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Abstract

Three constitutive models were investigated based on the concept of a non—associated flow
rule. The key concept is the assumption that sand can be regarded as an isotropic work harden-
ing elasto—plastic material. It was proved that the proposed elasto—plastic models, especially
Model I could effectively represent the yield and stress—deformation characteristics of sand.

1. Introduction

Sand materials are characterized by the property of producing dilatancy during
shear deformation, and the stress—deformation charactristics are remarkably influenced
by a stress path and a strain history. Therefore, it is desirable to establish the simple
stress—strain relation which can predict the complicated characteristics of sand in re-
gards to such matters as the deformation and stablity analysis of granular soils.

In order to clarify the stress—strain behaviour of granular soils in particle—
crushing regions, the authors” ™ ® have investigated the yielding characterisics of sand in
detail using a multi—step stress path method. The following results have been obtained.
(1) The shape of the yield curve of sand in a particle—crushing region is similar to that
of the yield curves for clayly soils proposed by Roscoe et al.,*® rather than that for
sand derived by Lade et al.®.

(2) The new yield curve and stress—strain equations, derived based on a critical state
energy theory, are well conformable with the experimental stress—strain curves in a
particle—crushing region.

However, there are some foundmental problems in the case of predicting stress—
strain curves of sand under a wide stress range by using the critical state energy theory.
It is impossible to apply the concept of the associated flow rule to sand under a non
particle—crushing region because sand produces expansion during shear deformation.

Based on the concept of the non—associated flow rule, this paper investigates three
constitutive models to predict stress—strain behaviour of sand under a wide stress
range. The key concept in this treatment is the assumption that sand can be regarded as
an isotropical work hardening elasto—plastic material. The form of the yield function for
sand is discussed through the triaxial compression test results of sand in a high stress
region. Both plastic potential and hardening function are derived by using the state para-
meter S, which is proposed by Moroto”®,
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2. Formulation of stress-strain relations

2.1 Stress parameter and strain increment parameter
The following stress and plastic strain increment parameters are used in this study.

p=(0 + 0,+ 05)/3 (1)
a="z (06— 03 +(0,— 0,) + (0, — o)1 (2)
7 =a/p (3)

where p is the mean principal stress, q is the deviator stress, 7 is the stress ratio and o,,

0, and 04 are the principal stresses, respectively.

dvP = deb + deb + deb (4)

de® =2 | (de} — deB)? + (de§ — deB)? + (deh — deR)? | /2 (5)

where dvP is the plastic volumetric strain increment, de® is the plastic shear strain incre-
ment, and de;, de, and de; are the principal plastic strain increment tensors, respec-
tively.

2.2 Derivation of stress-strain relations

In this paper, it is assumed that there exist the plastic potential function g, and the
yield function f for sand and that the concept of the non—associated flow rule can be ap-
plied. The total strain increment tensor deg;; is assumed to be the sum of an elastic strain
increment tensor dejj and a plastic strain increment tensor def}, such that

d€ij = d€§ + dEﬂ (6)

The elastic strain increment tensor is given as,

where e is a void ratio, « is the slope of the e—In p swelling curve.
Applying the concept of the non—associated flow rule,'" the plastic strain increment
tensor is formulated by

a o d 2 o
g-c1f=h% £ ob , o8 q}df

def = h-
! o0;; op 90 2q o0



Elasto—Plastic Constitutive Models for Stress—Strain Behaviour of Sand 337

where, h is the hardening function, which is the scalar function of the stress and strain
history, g is the plastic potential function, f is the yield function and 9 is the stress ten-
sor. Here, the yielding condition is given by the following equation.

f—f*=0 (9)

where f* is the highest value of f encountered in the loading program. If the yield, plastic
potential and hardening functions are formulated as the function of the stress parameters,
the stress—strain relations can be derived by using Egs. (6), (7) and (8) definetely.

2.3 Properties of the yield and plastic potential functions
Poorooshasb'® proposed the following yield function by investigating the yield char-
acteristics of sand under a relatively low stress range in detail.

f=7 + mlnp (10

where m is the constant determind experimentally.
The value of coefficient m was found to be equal to 0.6 for the sand used in his study.
Fig. 1 shows the normalized yield curve in the p/Po-q/Po diagram depicted using Eq. (10,
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Fig. 1 Comparison of the predicted and ex-
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together with the yield curve indicated by Miura et al. D.12) experimentally. where pg is
the value of p at 7 = 0. In Fig. 1, other four yield curves proposed by Roscoe et al., **
Lade et al.,® and the authors? are depicted. This figure indicates that the yield curves
showed experimentally by the authors is not only different from the yield curve based on
Eq. (10 but also different from ones proposed by another reaserchers. Therefore, in order
to obtain a more conformable equation that agrees with the experimental yield curves in
a wide stress region, the authors searched for a better expression for the yield function f.
After all, the authors found the following expression to give an excellent result.

f= 72+ m-Inp 1y
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where m is the parameter depended on the stress states. The method to determine the pa-
rameter m will be discussed in section 3.1. Here, Model I is derived based on Eq. (11),
and Model II and Model III are derived based on Eq. (10.

The plastic potential function g, from which the gradient of the plastic strain incre-
ment may be obtained, is derived by using the state parameter S, proposed by Moroto et
al.”®_ The equation for the plastic energy dissipation per unit volume dwP® is expressed

as follows.
dWP'= 0;; def; = pdv® + qde? 12
Moroto”"® pointed out that the normalized dissipated shear work dS, indicated by the

following equation can be a state parameter of granular soils.

dW?¥
ds, = (13
p
Combining Eqs. (12 and (13, the normalized dissipated shear work is given by
dS, = dv® + 7 -deP 14

where, dW? is the increment of plastic work done due to shear and dvP is the plastic
volumetric increment strain due to dilatancy. Fig. 2 shows typical plots of S, as the func-
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tion of the shear strain for Toyoura sand. Let the gradient of the curve S and & be de-
noted by a. This figure indicats that the parameter a is approximately constant regard-
less of the magnitude of the shear strain and stress path. As it might be assumed that the
elastic shear strain €° can be ignored, Fig. 2 gives the following equation

dwe
sS:fp =fa-dep 15
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Total differential form of Eq. (19 is expressed as
dS, = a *deP (16)
Combinding Egs. (14) and (16, the plastic strain increment vector due to shear is given by

dvP

de® =a=7 a7

where, parameter a is a constant which evaluate stress—dilatancy characteristics during
the consolidation and the shear deformation, and is value of 7 at dvP/de® = 0. Fig. 3
shows the relation between 7 and dvP/deP for Toyoura sand under constant p and con-
stant 05 conditions, compared with the predicted line by Eq. (17. It is seen from this fi-
gure that the calculated line by Eq. (17 agrees very well with the experimental results and
that the relation between dvP/de® and 7 may be determined uniquely independent of
stress path. From this experimental result it can be said Eq. (17 has a comformability re-
gardless of the stress paths. Then, combining Eq. (17 and the concept of the normality
rule, the plastic potential function is derived as follows.

g= 7 + a-inp a8
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Fig. 3 Prediction of stress—dilatancy charac- Fig. 4 Family of the plastic potential curves in p—q
teristics space

Fig. 4 shows the family of the plastic potential curve depicted in the p—q diagram
using Eq. (189, together with the plastic potential segments obtained in the particle
crushing region experimentally. This figure indicates that the plastic potential curves
based on Eq. (18 apporoximately agree with the plastic potential segments observed,
therefore, Eq. (18 may be the reasonable plastic potential function for sand. Eq. (18 is used
to derive the elasto—plastic constitutive models called Model I and Model II in this study.
Eq. 19 is the another plastic potential function for Model III
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This plastic potential function is the same type as Burland® proposed. The plastic poten-
tial function g and the yield function f are summarized in Table 1.

Table 1 The characteristics of three proposed models

Model 1 Model [ Model I
Yield function f f=724+melnp | f=7 +m-lnp f=7 4+ m-lnp
2 2
i ial a®+ 7
Plast1.c potentia g=7T+alnp | g=7 + a-lnp | g=p : )
function g a
(A —&)77% (A — &)1, A—«k 7%
Parameter m (1+e)a (1+e)a l4+e aa

3. Predication of the stress-strain relations

3.1

To simplify the disscusicn on the hardening function, sand is assumed to be an iso-
tropic hardening material. The state parameter S is introduced to determine the harden-
ing function concretely. Fig. 5 shows the relation between ( 7 / 7,)? and S,. From this
results, it can be considered that the relation between ( 7 / 7 ;)? and S, is represented by
a unique hyperbolic curve, irrespective of the magunitude of p such that,

7 [ S,
== 0
7 ¢ at+b- S, ¢ )
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Fig. 5 Relation between S, and ( 7/ 7 )2
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where, 7 is the stress ratio at failure, which is assumed to be a function of p, a and b
are constants. Substitution of Eq. (16 into Eq. €0 gives

o /_‘Z_'E" .
7, Ya+ a-b-¢’ @)

Differentiating Eq. 1), de® is given by

2.2-7-7%
a(”?_b.qu)zd? 22

deP =

Now, for the drained triaxial test at constant p, the plastic shear strain increment is
derived from Egs. (8), (9) and (18 as

1
deP :h'p°277'd’7 23

Equating Eps. €2 and @3, the hardening function h is obtained

B a- 1%
TR S &

Therefore, the plastic strain increment tensor def is given by substituting Egs. 1y, a8
and @4 into Eq. (8). The plastic volumetric strain increment dv® and the plastic shear
strain increment de® are given as follows, respectively.

ag a- 77§
P = ——— = -
W T e (i b0 ?Y

d
(a —7) <27-d77+mTp> 25

2
3'77(

(7¢—b-7%)

P d '
de? = h 2% gf = @747 +m 2 26
2q a p

Here, the hardening functions for Model II and Model III are also determined by the
above same manner. These results are sammarized in Table 1.

3.2 Determination of soil parameters
Eq. @5 gives the plastic strain increment dv® under isotropic consolidated condition

as

dvP = — ‘m* — @7

On the other hand, the isotropic consolidation components of the plastic volumetric strain
increment dvP is formulated based on the e—In p curve.
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A — k dp
p—-_2 - F
dv 1+e p 2

Equating Eqs. 6) and ©7), the parameter m is given by

(A — k) 7%

(1+ea 9

m —

where A and x are parameters depending on the stress state. Substituting Eq. €9 into
Eq. 1), Eq. 1) gives .

(A — &) 77§
(1 +ea

f=72+ Inp 0)

From Eq. 80, it is known that the shape of its predicted yield curve changes by the stress
state. The parameter m for Model II and III obtained by the above manner is shown in
Table 1.

Fig. 6 shows the isotropic compression and swelling test results for Toyoura sand
under the cell pressures up to 50 MPa. From Fig. 6, it can be seen that the e—In p curve
becomes bilinear. Fig. 7 indicates the A —In p characteristics, showing that the value of
A is dependent on the magnitude of p, and ¥ is a constant independent of p.Based on A
—In p relationship of Fig. 7, the parameter A is formulated as follows.

A= A,+d;lnp (r<p,)

= ’\ 1 + (dl - dZ).lnpyv + d2.lnp (py<p<pcs) (31)
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where, A, is the value of A at p = 0.98 MPa, p, is the consolidated yield stress, p. is
the value of p at A =constant, and d; and d, are slopes of A —In p curves. Fig. 8 shows
the relation between 7, and p at failure, using the triaxial compression test results

under a wide stress range.
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Fig. 8 Relation between stress ratio at failure 7

and mean principal stress p at failure

It is seen from this figure that the strengh parameter 7 is dependent on the value

of p, therefore, we assumed that 7 is formulated as follows.

N¢=

— 17{1 - I‘lnpfy

77 f1 l'lnp

(p<pfy)

(P> Pyy)

62

where, 7, is the value of 7 at p = 0.98 MPa and py, is the value of p at 7 = const.

All of the soil parameters for Toyoura sand obtained by the above—mentioned method

are sammarized in Table 2.

Table 2 Soil parameters for Toyoura sand

Parameter a b a A K 7a 1 d; d,
Model T.1 |0.152 1 0.553 | 1.50 | 0.007 { 0.004 | 1.33 | 0.006 | 0.003 |0.1480
Model [l 0.070 | 0.813 | 1.50 | 0.007 [ 0.004 | 1.33 | 0.006 | 0.003 {0.1480

3.3 Verification of constitutive models
The predicted yield curves for Toyoura sand by Model LII and III are depicted in
Fig. 9. The yield curve predicted by Model I is well comparable with the experimental
yield curve investigated in a particle—crushing region rather than those by Model II and

IIL.
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Fig. 9 Comparison of the predicted and ex-
perimental yield curves

Fig. 10 shows the yield curve predicted by the yield function (Ep. (11)) of Model I in
a/po—p/Po space. This figure indicates the interesting results that the shape of predicted
yield curve depends on the value of p. Fig. 11 shows the stress—strain curves of the
drained triaxial compression test under a constant confining pressure, and the predicted
stress—strain behaviour of sand excellently.

In order to evaluate the abilities of the proposed models under a wide stress region
We are now investigating the yield characteristics and stress—strain behaviour of sand

’

under a low stress region.
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Conclusions

On the basis of the concept of the non—associated flow rule, three elasto—plastic
constitutive models of sand were derived in order to predict the mechanical behaviour of
sand under a wide stress region. The following main conclusions were obtained.

1) The yield curve depicted by the Model I proposed is well comparable with the ex-
perimental yield curve in a high stress region.

2) The proposed plastic potential function is conformable to the experimental plastic
potential curves obtained in a high stress region.

3) The proposed stress—strain relation, especially Model I can satisfactorily predict the
experimental stress—strain curves of sand in a high stress region.
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