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Abstract

Let S! be a one—dimensional torus and H be a Hilbert space. We discuss the properties of
eigen values of operators associated with bundle homomorphisms on a product Hilbert bundle (St
X H, S!, 7).

It is important to study operators and oparator algebras on Hilbert bundles for ap-
plications to relatively quantum mechanics.

The purpose of this paper is to show the properties of eigen values of special oper-
ators associated with bundle homomorphism of a product Hilbert bundle.

It remains to be solved to investigate the operators and operator algebras on general
Hilbert bundles.

Let H be a Hilbert space and X be a topological space. The set of all bounded linear
operators on H is denoted by B(H). A product Hilbert bundle is a triplet § = (E, X, 7)
where E is the product space of X and H equipped with product topology and 7 is the
projection of E to X.

We set E, = ® ~!(x) and the Hilbert space H = E, is said to be the fibre at x.

A continuous map ¢ : X—E is called a continuous cross section on & if

T o(x)=x for all x € X.

We deonote the set of all continuous cross sections on & by I'(€). The space I'(§)is a
vector space by pointwise scalar multiplication and pointwise addition, that is,

(a0)(x)= ao(x)
(6 + T)(x)= 0(x) + T(x) for 6,7 € T'(§), @ € C, x € X,

If X is a compact space, I'(§) is a Banach space by supremum norm.
A bundle homomorphism in § = (E, X, 7) is a pair (f, fy) of two continuous maps
such that
(i) the map f is a continuous map from E to E and the map fo is a continuous map
from X to X
(i) mf=f,m

(i) the restriction f, of f to E, is a bounded linear operator from E,=H to E¢(x)=H
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(iv) the map X » x—f € B(H) is continuous in a suitable operator topology.
Let (f, fo) be a bundle homomorphism in & . If {, is a homeomorphism, we can define
a linear operator T associeted with (f, f,) on I'(€) as follows :

To =fof, ! forall ¢ € I'(&).

The eigen vector ¢ € T'(€) of the operator T is specially called an eigen cross
section of T. It is important to study eigen value problems of operators associated
with bundle homomorphisms on Hilbert bundles.

This paper deals with a special case that a topological space X is a one—dimen-
sional torus and f, is an identity operator for each x € X.

Let S be a one—dimensional torus, that is,

Stl=1{ze€ C:lz|= 1}

and @ be in X = S!,
Let £ = (E, X, 7) be a product Hilbert bundle where X = S' and E = S! X H.
We define a bundle homomorphism (f, fy) on product Hilbert bundle & as follows :

fo(x) = wx for x € S!
f(x, h) = (fo (x), h) for (x, h) € E
i. e, f, is an identity operator.
Since T'(€) is a Banach space and the operator T associated with (f, fo) is isometry,

the absolute value of each eigen value of T is |. Furthermore the following theorem
holds.

Theorem Let a product Hilbert bundle ¢ = (E, X, 7) and bundle homomorphisms
(f, fo) be as above and T be the operator associated with (f, £y).

If @ is a primitive n—th root of 1, the set of all eigen values of T is
jok:0<k<n-1} .

If @ is not a roof of 1, then we get the following :

(i) for each integer I, ®@'is an eigen value of T and the associated eigen space is
ix"'h:h € H
(i) if A % 1 is an eigen value of T, A is not a root of 1.

Proof If ¢ is a cross section on &,

(To)x)=fof, '(x) = o(@ 'x).

Hence A is an eigen value and & is an eigen cross section cssociated with A if
o(x) = A 0(wx) forx € X =S

If for a non—zero vector h € H we put

o (x) =x *h for x € X,
wko(wx) = 0(x) for x € X and integer k.



Eigen value problems of operators on a product Hilbert bundle 363

Hence for each integer k, @* is an eigen value and o (x) = x*h is an eigen cross section
associated with @¥
First let @ be a primitive n—th root, A be an eigen value and ¢ be an eigen croos

section associated with A . Since 0 1is an eigen croos section, there is a point xo € X
such that 6 (xo) ¥ 0. Since 0 (xg) = A" 0 (@ "x5) = A" 0 (x0), so A" = 1 and therefore
Aisin {@*:0<k<n—1} .

Next let @ be not a root of 1. If & is an eigen croos section associated with an eigen
value @’ we get

o(wk = w Xa(1) for all integer k.

Since the set |{@¥:k € Z} is dence in X = S!, for each x € X there is a sequence
{™®} | such that

X =kli’moo w ™),
Then we get
7 (x)= lim, o (@) = (lin, @ ~")e (1)
=x'o(1).

Hence 6 (x) = x 'hif weset h= o(1) € H.
We have proved that the eigen space asociated with an eigen value w' is the set {x 'h:
h € H if @ is not a root of 1.
Let A ¥ 1 be an eigen value and ¢ be an associated eigen croos section.
If A were root of 1, there is an integer k such that A* = 1. Then o (@w') = 2 7o (1)
= o(1) for all integer [.
Since @* is not a root of 1, the set (@™ :1 € Z}| is dence in X = S'.
Hence we have

o(x) = 0(1) for all x € X.

Since 0 (1) = 6 (x) = A o6(wx) = A 0(1), we get
o(l)y= A2 0(1) and so o(l)=0.

Thus o (x) = 0 for all x € X.
This constradicts the condition of ¢ being an eigen croos section. Therefore A is not a
root of 1. This completes the proof.

Remark 1
Even if H is a general locally convex Hausdorff space, the absolute value of each eigen

value of T is I and Theorem holds.

Remark 2
Let H be of one—dimension. If @ is not a root of 1, the set of all eigen values of T is
the set {@":n € Z} .
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