8; — B)C7+(1/4) (S3:C6+ C3-S6)}
SO+ [—C3+1+(1/2)(6;— B)S7T+(1/4)C7+(1/4)
(C3:C6— S3:S6)} CO

a 0;— ,3
an (6,— B)— 3
\a13 1—C3

P,, and the moment M, shown in Eq. (7) into Eq. (4).
M(6) =M, + Py, (CO — C5) + M, — Por,Sl + Pr, (1—C1)  +voeveereereces (9)

The section B is the boundary between the contact region and the uncontact one.
Therefore if 8, is reasonable, M (6 ;) in Eq. (9) must be equal to M (¢) obtained by Eq. (1).
Consequently using the angle ¢ = 6, where the condition M (8 ;) = M (¢) is satisfied, the
force P, and the moment M, are determined by Eq. (7) and further the bending moment in the
uncontact region 0= ¢ < #, is obtained by Eq. (4).

2.2.4 Circumferential Force
The circumferential force in the equivalent ring N (¢) is obtained by the next
expression in the uncontact region 0= ¢ < 6 ..

N (¢)=P,C5 0=¢=RB)
N (¢)=P,C5—=P,S1 + P,Cl (B=¢=4,

where the sign of N (¢) is put as plus if N (¢) is tensile force. Whereas N (¢) in the contact
region §,;< ¢ =<7 is assumed to be constant because of thin rim, which is obtained by
substituting ¢ = @, into the second expression of Eq. (10).

2.3 Nominal Stress in the Rim

Stress in the rim may be mainly composed of the bending stress and the circumferential
stress neglecting the shear stress which is relatively small in the thin rim. The nominal
bending stress ¢, on the tooth fillet is expressed in the next form in term of the bending
moment M (¥) described in 2. 2. 2 and 2. 2. 3.
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o, = 6M (2‘/')
bh
where b denotes the face width.
Whereas the circumferential stress &  is expressed in the next form in term of the
circumferential force described in 2. 2. 4:

3. Results and Discussions

3.1 Comparison of Theoretical Value with Experimental One

Stress on the inner surface of the rim of the external gear is little dependent on the
stress concentration at the tooth fillet. Therefore the stress on the inner surface of the rim of
the planet gear (— 0, + 0 ) is calculated by Egs. (10 and (12 and shown in Fig.4 with the

m=2 , z=18 , b=10 mm
h=2. Ar= Pn=123 kV
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stress obtained by the photoelastic method in the case of the module m =2, the number of
teeth z=18, the face width b =10mm, the rim thickness # =2.8mm, the radial clearance A
r = 0.096mm and the tooth load P, = 1.23kN. In Fig. 4, the calculated result fairly
coincides with the experimental one. Therefore the nominal stress in the rim of the planet
gear can be obtained by the analytical method described above.

3.2 Effects of Tooth Load and Radial Clearance on Nominal Stress in the Rim
It has been seen by the photoelastic investigation that the fillet stress in the planet gear

with both the thin rim and the clearance between the rim and the gear shaft depends on the
clearance in the case of constant tooth load and is unproportional to the tooth load in the case
of constant clearance®. These effects may be owing to the nominal stress in the rim. Fig. 5
shows the relation between the stress on the inner surface of the planet gear (— 0, + 0 y)
obtained by Egs. (1) and (12) and the clearance under the condition of constant ratio of the
clearance to the tooth load Ar/P,. Also the central angles of the contact region (7 — @ ;) are

- shown in Fig. 5. It is seen from Fig. 5 that the stresses on the rim are proportional to either
the tooth 'load or the clearance like as the fillet stress obtained by the experiment® under
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condition of the constant ratio of Av/P,. Moreover it is clear that the contact region is
independent on both the tooth load and the clearance under the condition of the constant
ratio of Ar/P,.

4. Conclusion

The planet gear with both the thin rim and the clearance between the rim and the gear
shaft are replaced by the equivalent ring. Then considering the effects of both the tooth load
and the clearance on the region of the contact between the rim and the gear shaft, the nominal
stress in the rim of the planet gear is analyzed theoretically. Further the effects of the tooth
load and the clearance on the nominal stress are investigated as follows :

(1) Stress on the inner surface of the planet gear obtained theoretically coincides with that
obtained by the photoelastic method.

(2) If the ratio of the tooth load to the clearance between the rim and the gear shaft is
constant, the nominal stress in the rim of the planet gear with the clearance is proportional
to either the tooth load or the clearance and further the amount of contact region is constant.
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