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Abstract

Alternating Turing machines were introduced as a generalization of nondeterministic

”

Turing machines and as a mechanism to model parallel computation. "Leaf-size” (or
branching”) is the minimum number of leaves of some accepting computation trees of
alternating Turing machines. Leaf-size, in a sense, reflects the minimum number of processors
that run in parallel in accepting a given input. In this paper, we investigate a hierarchy of
complexity classes based on leaf-size bounded computations for three-dimensional
alternating Turing machines, and show that for any positive integer £ > 1 and for any two
functions L : N—>N and L’ : N— N such that (1) L is a three-dimensionally space
—constructible function such that L(m)*' < m (m > 1), (2) liMn-oL (m) L’ (m)*/log m =
0 and (3) limp-o.l’ (m)/L(m) = 0, L(m) space bounded and L (m)* leaf-size bounded three
—dimensional alternating Turing machines are more powerful than L () space bounded and
L’ () * leaf-size bounded three- dimensional alternating Turing machines. We let the input
tapes, throughout this paper, be restricted to cubic ones.

1 Introduction

Alternating Turing machines were introduced in Chandra et al (3] as a
generalization of nondeterministic Turing machines and as a mechanism to model
parallel computation. In related papers [3,4,6,7,11,15-18,22-24,30], several
investigations of these automata have been continued.

After that, the problem of computational complexity was also arisen in the two

~dimensional information processing. Blum et al. first proposed two- dimensional
automata, and investigated their computing abilities [1].
Morita et al. proposed an L (m,n) space-bounded two-dimensional Turing machine
and its variants to formalize memory limited computations in the two-dimensional
information processing [19-21]. Inoue et al. [12] introduced two-dimensional
alternating Turing machines (2-ATM’s) as a generalization of two-dimensional
nondeterministic Turing machines (2-NTM’s). Moreover three-way two-dimensional
alternating Turing machines (TR2-ATM’s), which are restricted versions of the
2-ATM’s, were investigated [13].

On the other hand, recently, due to the advances in computer vision, robotics and so
forth, it has become increasingly apparent that the study of three- dimensional pattern
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processing should be very important. Thus, the research of three-dimensional
automata as the computational model of three-dimensional pattern processing has also
been meaningful [2,25-29,31,32]. In [27], we introduced a six-way three-dimensional
alternating Turing machine (3-A7TM) and a five-way three-dimensional alternating
Turing machine (FV3-ATM), which are natural extentions of a 2-ATM and a
TR2-ATM, respectively, to three dimensions. The motivation of introducing these
three-dimensional machines is mainly from theoretical interest. We believe, however,
that these three-dimensional machines are useful parallel models for analyzing three
-dimensional images.

In this paper, we continue the investigations about three-dimensional alternating
Turing machines described above, and mainly investigate a simple, natural complexity
measure for space bounded three-dimensional alternating Turing machines, called ”
leaf-size”, and provide a hierarchy of complexity classes based on leaf-size bounded
computations. Specifically, we show that for any positive integer £ > 1 and for any
two functions L : N— N and L’ : N — N such that (1) L is a three-dimensionally space
constructible function such that L(m)** < m(m > 1), (2) limp.oL (m) L’ (m)*/log
m = 0, and (3) limp-oLl’ (m)/L(m) = 0, L(m) space bounded and L (m)* leaf-size
bounded three-dimensional alternating Turing machines are more powerful than L
(m) space bounded and L’(m)* leaf-size bounded three- dimensional alternating
Turing machines. We let the input tapes, throughout this paper, be restricted to cubic
ones.

2 Preliminaries

Definition 2.1. Let = be a finite set of symbols. A three-dimensional tape over 3, is
a three-dimensional rectangular array of elements of 3. The set of all three
-dimensional tapes over 3 is denoted by 3©®.

Given a tape x € 3@, for each integer j(1 < 7 < 3), we let /;(x) be the length of
x along the j-th axis. If 1 < §; < [;(x) for each j(1 < j < 3), let x(4, %, 7) denote
the symbol in x with coordinates (7, 7, 7). Furthermore, we define

x[(l.l) iZ; i3)) (2',1; Z.’ZJ i’3):’y

when 1 < 4 < #7; < [;(x) for each integer j(1 < j < 3), as the three-dimensional tape
y satisfying the following (i) and (ii) :

(i) foreach j(1 <7 <3), L(y) = ,-4 + 1;

(ii) foreachn, 7, n 1< n < L(¥),1 <% < LB, 1< n<LW), v(n, n n) =
x(n+a-1Ln+ -1, 7n+4-1). Wecall x[ (i, &, ), (1, 05, ©5 )] the [ (4,
b, %), (7’1, 05, 7’5)]-segment of x.)

As usual, an input three-dimensional tape x over 3 is surrounded by the boundary
symbol # (# & 3). Coordinates are naturally assigned to boundary symbols. That is,
if there is an integer 7; such that 4; = 0 or §; = [;(x) + 1 for some j (1 < j < 3), then
we let x(4,%,5) = #. Furthermore, for each 7 (1 < i < 4(x)), we call x[(31,1), (3,4,
(x),5(x))] the i~th (2-3) plane of x, and denote it by x(2-3) .. Similarly, for each j
(1<j<b@)andreQ <k < LK), wecall x[(1,71), (4 (x),7.4(x))] and x[ (1,1,
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k), (4 (x),,(x),k)] the j-th (1-3) plane and k-th (1-2) plane of x, and denote them by
x(1-3); and x (1-2) .. respectively.

We now introduce a three-dimensional alternating Turing machine (3-ATM),
which can be considered as an alternating version of a three-dimensional Turing
machine (3-TM) [27,31].

In this paper, we assume that the reader is familiar with the concept of alternation.
If necessary, see [3].

Definition 2.2. A three-dimensional alternating Turing machine (3-ATM) M is
defined by the septuple

M - (Q’ 4o, QEZ,F,(S\),

where
(1) @ is a finite set of stafes,
(2) g € Q is the nitial state,
(3) U C Q is the set of universal states,
(4) F C Q is the set of accepting states,
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Fig. 1. Three-dimensional alternating Turing machine.
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(5) = is a finite input alphabet (# & 3 is the boundary symbol),
(6) = is a finite storage-tape alphabet (B & T is the blank symbol), and
(7) 0 C (@ X (2 U{#}) XI') X (Q X (I'-{B}) x
{east, west, south, north, up, down, no move} X
{right, left, no move}) is the next-move relation.
A state ¢ in Q-U is said to be existential. As shown in Fig. 1, the machine M has
a read-only three-dimensional input tape with boundary symbols #'s and one semi
-infinite storage tape, initially blank. Of course, M has a finite control, an input head,
and a storage-tape head. A position is assigned to each cell of the read-only input tape
and to each cell of the storage tape, as shown in Fig. 1. A step of M consists of reading
one symbol from each tape, writing a symbol on the storage tape, moving the input and
storage heads in specified directions, and entering a new state, in accordance with the
next move relation ¢. Note that the machine cannot write the blank symbol. If the
input head falls off the input tape, or if the storage head falls off the storage tape (by
moving left), then the machine M can make no further move.
Definition 2.3. An instantaneous description (ID) of a 3-ATM M = (Q,q,, U F,3,T,
¢) is an element of

@ XN U{0})® X Sy,

where Sy = @ X (I'-{B})*x N, and N denotes the set of all positive integers.
The first component of an ID I = (x,(4, &, &), (¢, a k))?

represents the input to M. The second component (4, %, i) of I represents the input
head position. The third component (q,a,k) of I represents the state of the finite
control, nonblank contents of the storage tape, and the storage-head position. An
element of Sy is called a storage state of M. If q is the state associated with an ID I,
then 7 is said to be a universal (existential, accepting) ID if q is a universal (existential,
accepting) state. The nitial ID of M on x is

L(x) = (x(1,1,1), (,A,1)),

where A is the null string.
Given M = (Q,q,U,F,2,T,8), we write

I+uwrI

and say I’ is a successor of I if an ID I’ follows from an IDI in one step of M,
according to the transition rules &. The relation |- is not necessarily single-valued,
because ¢ is not. A computation path of M on x is a sequence Ly Ly Fu I (n >
0), where I, = L, (x). A computation tree of M is a finite, nonempty labeled tree with
the following properties :

(1) each node z of the tree is labeled with an ID [(z);

'Wenotethat 0 < 4 < 4(x) +1,0< % < h(x) +1,0< 4 < L{x) +1,and1 < &k < | @ | +1, where
for any string w, | w | denotes the length of w (with | A | = 0, where 1is the null string).
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(2) if z is an internal node (a nonleaf) of the tree, /(z) is universal and
{[ | 1(71') ;L_M [}:{Il)l“)[k})

then 7 has exactly % children p,---,p. such that (p;) = L (1 < i < k);
(3) if 7 is an internal node of the tree and /(z) is existential, then = has exactly one
child p such that

[(m) Fw Z(P)-

A computation tree of M on an input x is a computation tree of M whose root is
labeled with I, (x). An accepting computation tree of M on x is a computation tree of
M on x whose leaves are all labeled with accepting ID’s. We say that M accepts x if
there is an accepting computation tree of M on input x. Define

T(M) = {x € 3® | M accepts x}.

In this paper, we are mainly concerned with a 3-ATM whose input tapes are
restricted to cubic ones. We denote such a 3-ATM by 3-ATM*.

Definition 2.4. Let L(m) : N— N be a function with one variable m. With each
3-ATM¢< M we associate a space complexity function SPACE which takes ID’s to
natural numbers. That is, for each ID I = (x, (i1,%,%),(q,a,k)), let SPACE (I) = | @

| . M is said to be L(m) space-bounded if for each m > 1 and for each x with hix)=

L (x) =1 (x) =m, if x is accepted by M, then there is an accepting computation tree of
M on input x such that for each node = of the tree, SPACE (I(x)) < L(m). By
3-ATM<(L(m)), we denote an L (m) space-bounded 3-ATM¢° [5,8,9].

Especially, 3-ATM¢(0) is denoted by 3-AFA° and called a three- dimensional
alternating finite automaton.

We next present a simple, natural complexity measure for 3-ATM’s, called leaf

~size [10,12,14,17]. Basically, the leaf-size used by a 3-ATM¢ on a given input is the
number of leaves of an accepting computation tree with the fewest leaves. Leaf-size,
in a sense, reflects the minimum number of processors that run in parallel in accepting
a given input. ’
Definition 2.5. Let Z(m) : N— N be a function with one variable ». For each finite
tree t, let LEAF (t) denote the leaf-size of ¢ (i.e., the number of leaves of ¢). We say
that a 3-ATM¢® M is Z (m) leaf -size bounded if, for each m and for each input x with
L (x) = L(x) = L(x) = m, each computation tree t of M on x is such that LEAF
(t) < Z(m).

By 3-ATM<(L(m),Z(m)), we denote a simultaneously L (m) space-bounded and
Z(m) leaf-size bounded 3-ATM?¢. Especially, 3-ATM<(0,Z(m)) is denoted by
3-AFA(Z (m)). Define £[3-ATM(L(m),Z(m))] = {T | T = T (M) for some
3-ATM(L(m),Z(m)) M}, and £[3-AFA«(Z(m))] = {T | T = T (M) for some
3-AFA(Z(m)) M}.

We need the following concepts in the next section.

Definition 2.6. A three-dimensional deterministic Turing machine [8] is a 3-ATM*
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whose ID’s each have at most one successor. A function L : N— N is three
-dimensionally space constructible if there is a three-dimensional deterministic Turing
machine M such that

(1) for each m > 1 and for each input tape x with  (x) = L(x) = Lx) = m M
uses at most L (m) cells of the storage tape,

(2) for each m > 1, there exists some input tape x with 4 (x) = 4 (x) = Ll(x) =
m on which M halts after its read-write head has marked off exactly L (m) cells of
the storage tape, and

(3) for each m > 1, when given any input tape x with 4 (x) = 4(x) = 4 (x) = m,
M never halts without marking off exactly L (m) cells of the storage tape.

(In this case, we say that M constructs the function L.)

Definition 2.7. Let =,, =, be finite sets of symbols. A projection is a mapping ¥ : 3 ¢
— 2 which is obtained by extending a mapping © : 3, — 3, as Sfollows : #(x) = x’
if and only if (i) /:(x) =/;(x") for each i(1< i <3), and (ii) 7(x(i,,5,5)) =% (31,4, 3,)
for each (i1,5,5) (1< 4 < (%), 1< 6< bh(x), 1< < Lx). If TC ¢, we let 7
(T)={zx) |xE T}.

Definition 2.8. Let g : N — N be a function and x be a three-dimensional tape with /[,
(x) =L(x)=n. Foreach k£ (1 < k < L(x)/g(n)), we call

x[(1L,1, (k-1 g(n) +1), (n,n,kg(n))]

the k-th g(n)-block of x, when 4 (x) is divided by g (). We simply denote it by x
[blockyny (k) ].

Here, we give some mathematical notations. For any set A, “P (A)” denotes the
power set of A and "m-P;(A)” denotes the set of multisets consisting of 7 elements
from A. We assume that any function is a mapping from N to N.

3 Results

This section investigates a hierarchical property of the powers of space bounded
3-ATM*’s based on leaf-size bounded computations.

We first give several preliminaries to obtain the desired result. Let S be a finite
alphabet. For each m > 2 and each 1 < n < m-1, an (m,n)- chunk over S is a three
-dimensional object over {0,1} as shown in Fig. 2. (Below, ” (m,%)-chunk” means an
(m,n)-chunk over 3.)

Let M be a 3-ATM¢<(l,z). Note that if the numbers of states and storage- tape
symbols of M are s and ¢, respectively, then the number of possible storage states of
M is sit’. Let 3 be the input alphabet of M, and let # be the boundary symbol of M.
For any (m,n)-chunk x, we denote by x(#) the pattern (obtained from x by
surrounding x with #’s) as shown in Fig. 3. Below we assume without loss of generality
that for any (m,n)-chunk (m > 2,1 < n < m-1), M has the following property:

(A) M enters or exits the pattern x (#) only at the shaded face in Fig. 3, and M never

?Note that for any 3-ATM<(/,z) M’, we can construct a 3-ATM¢<(,z) M with property (A) such that
T(M)=T(M).
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Fig. 4. Entrance points to x(#) and positioning of the cells of x(#).

enters an accepting state in x (#).

Then the number of entrance points to x (#) [or the exit points from x (#) ] for M
is 4n+8. We suppose that these entrance points (or exit points) are numbered 1,2,
4n+8 as shown in Fig. 4. For each (m,n)-chunk x, an ID of M on x (#) is of the form

(@, (gak))),

where p represents the position of the head of M on x(#), and (g,a,k) represents a
storage state of M. The second component (p, (g,a,%)) of an ID I = (x(#), (p, (q,a,k)))
is called the configuration component of I. For convenience sake, for each i (1 < i <
4n+8), let the position of the cell confronted with entrance point 7 of x (#) be % (see
Fig. 4.) Further, as shown in Fig. 5, we consider 37+4 virtual cells (confronted with
x(#)) designated by dotted line cubes, and we assign position 1’,2’,--+,(3n+4)’ to these
virtual cells. We include these positions in the set of positions of the head of M on x
#.

An ID I=(x®), (p,(q.ak))) is said to be universal (existential) if q is a universal
(existential) state. For any ID’s I and I’ of M on x(#), we write I |y I’ and say I’
is a successor of [ if I’ follows from I in one step of M on x (#). Note that for any ID
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Fig. 5. Virtual cells of x(#) and positioning of virtual cells.

I=(x(#),(p, (qak))), where x is an (m,n)-chunk, such that p € {1°,2",--,(3n+4) '}
(z.e., p is a virtual position), / has no successor. _
A computation tree of M on x(#) is a finite, nonempty labeled tree with the
properties : ’
(1) each node = of the tree is labeled with an ID, /(z), of M on x(#) ;
(2) if z is an internal node (a nonleaf) of the tree and /() is universal and {7 | /
() Fw I}={L, 1}, then # has exactly k children p, --p, such tha /(p;) =1, ;
(3) if z is an internal node of the tree and /(x) is existential, then = has exactly one
child p such that /(z) |y [(p).
A prominent computation tree of M on an (m,n)-chunk x is a computation tree of
M on x(#) with the properties :
(1) the root node is labeled with an ID of the form (x(#), (7, (g a,k))), where 1 <
i < 4n+8 (i.e., the root node is labeled with an ID of M just after M entered the
pattern x (#) from some entrance point 7);
(2) each leaf node is labeled either
(a) with an ID of the form (x(#), (j, (g,a,k))), where j € {1°,2°---,(3n+4) "}
(i.e.,, an ID of M just after M exited the pattern x(#)), or
(b) with an ID I such that starting from the ID I, M never reaches a universal
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ID which has two or more successors and M never exists x (#).
(A leaf node labeled with an ID of type (b) above is called a looping leaf node. A leaf
node labeled with an ID of type (a) above is called a normal leaf node.)

Let C = {c,c, ¢} be the set of possible storage states of M, where u=sit'. For
each prominent computation tree ¢ of M on an (m,n)-chunk, let the leaf configuration
set of ¢t (denoted by LCS(¢)) be a "multiset” of elements of {1’,2’,-:-,(3n+4)’} X C U
{L} (where L is a new symbol) defined as follows :

(1) for each normal leaf node = of t, LCS(#) contains the configuration component
of I(x) ;

(2) for each looping leaf node of f, LCS(#) contains the symbol L ;

(3) LCS(t) does not contain any element other than elements described in (1) and
(2) above.

(Note that any prominent computation tree ¢t of M, | LCS(t) | < z, since M is z leaf
-size bounded.)?
For each (m,n)-chunk x and for each (ic) € {1,2,>-,4n+8} X C, let

Mo (x) = {LCS(¢) | t is a prominent computation tree of M on x whose root
is labeled with the ID (x(#),(ic))}.

the 2nd the 1st
axis axis

the 3rd
axis

T
1

Fig. 6. x [V].

3For any set S, | S | denotes the number of elements of S.
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Let x,y be two (m,n)-chunks. We say that x and y are M -equivalent if for each (i,c)
= {1,2,“-,4n+8}>< C; Mi,c)(x) = M(i,c)(y).
For any (m,n)-chunk x and for any tape v € 3® with [, (v) =1, L(v)=#% and &
(v) =1, let x[v] be the tape in =® consisting of v and x as shown in Fig. 6.
The following lemma means that M cannot distinguish between two (#,2)-chunks
which are M -equivalent.
Lemma 3.1. Let M be a 3-ATM¢°(l,z) with the property (A) described before, and 3,
be the input alphabet of M. Let x and y be M -equivalent (#,%)-chunks over S (m >
2,1 < n < m-1). Then, for any tape v € 3® with 4 (v) =1, L(v) =#» and &(v) =1,
x[v] is accepted by M if and only if y[v] is accepted by M.
Proof. (If part). We assume that y[v] is accepted by M. Then there exists an
accepting computation tree ¢ of M on y[v] such that LEAF (¢) (i.e., the number of
leaves of ¢+ ) < z. Since x and y are M-equivalent, we can construct from ¢ an
accepting computation tree ¢’ of M on x[v] such that LEAF (¢’) = LEAF(t) < z.
Therefore, x[v] is accepted by M.
(Only-if part). Analogous to "if part”. il
Clearly, M-equivalent is an equivalence relation on (m,#)-chunks, and we obtain
the following lemma.
Lemma 3.2. Let M be a 3-ATM<°(],z) with the property (A) described before, and 3
be the input alphabet of M. Further, let s and ¢ be the numbers of states and storage
tape symbols of M, respectively, and let #=slt’. Then there are at most (22")¢ M-
equivalence classes of (m,#n)-chunks over 3, where b= (3n+4) u+1 and d= (4n+8) u.
Proof. The lemma follows from the observation that
(1 |1 {1,2,,-,4n+8}x C | = (4n+8)u = d (where C is the set of possible storage
states of M), and
(2) the number of possible leaf configuration sets of prominent computation trees of
M on (m,n)-chunks is bounded by
b+ b+ - 4+ b* < b**' (where b=Bn+4)u+1)
since M is z leaf-size bounded. il
We are now ready to prove the main theorem.
Theorem 3.3. Let £ > 1 be a positive integer. Let L : N—N and L’ : N— N be any
functions such that
(1) L is a three-dimensionally space-constructible function such that L (m)**' <
m (m > 1),
(2) limy.L(m)L’ (m)*/log m = 0, and
(3) limp-ol’ (m)/L(m) = 0.
Then there is a set in £ [3-ATM(L(m),L(m)* ], but not in £[3-ATM(L(m),L’
(m)®].
Proof. Let M be a three-dimensional deterministic Turing machine which constructs
the function L. Let T,[L,M] be the following set, which depends on %, L and M :
TLM] ={xe EX{01D®| dm >2[04(x) = Lx) = L(x)= m & (when
the tape %(x) is presented to M, its read-write head marks off exactly
L (m) cells of the storage tape and then halts) & 37 2 < i < m) [}
[(LLD, L)1) ]) = [hx[(1LD, GLMm)*, 1)1},
where 3 is the input alphabet of M, and % (%) is the projection which is obtained by
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extending the mapping % : =X {0,1} = 3 (&, : £x{0,1}—{0,1}) such that for any ¢ =
(a,0) € 3x{0,1}, m(c)=a, (h(c)=0). Below, we shall show that T,[L.M] &
£13-ATM(L(m),L(m)®] and T,[LM] & £[3-ATM*(L(m),L’(m)*)].

The set T,[L,M] is accepted by a 3-ATM<(L(m),L(m)* M, which acts as
follows. Suppose that an input x with [, (x) =4 (x) =L (x) =m (m > 2) is presented to
M,. M, directly simulates the action of M on % (x). If M does not halt, then M, also
does not halt, and will not accept x. If M, finds out that M halts (in this case, note that
M, has marked off exactly L (m) cells of the storage tape because M constructs the
function L), then M, existentially chooses some (2 < ¢ < m) and moves its input tape
head on x(7,1,1). After that, M, universally tries to check that, foreach 1 < 7 < L
(m)*,

Iy (x[ (G, G=1)L(m)+1,1),(G7L(m),1)]) =

fo (x[(1, G—1) L(m) +1,1),(1,7L(m),1]).
That is, on x(Z, (-1) L(m)+1,1) (1 < j < L(m)* ), M, enters a universal state to
choose one of two further actions. One action is to pick up and store the segment

bo (x[ (3, G—D L(m)+1,1), (5,7L(m),1)])

on some track of the storage tape (of course, M, uses exactly L (m) cells marked off),
to compare the segment stored above with the segment

I (x[(L,G—1DLm)+1,1),(1,7L(m),D]),

and to enter an-accepting state only if both segments are identical. The other action
is to continue moving to x (7,jL (m) +1,1) (in order to pick up the next segment

Jio (x[ (5L (m) +1,1), (5, G+1) L(m), 1) ]).
and compare it with the corresponding segment
B (x[(LL(m) +1,1), (1, G+ 1D L(m),1]).

Note that the number of pairs of segments which should be compared with each other
in the future can be easily seen by using L(m) cells of the storage tape. It will be
obvious that the input x is in 7,[L,M] if and only if there is an accepting computation
tree of M, on x with L(m)* leaves. Thus T,[L,M] & £[3-ATM(L(m),L(m)*)].

We next show that T,[L,M] & £[3-ATM(L(m),L’ (m)* ]. Suppose that there is
a 3~-ATM<(L(m),L’(m)* M, accepting T,[L,M]. Let s and ¢ be the numbers of
states (of the finite control) and storage tape symbols of M,, respectively. We assume
without loss of generality that when M, accepts a tape x in T,[L,M], it enters an
accepting state only on x(1,1,1), and that M, never falls off an input tape out of the
boundary symbol #. (Thus M, satisfies the property (A) described before.) For each
m > 2, let w(m) € Z® be a fixed tape such that

i) L(wm)) = L{w(m)) = L(w(m)) = m and
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(ii) when w(m) is presented to M, it marks off exactly L (m)
cells of the storage tape and halts.
(Note that for each m > 2, there exists such a tape w (m) because M constructs the
function L.) For each m > 2, let

Vim)={x €EX{0,1N® | hx)=Lx)=Lx)=m & hx[(1,1,1),(mL0m)*,
1])€{0,1}®& (the other part of % (x) consists of 0’s) & &, (x) =w (m) }*,
Y(m)={y€{0,1}®| L(») =1 & L(y)=Lm)*'& L(y) =1},
and
R(m)={row(x) | x € V(m)},
where for each x in V (m),
row(x)={y € Y(m) | y=h(x[(;1,1), (;,L (m)***,1)]) for some
i2< i< m)}.
Since | Y (m) | =22, it follows that
Lomr Loy
& (1) )k (in(_)l) i L0 S 1 ;
| R(m) | =

QL(m)* QL m)*!
( ) )+...+(2LWM) =22Lm™—1, otherwise.

Note that B = {p | for some x in V (m), p is the pattern obtained from x by cutting
the segment x[(1,1,1),(1, L(m)*1,1) ] off} is a set of (m, L(m)*"')-chunks over =X
{0,1}. Since M, can use at most L(m) cells of the storage tape and M, is L’ (m) * leaf
-size bounded when M, reads a tape in V (m), from Lemma 3.2, there are at most

E (m) = (2blm)L om*+1)din]

M,-equivalence classes of (m, L(m)**')-chunks (over = X {0,1}) in B, where b[m]=
GBLm)** + D ulm]+1, dim]=UEGL(m)**+8) ulm] and wul[m]=sL(m) ™. We
denote these M,~equivalence classes by C,, G, Cemy. Since limy_.L (m) L’ (m) */log
m = 0 and limy_...L’ (m)/L(m) = 0 (by assumption), it follows that for large m, | R
(m) | >E (m). For such m, there must be some Q,Q’(Q + Q’) in R (m) and some C;
(1 < i < E(m)) such that the following statement holds : There exist two tapes x,
y in V (m) such that
() x[(LLD,,Lm)*, D] = »[(1,1,1), QL) *,1)] and h(x[(1,1,1),(1,L
m)*11)]) =h,(y[1,1,1),(1,L(m)*** 1) ]) = p for some p in Q but not in Q’,
(ii) row (x) =Q and row (v) =@Q’, and
(iii) both py and py are in C;, where py (py) is the (m,L (m)**!) ~chunk over =X {0,1}
obtained from x (from y) by cutting the segment x[(1,1,1),(1,L (m)**11)] (the
segment y[(1,1,1),(1,L (m)**11)]) off.
As is easily seen, x is in T,[L,M ], and so x is accepted by M,. Therefore, from Lemma
3.1, It follows that v is also accepted by M,, which is a contradiction. (Note that y is
notin T,[L,M].) Thus T,[L,M] € £[3-ATM°(L(m),L’(m)* ]. This completes the
proof of the theorem. i

‘By the assumption that L (m)*** < m(m > 1), V (m) is well defined
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Corollary 3.4. Let £ > 1 be a positive integer. Let L : N— N and L’ : N— N be any
functions satisfying the condition that L’(m) < L(m) (m > 1) and satisfying
conditions (1),(2) and (3) described in Theorem 3.3. Then

£[3-ATM(L(m), L’(m)®] € £[3-ATM(L(m), L(m)*].

For each 7 in N, let log”m be the function defined as follows :

0 (m=0)
[ logm 1 (m >1),

lob™ Vm =1log™ (log”m),

logMm = {

where [ log m | denotes the smallest integer greater than or equal to log 7. As shown
in Theorem 2.32 of [19], the function log” m (r > 1) is two-dimensionally space
-constructible, and thus three-dimensionally space-constructible. It is easy to see that
for each » > 1, log"™*"m < log”m (m > 1) and limy... log"*Vm/log”m =(. Further,
for each » > 2 and each £ > 1, limy_.. log™m (log™Vm) */log m =0. From these facts,
we have the following.

Corollary 3.5. For any » > 2 and any & > 1, £[3-ATM<(log™m, (log™Ym)*] C
£[3-ATMc(logm, (log"m)*].

4 Conclsion

In this paper, we have investigated a hierarchy of complexity classes based on leaf
-size bounded computations for three-dimensional alternating Turing machines whose
inputs are restricted to cubic ones (3-A7M¢’s). On the other hand, the accepting
powers of leaf-size bounded computations for five-way three-dimensional alternating
Turing machines whose inputs are restricted to cubic ones (FV3-ATM¢’s) are shown
in [26]. FV3-ATM¢is a 3-ATM ¢ wohse input head can move east, west, south, north,
or down, but not up.

It is unknown whether a result analogous to Corollary 3.5 also holds for »=1 and
k > 1. It will also be interesting to investigate leaf-size hierarchy properties of the
classes of sets accepted by 3-ATM“’s with spaces of size greater than log m.

Moreover it is possible to show the constant lea-size hierarchy of 3-ATM¢’s by
using the same technique as in the proof of Lemma 3.1 in [14], but this investigation
will be dealt in a future paper.
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