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Abstract

This paper introduces a three-dimensional multicounter automaton whose input tapes are
restricted to cubic ones, and investigates some of its properties. We first show the difference
between the accepting powers of five-way and six-way three-dimensional multicounter
automata, and between the accepting powers of deterministic and nondeterministic five-way
three-dimensional multicounter automata. We then show that hierarchies can be obtained by
varying the number of counters or the amount of space allowed, for classes of sets accepted
by five-way three-dimensional multicounter automata.

1 INTRODUCTION

Inoue and Takanami [5] introduced a three-way two-dimensional multicounter
automaton and investigated its basic properties. Szepietowski also investigated some
of its properties [9]. A four-way two-dimensional £-counter automaton v(2—kCA) M
is a two-dimensional finite automaton [1] that has & counters. The action of M is
similar to that of the one-dimensional offline 2-counter machine [3], except that the
input head of M can move up, down, right, or left on a two-dimensional input tape. A
three-way two-dimensional k-counter automaton is a 2-kCA whose input head can
move right, left, or down, but not up.

By the way, during the past thirty years, several automata on a two-dimensional
tape have been proposed and many properties of them have been obtained [6]. On the
other hand, few properties of automata on a three-dimensional tape have been
obtained [7,8,10-12].

In this paper, we introduce six-way and five-way three-dimensional multicounter
automata. A six-way three-dimensional k-counter automaton (3-2CA), which can be
considered as a natural extension of the 2-2CA to three dimensions, consists of a finite
control, 2 counters, a read-only three-dimensional input tape, £ counter heads, and an
input tape head which can move north, east, south, west, up, or down. A five-way three
~dimensional 2-counter automaton (FV 3-kCA) is a 3-kCA whose input tape head can
move north, east, south, west, or down, but not up. It has often been noticed that we
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can easily get several properties of three-dimensional automata by directly applying
the results of one or two dimensional case, if the three-dimensional input tapes are not
restricted to cubic ones. So we let the three-dimensional input tapes, throughout this
paper, be restricted to cubic ones in order to increase the theoretical interest.

This paper has three sections in addition to this Introduction. Section 2 contains
some definitions and notation. Section 3 investigates the difference between the
accepting powers of (counter-bounded) five-way and six-way three-dimensional
multicounter automata. Section 4 investigates the difference between the accepting
powers of (counter-bounded) deterministic and nondeterministic five-way three
-dimensional multicounter automata. Section 5 shows that hierarchies can be obtained
by varying the number of counters or the amount of space allowed, for classes of sets
accepted by five- way three-dimensional multicounter automata.

2 PRELIMINARIES

Definition 2.1. Let = be a finite set of symbols. A three-dimensional tape over 3, is a
three-dimensional rectangular array of elements of 3. The set of all three-dimensional
tapes over 3 is denoted by 3®.

Given a tape x € 2%, for each (1< 7 < 3), we let / (x) be the length of x along
the j-th axis. The set of all y € S® with 4 (x) =wm, &(x) =m,, and 4(x) =m, is
denoted by Z™">m9) When 1< 4 < [(x) for each j( 1< j < 3), let x(4,, %, 3) denote
the symbol in x with coordinates (7, 7, #). Furthermore, we define

}C[(ib &, 2.3), (iyl, '3, Z.’s)];

when 1< 4 < ;< [ (x) for each integer j(1< j < 3), as the three-dimensional tape
y satisfying the following (i) and (ii) :

(@) for each j(1< 7 < 3), (y) = & - 4 + 1;
(ii) for each 71, 7, 7 AI=H=L(), 1=RSL0), 1SKSLG)), ¥(n, 7, 1) = x(n +
Z-l—l) VZ+Z.2_1) 7’3+Z.3‘].).

(We call x[ (i, &, &), (1, 25, ©°5)] the [ (i, &, 35), (&7, %, %5 ) ]-segment of x.) For
each x € ™29 and for each 1< 4 < my, 1< 4 < mp, 1 < 4 < mg, x[ (G, 1, 1), (G,
ma, me) ], x[ (1, %, 1), (m, &, me) 1, x[(1, 1, %), s, my, )], x[ (G, 1, &), (i, s,
)], and x[ (1, 4, &), (mu, 4, )] are called the i-th (2-3) plane of x, the i,-th (1-3)
plane of x, the i-th (1-2) plane of x, the i-th row on the iy-th (1-2) plane, and the
la=th column on the is-th (1-2) plane, and are denoted by x (2-3),, x(1-3),, x(1-2);, x
4, *, 4], and x[ %, 4, &), respectively.

We now introduce a five-way three-dimensional multicounter automaton. A #hree
~dimensional k-counter automaton (3-kCA) M, k > 1, has a read-only three
~dimensional input tape with boundary symbols # and k counters. (Of course, M has a
finite control, an input head, and k counter heads.) The action of M is similar to that
of the two-dimensional multicounter automaton [5], except that the input head of M
can move east, west, south, north, up or down. That is, when an input tape x € 3® (
where X is the set of input symbols of M and the boundary symbol # is not in 3) is
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presented to M, M determines the next state of the finite control, the move direction
(east, west, south, north, up, down, or no move) of the input head, and the move
direction (right, left, or no move) of each counter head, depending on the present state
of the finite control, the symbol read by the input head, and whether or not the content
of each counter is zero (i.e., whether or not each counter head is on the bottom symbol
7, of the counter). If the input head falls off the tape x with boundary symbols, M can
make no further move. M starts in its initial state, with the input head on position (1,
1,1) of the tape x, and with the contents of each counter zero (i.e., with each counter
on the bottom symbol Z, of the counter). We say that M accepts the tape x if M
eventually halts in a specified state (accepting state) on the bottom boundary symbol
# of the input. We denote by T (M) the set of all three-dimensional tapes accepted by
M. A five-way three-dimensional k-counter automaton (FV 3-kCA) is a 3-kCA whose
input head can move east, west, south, north, or down, but not up (see Fig. 1).

Let L(m) : N — R (where N is the set of all positive integers and R is the set of all
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Fig. 1. Three-dimensional k-counter automaton.
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nonnegative real numbers) be a function with one variable m. A 3-2CA (FV 3-kCA)
M whose input tapes are restricted to cubic ones is said to be L(m) counter-bounded
if for each m > 1 and each input tape x (accepted by M) with 4 (x) =L (x) =L (x) =
m, each counter of M requires space not exceeding L (m)'. As usual, we define
nondeterministic and deterministic 3-kCA’s (FV3-kCA’s). By N3-kCA°(L(m))
(respectively, D3-kCA¢(L(m)), NFV3-kCA¢(L(m)), and DFV 3-kCA°(L(m))), we
denote a nondeterministic 3-2CA (respectively, deterministic 3-2CA, nondeterministic
FV3-kCA, and deterministic FV'3-2CA) whose input tapes are restricted to cubic ones
and which is L (m) counter-bounded. Let £[N3-kCA(L(m))] ={T | T = T (M)
Jor some N3-kCA*(L(m)) M}. £[D3-kCA¢(L(m))], £ [ NFV3-kCA°(L(m))], and
£ [DFV 3-kCA°(L(m))] have similar meanings.

We briefly recall five-way three-dimensional Turing machines [10]. A five-way
three-dimensional Turing machine M has a read-only three-dimensional input tape
with boundary symbols # and one semiinfinite storage fape. (Of course, M has a finite
control, an mput head, and a storage-tape head.) The action of M is similar to that of
the two-dimensional Turing machine [6] which has a read-only input tape with
boundary symbols # and one semiinfinite storage tape, except that the input head of M
can move east, west, south, north, or down, but not up. M starts in its initial state, with
the input head on position (1,1,1) of an input tape x, and with all cells of the storage
tape blank. We say that M accepts the tape x if M eventually halts in an accepting
state. Let L(m) : N— R be a function with one variable m. By NFV3-TM<(L(m))
(DFV3-TM*<(L(m))) we denote a nondeterministic (deterministic) five-way three
-dimensional Turing machine whose input tapes are restricted to cubic ones and which
does not scan more than L (m) cells on the storage tape for any input tape x (accepted
by M) with }(x) =L(x) =L (x) =m. Let £ [ NFV3-TM(L(m))] (£[DFV3-TM(L
(m))]) denote the class of sets accepted by NFV3~-TM<(L(m))’s (DFV3-TM<(L
(m))’s).

We denote a nondeterministic (deterministic) three-dimensional finite automaton
by N3-FA (D3-FA). A five-way N3-FA (five-way D3-FA) is an N3-FA (D3-FA)
whose input tape head can move east, west, south, north, or down, but not up. By
N3-FA¢ (D3-FA¢, NFV3-FA¢, DFV3-FA¢) we denote an N3-FA (D3-FA, five
-way N3-FA, five-way D3-FA) whose input tapes are restricted to cubic ones [10].
For example, let £[D3-FA¢] denote the class of sets accepted by D3-FA¢’s. As is
easily seen, it follows that for any constant k2, £ [D3-FA¢] = £[D3-1CA¢(k)],
£[DFV3-FA¢] = £[DFV3-1CA¢(k)], and so on.

We conclude this section by giving a relationship between five-way three
-dimensional multicounter automata and five-way three-dimensional Turing
machines, which will be used in the latter sections.

Theorem 2.1.

(1) Urcrco £ [XFV3-RCA(L(m))]C £ [ XFV3-TM(logL(m))] for any L(m) :
N— R and any X €{D, N},

(2) Uicice £ [XFV3-kCA°(L(m))]=£ [ XFV3-TM¢<(logL(m)] for any X €{D,

'Rigorously, “exceeding L (m)” should be replaced with “exceeding [ L () ]”, where [ | means the
smallest integer greater than or equal to ». Below we omit [ |, if no confusion occurs.
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N}.

Proof. (1) : Let M be an XFV 3-kCA<(L(m)). The set T (M) is also accepted by the
XFV3-TM¢<(log L(m)) which divides the storage tape into £ tracks and makes each
track play a role of the corresponding counter of M.

(2) : From (1), Uicico £[XFV3-kECA(m)]C £[XFV3-TM¢(log m)]. It is well
known that any log m tape-bounded one-dimensional off-line Turing machine can be
simulated by a one-dimensional two-way multihead finite automaton [4]. By using the
same argument as in the proof of this fact, we can easily show that any XFV3-TM¢
(log m) can be simulated by an XFV3-kCA¢(m) for some k£ > 1. Thus
£[XFV3-TM¢(log m)1C U< s £ [XFV3-kCA°(m)]. N

3 FIVE-WAY VERSUS SIX-WAY

In this section, we investigate the difference between the accepting powers of
counter-bounded six-way and five-way three-dimensional multicounter automata
whose input tapes are restricted to cubic ones. ‘

We need the following two lemmas.

Lemma 3.1. Let T1={x{0,1}® | Gm >2[Lx)=Lx)=L(x)=m & x(1-2),=x
(1-2),1}, and let L, (#) : N —> R be a function such that lim,...[ (log L, (m))/m?*] =0.
Then,

(1) T, € £[3-DA]=£[D3-1CA<(0)], and

(2) T1 E Ui< rco [NFVS‘kCAC(Ll (Wl))]

Proof. The proc_)f of (1) is omitted here, since it is obvious. As shown in Lemma 3.6 (2)
in [10], 7y isnot in £ [NFV3-TM¢(L’,(m))], where L ;(m) : N — R is a function such
that limy-.[L }(m)/m?] = 0. From this fact and from the condition that limp_..[ (log
L,(m))/m?] = 0, it follows that 7; is not in £ [NFV3-TM¢<(log L,(m))]. Part (2)
of the lemma follows from this fact and Theorem 2.1(1). i

Lemma 3.2. Let 7, = {x €{0,1}® | I m > 1[4(x) = &bx) = Lx) = 2m&x[(1,],
1),@Cmm2m)] =x[(1,m+1,1), 2m,2m,2m)]]}, and let L, (m) : N — R be a function
such that limp_.[ (log L,(m))/m®*] = 0. Then,

() T, € £[D3-1CA%(m)], and

(2) Tz E U1< k<oo £ [NFV3—kCAC(L2 (m) )]

Proof. The proof of (1) is omitted here, since it is obvious. By using the same ideas as
in the proof of Lemma 4.2 (2) in [10], we can easily show that 7, #s not in
LI[NFV3-TM<(L4(m))], where L5(m) : N>R is a function such that limp..[L %
(m)/m?®] = 0. From this fact and from the condition that limy_.[ (log L,(m))/m?] =
0, it follows that 7, is not in LINFV3-TM¢(log L,(m))]. Part (2) of the lemma
follows from this fact and Theorem 2.1 (1). i

From Lemmas 3.1 and 3.2, we can get the following theorem.

Theorem 3.1. (1) Let L (m) : N — R be a function such that limp_.[ (log L(m)) /m?] =

0. Then, £[D3-FA°] -Uics<w€ [NFV3-kCA(L(m))]# ¢. (2) Let L’ (m) : N —> Rbe

a function such that limy...[ (log L’ (m))/m?*] = 0. Then, £ [D3-1CA°(m)] ~Ui<rcw
£[NFV3-kCA(L" (m)) ]+ .



360 Makoto SAKAMOTO, Katsushi INOUE

4 NONDETERMINISM VERSUS DETERMINISM

In this section, we investigate the difference between the accepting powers of
counter-bounded deterministic and nondeterministic five-way three-dimensional
multicounter automata whose input tapes are restricted to cubic ones.

We need the following two lemmas.

Lemmad.l.Let 73 ={x € {0,1}® | dm > 2[4(x) = L(x) = L(x) = m&x(1-2), *
x(1-2),], and L, (m) : N - R be a function such that limp_..[ (log L, (m))/m?] = 0.
Then,

(1) T, € £[NFV3-FA¢] = £[NFV3-1CA<(0)], and

(2) Ty & Uik £ [DFV3-ECAS(L, (m))].

Proof. The pr_oof of (1) is omitted here, since it is obvious. We prove (2). Suppose that
there is a DFV 3-kCA“(L,(m)) M, k > 1, accepting T3, and that s is the number of
states of the finite control of M. For each m > 2, let

Vim)={x € {0,1}® | Lx)=5L(x)=L(x)=m&x[(1,1,2),(mm,m)] €{0}®}.

For each x in V (m), let conf (x) be the configuration? of M just after the input head
left the first plane x(1-2), of x. Then the following must hold.

Proposition 4.1. For any two different tapes x, y in V (m),
conf (x) # conf ().

[For suppose that conf (x) = conf (y). Consider two tapes z, 2’ with side-length m
which satisfy the following :

(1) 2(1-2); = x(1-2); and 2’ (1-2), = y(1-2); ;

(2) 2(1-2), = 2°(1-2), = y(1-2), ;

(3) z[(1,1,3),(mmm)] = 2’ [(1,1,3), (m,m,m) ].

Clearly, z is in 7, and so z is accepted by M. Since conf (x) = conf (y), it follows that
z’ is also accepted by M. This contradicts the fact that z’ is not in 73.]

Clearly, | V (m) | = 2™2. On the other hand, let ¢(m) be the number of possible
configurations of M just after the input head left the top planes of tapes in V (m).
Then c(m) < s(m+2)2(L, (m))¥. Since limy_..[ (log L, (m))/m?] =0, | V(im) | >
¢(m) for large m. Therefore, it follows that for large m there must be two different
tapes x, y in V (m) such that conf (x) = conf (y). This contradicts Proposition 4.1.
This completes the proof of (2) .1
Lemma 4.2. Let 7, = {x € {0,1}® | 9 m > 2[4 (x) = L(x) = L(x) = 2m&x[ (1,1,
1),@Cm2mm)] +x[(1,1,m+1), 2m,2m,2m)]]}, and let L, (m) : N — R be a function
such that limp_..[ (log L, (m))/m?] = 0. Then,

(1) T, € £[NFV3-1CA¢(m)], and

(2) Ty & Uicrew£ [DFV3-ECAS(L,(m))].

Proof. (1) : We consider the NFV3-1CA¢(m) M which acts as follows. Suppose that

2For any (five-way) three-dimensional multicounter automaton M, we define the configuration of
M to be a combination of the (1) state of the finite control, (2) position of the input head within the
input tape, (3) contents of each counter.
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an input tape x with 4 (x) = 4L(x) = L(x) = 2m is presented to M. First of all, M
starts on position (1,1,1) of x, and adds the number one by one in the counter for every
two east moves of the input head along the 2nd axis. When the input head reaches the
eastmost cell, M stores the number m in the counter. M then chooses some 7, 7 (1 <
n, 7. < 2m) nondeterministically, and moves the input head downwards along the 3
rd axis, starting from the position (7,7,1). During this action, M chooses some 7, (1 <
7, < m) nondeterministically, picks up x(7,7,7;), and stores it in the finite control.
Then, by using the number m stored in the counter, M picks up x(n,7,%+m),
compares it with x (#,7,7) stored in the finite control, and accepts x if and only if x
(r,70,75) + x(n,7,v+m). [After M has picked up x (,7,,7), M subtracts one from
the counter for every down move of the input head. x (#,7,7+ m) is the symbol under
the input head when the contents of the counter is zero. If the input head arrives at the
bottom boundary symbol # before the contents of the counter is zero, then M fails in
the choice of 7 and enters the rejecting state.] It will be obvious that 7 (M) =T,.

(2) : By using the same ideas as in the proof of part (2) of Lemma 4.1, we can easily
show that 75 is not in Ui< s« € [DFV3-kCA°(L, (m)) ]. The proof is left to the reader.
[

From Lemmas 4.1 and 4.2, we can get the following theorem.
Theorem 4.1. (1) Let L(m) : N — Rbe a function such that limg_..[ (log L(m))/m?] =
0. Then, £ [NFV3-FA<] “Uichew® [(DFV 3-kCA°(L(m))] #¢. (2) Let L’ (m) : N—
R be a function such that limy...[ (log L’ (m))/m?®] = 0. Then, £ [ NFV3-1CA¢(m)]
- Uic i [DFV3-RCA(L’ (m)) ] # ¢.

5 HIERARCHIES BASED ON THE NUMBER OF COUNTERS OR THE SPACE
ALLOWED

This section investigates how the number of counters or the space allowed (of five
-way three-dimensional multicounter automata whose input tapes are restricted to
cubic ones) affects the accepting power.

To do this we need to consider the following sets. For each j < 1, let A(j) be the
set of all cubic tapes x & {0,1}*® such that :

(@ Lix)=Lx)=L(x) > J

(b) There are exactly j 1’s in the first row of the first (1-2) plane.

(c) All the rows from the second to the last in the first (1-2) plane
contain only 0.

(d) All the (1-2) planes from the second to the last but one contain only 0.

(e) The last (1-2) plane is equal to the first.

The following three lemmas show that the set A(j) can be accepted by an m’
counter-bounded deterministic (or nondeterministic) k-counter automaton if j < (k&
-1)»+1, £ > 2, and » > 1, but not by any m" counter-bounded nondeterministic k
-counter automaton if j> k7 or by any deterministic one if 7> (£-1) » +2.

Lemma 5.1. For each # > 2 and » > 1, A(j) can be accepted by a DFV 3-kCA°(m")
if 7 < (k-1)7r+1.

Proof. We show how A (j) can be accepted by a DFV 3-kCA(m*) M if j=(k-1)r+
1. The case when < (k-1) r+1 can be proved similarly. Suppose that an input tape x
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with 4 (x) =L (x) =L (x) =m is presented to M. First M checks if x satisfies conditions
(a),(b), and (c) above (in the definition of A(j)). Let d (i) denote the position of the
i~th 1 in the first row of the first (1-2) plane. All d(7), for 1< ¢ < j-1 = (k-1)7, are
stored in k-1 counters in groups of 7 in each counter. The first » numbers from d (1)
to d(») are stored as

2iad@) (m+1)!

in the first counter. First M stores d(1) on the first counter, and then, using the .-th
counter and going from one end of the first row to another; multiplies the first counter
by (m+1), then adds & (2), multiplies again, and so on. Similarly the rest of d (i), for
r+1 < 7 < (k-1)r are stored in the counters from the second to the (,-1)-th. Then
M stores on the k-th counter the position of the j-th 1 and checks if all (1-2) planes
from the second to the last but one contain only 0.

M assumes that the (1-2) plane that contains the first 1 below the first (1-2) plane
is the last (1-2) plane (M will reject the input if it finds another (1-2) plane below).
Next, M checks if there are exactly j 1’s in the first row of the last (1-2)plane, and
all the rows from the second to the last in the last (1-2) plane contain only 0. After
that, unloading the £-th counter M checks if the last 1 in the first row of the last (1-2)
plane stands on the d (j) position and then, using the empty %-th counter, unloads one
by one the numbers @ (7) and checks if there is 1 in the d (7) position of the first row.
Unloading is done in the following way : If a number s (m+1) +d (¢), with d (i) < m
is stored on a counter (say the g-th), then M goes from the first cell of the first row
to the # symbol standing on the other end, decreasing the g-th counter by 1 after each
step, and after reaching # it adds 1 to the £-th counter, comes back to the beginning
of the row, and repeats the process until the g-th counter is empty. At this moment M
stands on the d () position of the first row and keeps s on the k-th counter. It is
obvious that in this way all numbers & (7) can be unloaded (in reverse order to when
they were loaded) and the positions of all 1’s in the first row checked. il
Lemma 5.2. A(j) cannot be accepted by any NFV 3-kCA¢(m?") if j> k.

Proof. Suppose that there is an NFV3-kCA¢(m’) M accepting A (j) and j>kr. For
each m > j, let

Amj ={x € AG) | L(x) =L(x) =L(x) =m]).

Any accepting computation of M reading any x € A(m,j) has to visit x(1,1,2), the
northmost and westmost cell in the second (1-2) plane. Otherwise, if there is an x €
A(m,j) accepted without visiting x(1,1,2), then, putting x(1,1,2) = 1, we obtain the
tape that is not in A () but is accepted by M. Let conf (x) be the set of configurations
of M while visiting x(1,1,2) in the accepting computations on x. For any two different
xy € Alm,j), conf(x) N conf(y) = . Otherwise, replacing the last (1-2) plane in
x by the last (1-2) plane of y, we obtain the tape that is not in A (j) but is accepted
by M.
Clearly
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Ao | =(").

Let ¢ (m) be the number of possible configurations of M while visiting x(1,1,2). Then
c(m) < sm*", where s is the number of states of the finite control. Since j> k7, there
exists m such that | A(m,j) | > c(m), and there must be two different x,y € A (m,
7) such that conf (x) N conf (y) # ¢ . This contradicts the above. il
Lemma 5.3. A(j) cannot be accepted by any DFV 3-kCA¢(m™) if j> (k-1)»+2.
Proof. The proof of this lemma is similar to the proof of Lemma 5.2, but it has to be
observed that if a deterministic automaton M visits the cell x(1,1,2) of an input x then
there is a moment when it visits x(1,1,2) and at least one of its counters does not
exceed cm? for some constant ¢. Suppose that at a moment ¢ M stands on x(1,1,2) and
each of its counter exceeds 2s (m +2)%+1, where s is the number of states of the finite
control. This means that the last moment when at least one of the counters is empty
(say %) is before #-2s(m+2)?-1 and there are two moments 4 and &, H <4 <4 < ©h+
2s(m+2)2+1 < ¢, such that M stands at 4 and # with the same state on the same cell
of the first or second (1-2) plane (since M is five-way it cannot visit the third (1-2)
plane before ¢). If each counter of M is nonempty, then the next move depends only
on the state of the finite control and the symbol scanned by the input head, and since
M is deterministic, the moves from 4 to # are repeated in a loop until one of the
counters becomes empty (if each counter never becomes empty after %, then M never
stops). So there is a moment &, # < # < &, when M visits x(1,1,2) [otherwise x (1,
1,2) cannot be visited at ¢], and since -4, < 2s(m+2)? the counter that is empty at
f, cannot contain more than 2s (m +2)? at 4. So there is the moment % when M stands
in x(1,1,2) with one counter not exceeding 2s(m+2)? < c¢m?, for some constant ¢. il
We are now ready to prove the following theorems. First we show that for every
7 > 1 there exists an infinite hierarchy, with respect to the number of counters, of
languages accepted by m" counter-bounded (deterministic or nondeterministic) five
-way three-dimensional k-counter automata.
Theorem 5.1. For each » > 1, & > 1, and X € {D,N}, £[XFV3-kCA°(m")]C
£[XFV3-(k+1) CA¢(m")].
Proof. From Lemmas 5.1 (1) and (2) it follows that forany » > 1, £ > 1, and X €
{DN},

Akr+1) € £[XFV3-(k+1)CA¢(m")]
and
Alkr+1) € £[XFV3-kCA(m7)]. 1
Next we show that for any 2 > 3 there is an infinite hierarchy, with respect to the
amount of space allowed, of the powers of deterministic five-way three-dimensional
k-counter automata.

Theorem 5.2. For each # > 3 and » > 1, £[DFV3-kCA°(m")] C £[DFV3-kCA®
(mr-}—l)].
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Proof. From Lemmas 5.1 (1) and (3) it follows that for each » > 1 and k‘ > 3,
A((r+1) (k1) +1) € L£L[DFV3-kCA¢(m™")]

and
A((r+1) (k-1 +1) & £[DFV3-kCA°(m"]. 1

Finally, we show that for every £ > 2 and » < k there is an infinite hierarchy, with
respect to the amount of space allowed, of the powers of nondeterministic five-way
three-dimensional %2-counter automata.

Theorem 5.3. For each £ > 2 and » < &k, £[NFV3-kCA°(m")] C £[NFV3-kCA®
(m™Y].

Proof. From Lemma 5.1 (1) we have
A((r+1) (k-1) +1) & £[NFV3-ECAc(m™")],
and if » < &, then (»+1) (k-1) +1 > 7k, and by Lemma 5.1(2),

A((r+1) (k-1) +1) & £[NFV3-kCA(m")]. 1

6 CONCLUSION

In this paper, we have showed the differences between the accepting powers of six
-way and five-way three-dimensional multicounter automata, and between the
accepting powers of nondeterministic and deterministic three-dimensional
multicounter automata. Furthermore, we showed that hierarchies can be obtained by
varying the number of counters or the amount of space allowed, for classes of sets
accepted by five-way three-dimensional multicounter automata.

It will be also interesting to investigate the accepting powers of alternating” three
-dimensional multicounter automata (see [2] for the concept of ”alternation”).
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