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Abstract

In this paper, we investigate the relationship between the accepting powers of deterministic
bottom-up pyramid acceptors and deterministic two-dimensional finite automata, and show that
there is a set accepted by a deterministic two-dimensional finite automaton but not by any
deterministic bottom-up pyramid acceptor which operates in time of order lower than the
diameter of the input, and vice versa.

1. Introduction

In [1], Dyer and Rosenfeld introduced a new type of acceptor on a two-dimensional
pattern (or tape), called the ‘‘pyramid cellular acceptor” (denoted by ‘‘PA”), and demon-
strated that many useful recognition tasks are executed by PA’s in time proportional
to the logarithm of the diameter of the input.

They also introduced a ‘‘bottom-up pyramid acceptor” (denoted by ‘“BPA”) which
is a restricted version of the PA, and proposed some interesting open problems about
BPA’s. We are interested in the following problem (which is one of the open problems):
Does the class of sets accepted by deterministic BPA’s include the class of sets accepted
by deterministic two-dimensional finite automata (denoted by ‘2-DA’s”) [2, 3, 4]?

In this note, we show that the class of sets accepted by 2-DA’s is incomparable
with the class of sets accepted by deterministic BPA’s which operate in time of order
lower than the diameter of the input.

2. Preliminaries

We first give some definitions and notations concerning two-dimensional tapes.

Definition 1: Let X be a finite set of symbols. A two-dimensional tape over X
is a two-dimensional rectangular array of elements of X.

The set of all two-dimensional tapes over X is denoted by X®. Given a tape
xeX®, we let 1,(x) be the number of rows of x and I,(x) be the number of columns of
x. If1<i<li(x)and 1 < j<I,(x), we let x(i, j) denote the symbol in x with coordinates
(i, j). Furthermore, we define

x[G, j), (75 9]

only when 1<i<i’'<ly(x) and 1< j< j <Iy(x) as the two-dimensional tape z satisfying

Departfnent of Electronics, Faculty of Engineering, Yamaguchi University, Ube, 755 Japan



182 Katsushi INoUE and Itsuo TAKANAMI

the following (i) and (ii):
(1) Li(@=i"—i+1 and I(2)=j—j+1;
(i) for each k, r (1<k<I(2), 1<r<liy(2)),

2k, ry=x(k+i—1, r+j—1).

We next review some basic concepts about bottom-up pyramid acceptors (BPA’s).
A bottom-up pyramid acceptor is a pyramid stack of two-dimensional cellular arrays,
where the bottom array has size 2" by 2" (n>1), the next lowest 2"~! by 27! and
so forth, the (n+ 1)st layer consisting of a single cell, called the root. Each cell is defined
as an identical finite state machine, M =(Qy, Qr, 6, A), where Qy is a nonempty, finite
set of states, Q7 S Qy is a finite set of input states, A<= Qy is the set of accepting states,
and §: Q3—Qy is the state transition function, mapping the current state of M and its
four son cells in a 2-by-2 block in the level below into M’s next state. As shown in
Fig. 1, let ¢ be some cell in the (i+ 1)st layer (i>1), and let ¢,, c,, ¢; and ¢, be four son
cells (in the i-th layer) of ¢. Then

g1+ 1) =38(g (1), g.,(1), 4c,(D), 4.,(1), 4..(1)),

¢C the (i+1) st Jayer
the first row and {
the first column
in the i-th layer
(./l Cl
C c. the i-th layer

Fig. 1

where for example ¢.(f) means the state of ¢ at time 7. (Especially, we assume without
loss of generality that the next state of each cell ¢’ in the bottom array depends only
on the current state of ¢’.) '

At time =0, the input tape x € Q% (I,(x)=1,(x)=2", n>1) is stored as the initial
states of the bottom array (in such a way that x(i, j) is stored at the cell of the i-th row
and the j-th column), and the other cells are initialized to a quiescent state ‘‘q,”
(€Qnv—0Qr—A). As usual, we let 8(q;, 45, 45 45> 45) =4

The input is accepted if and only if the root cell ever enters an accepting state.
This BPA is called deterministic. A nondeterministic bottom-up pyramid acceptor
(NBPA) is defined as a BPA using §: Q5—22~ instead of the state transition function
of the deterministic BPA. Below, we denote the deterministic BPA by “DBPA”, and
the nondeterministic BPA by ‘“NBPA”.

A DBPA (or NBPA) operates in time T(n) if for every tape of size 2" by 2" (n>1)
it accepts, there is an accepting computation. which- uses no more. than time .T(n).
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Especially, we say that a DBPA (or NBPA) operates in real time if it operates in time
T(n)=n. Let L[DBPA(T(n))] (£[NBPA(T(n))] denote the _class of sets accepted
by DBPA’s (NBPA’s) which operate in time T(n).

3. Results

In this section, we show that the class of sets accepted by deterministic two-
dimensional finite automata (2— DA’s)? is incomparable with the class of sets accepted
by DBPA’s which operates in time of order lower than the diameter of the input. We
assume, in this paper, that the sizes of inputs to automata are restricted to 2" by 2"
(n>1).

Lemma 1: Let U={xe{0, 1}?En(n>1)[I,(x)=1,(x)=2"] and x(2"71, 2"71)
=1}. Then,

(1) U&s2[2-DA], and

(2) Ue2[DBPA(n)].

Proof. The proof of (1) is similar to that of Theorem 1 in [2]. So the proof is
omitted here. Below, we prove (2). The set U is accepted by the following DBPA
B which operates in real time. Each cell of B is defined as the fo‘]l‘c‘)w'ing finite state
machine M =(Qy, Or, 6, A): ' .

(i) Onv={qs 0, 1} U {Y, N} x{0, 1}, where g, is the quiescent state;

(ii) Qr={0, 1};

(i) A={[Y, 1], [, 0]};

(iv) @ For any a, b, c€ {0, 1},

g 1,.a, b, ¢)=[Y, b], and
4(q,, 0, a, b, c)=[N, b]; .
(@ For any p, g, re{Y, N}, andforany a,b,ce{0,1},
o(qs LY, 11, [p, al. [q, b1, [r, cD=LY, b],
5(‘1.:’ [Na 1]a [pa a], [q’ b]s [ra C])=[Y, b] >
5(‘19 [Y’ 0]7 [ps a]’ [q9 b]a [r’ C])=[N9 b]a and
(g, [N, 01, [p, al, [g, b], [, cD)=[N, b].
It is straightforward to see that B accepts U, and so (2) of the lemma holds. Q.E.D.

Lemma2: Let V={xe{0, 1}®|3n(n>1) [I,(x)=1,(x)=2"] and x[(1, 1), (1, 27)]
=x[(2", 1), (2, 2)]}. Let T(n) be a time function such that lim [T(n)/2"]=0. Then,
(1) Veg[2-DA], and S -
(2) V& 2[DBPA(T(n))].

’ Proof : It is obvious that there is a 2— DA accepting V, and so (1) of the Lemma
holds. Below, we prove (2). Suppose that there is a DBPA B which accepts V' and
operates in time T(n), and that each cell of B has k states. For each n>2, let

T See [2, 3, 4] for definitions of 2-DA’s.
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W(n)={x e {0, 1}®|I,(x)=1,(x)=2"}, and
W(n)={x € {0, L®|I,(x)=Iy(x)=2""1
&‘x[(l, D, (1, 271)] e {0, 1)@
& x[(2, 1), 2"~1, 2n-1)] e {0} @)} ,

We consider the cases when the tapes in W(n) are presented to B. Let ¢ be the
cell which is situated at the first row and the first column in the n-th layer (i.e., the layer
just below the root cell). (Note that there are four cells in the n-th layer.) For each
x in W(n) such that x[(1, 1), (2"~t, 2"~1)] e W'(n), and for each r>1, let q,(x) be the
state of ¢ at time r when x is presented to B. Then, the following proposition must
hold.

Proposition 1: Let x, y be two different tapes in W(n) such that both x[(1, 1),
(2771, 2711 and y[(1, 1), (2"7%, 2""1)] are in W’'(n) and x[(1, 1), (2n=1, 2n=1)] £
v, 1, 271, 2»=1]. Then,

<q(x), g2(x),..., qT(n)(x)> # <q:(»), 9:0),..., qT(n)(.V)> .

[For suppose that <g,(x), 4;(x),..., 47((X)> = <q,(¥), 42(1);---» g7m(¥)>. We con-
sider two tapes z, z’ in W(n) such that

(i) z[(1, 1), 21, 2] =x[(1, 1), (2"~1, 2"=1)] and
Z'[(1, 1), @*1, 277 H]=yp[(1, 1), (2"~1, 2"~ 1)],

(i1) the part of z except for z[(1, 1), (2", 2n~1)] is identical with the part of z’

except for z’[(1, 1), (2771, 2"~1)], and

(i) z[(1, 1), (1, 29)]=2z[(2", 1), (2", 2M)].

By assumption, the root cell of B enters the same states until time T(n), for the tapes
zand z’'. Since B operates in time T(n) and z is in V, it follows that z’ is also accepted
by B. This contradicts the fact that z’ is not in V.] Let #(n) be the number of different
sequences of states which ¢ enters until time T(n). Clearly, #(n)<kT™. On the
other hand, |W'(n)[¥=22""". Since lim [T(n)/2"]=0 (by assumption of the lemma),
it follows that |W'(n)| > t(n) for Iarge : Therefore, it follows that for large n there
must exist two different tapes x, y in W(n) such that

(i) both x[(1, 1), 21, 2»=1)] and y[(1, 1), (2", 2~1)] are in W'(n),

(i) x[(d, 1), @1, 2" H]#y[(, D), 271, 2~1)], and

(111) <q1(x)a ,2(x)""a qT(n)(x)> = <Q1(y)s Q2(y),---’ (:IT(n)(y)> .

This contradicts the above Proposition 1, and thus the part (2) of the lemma holds.
Q.E.D.

From lemmas 1 and 2, we can get the following theorem.

Theorem 1: Let T(n) be a time function such that hm [T(n)/2"]=0 and T(n)
>n(n>=1). Then #[2—DA] is incomparable with . [DBPA(T(n))]

¥ For any set S, let |S| denote the number of elements of S.
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Corollary 1: #[2—DA] is incomparable with #[DBPA(n)], which is the class
of sets accepted by DBPA’s operating in real time.

For any NBPA M which operates in real time, we can construct a DBPA which
accepts the same set as M and operates in real time, by using the well-known subset
construction method. Thus Z[NBPA(n)]=2[DBPA(n)]. From this and Corol-
lary 1, we get the following corollary.

Corollary 2: #[2—DA] is incomparable with #[NBPA (n)]. ‘
It is still unknown whether the class of sets accepted by DBPA’s includes
£[2-DA].
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